1
|
Panday R, Rogy KM, Han YD, Khetani SR. Engineered microtissues to model the effects of dynamic heterotypic cell signaling on iPSC-derived human hepatocyte maturation. Acta Biomater 2025:S1742-7061(25)00193-X. [PMID: 40089127 DOI: 10.1016/j.actbio.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/21/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
In vitro human liver models are indispensable for compound metabolism/toxicity screening, disease modeling, and regenerative medicine. While induced pluripotent stem cell-derived human hepatocyte-like cells (iHeps) mitigate the sourcing limitations with primary human hepatocytes (PHHs), their functional maturity is rate-limiting for application use. During development, immature hepatoblasts interact with different non-parenchymal cell (NPC) types, such as mesenchyme and endothelia, in a spatiotemporal manner to progress through functional maturation. Modeling such interactions in vitro is critical to elucidate the key regulators of iHep maturation. Here, we utilized high-throughput droplet microfluidics to encapsulate iHeps within monodisperse collagen I microgels (Ø ∼ 250 µm), which were coated with NPCs to generate 'microtissues' placed within microwells in multiwell plates. Embryonic fibroblasts and liver sinusoidal endothelial cells (LSECs) induced the highest level of iHep maturation over 4+ weeks of culture compared to adult hepatic stellate cells (myofibroblastic), liver portal fibroblasts, dermal fibroblasts, and human umbilical vein endothelial cells. Combining iHep microtissues in plates with Transwell inserts containing different NPC types enabled the modeling of dynamic heterotypic signaling on iHep maturation; introducing embryonic fibroblast signaling first, followed by LSECs, led to the highest iHep maturation. Unique cytokine secretion profiles were detected across the top-performing microtissue configurations; stromal-derived factor-1 alpha was validated as one factor that enhanced iHep maturation. Lastly, gene expression patterns and regulatory networks showed adult PHH-like maturation in LSEC/iHep microtissues compared to iHep-only microtissues. Overall, microtissues are useful for elucidating the microenvironmental determinants of iHep maturation and for future use in downstream applications. STATEMENT OF SIGNIFICANCE: Induced pluripotent stem cell-derived hepatocyte-like cells (iHeps) hold great promise for drug screening, disease modeling, and regenerative medicine but often exhibit immature phenotypes. We utilized high-throughput droplet microfluidics to generate 3D microtissues containing iHeps and non-parenchymal cell (NPC) types to elucidate the effects of dynamic NPC signaling on iHep maturation. We observed that iHep maturation is significantly enhanced with embryonic fibroblasts and liver sinusoidal endothelial cells (LSEC) compared to adult liver fibroblasts and non-liver endothelia; the LSEC/iHep microtissues showed adult liver-like gene expression signatures. The highest iHep maturation in microtissues was achieved when mesenchymal stimulation was introduced first, followed by LSEC stimulation. Our platform provides a robust framework to elucidate cellular and molecular mediators of iHep maturation and biomedical applications.
Collapse
Affiliation(s)
- Regeant Panday
- Department of Biomedical Engineering, University of Illinois Chicago, 851 S Morgan St, 218 SEO, Chicago, IL 60607, USA
| | - Kerry M Rogy
- Department of Biomedical Engineering, University of Illinois Chicago, 851 S Morgan St, 218 SEO, Chicago, IL 60607, USA
| | - Yong Duk Han
- Department of Biomedical Engineering, University of Illinois Chicago, 851 S Morgan St, 218 SEO, Chicago, IL 60607, USA
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois Chicago, 851 S Morgan St, 218 SEO, Chicago, IL 60607, USA.
| |
Collapse
|
2
|
Gong D, Mo J, Zhai M, Zhou F, Wang G, Ma S, Dai X, Deng X. Advances, challenges and future applications of liver organoids in experimental regenerative medicine. Front Med (Lausanne) 2025; 11:1521851. [PMID: 39927267 PMCID: PMC11804114 DOI: 10.3389/fmed.2024.1521851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/20/2024] [Indexed: 02/11/2025] Open
Abstract
The liver is a vital organ responsible for numerous metabolic processes in the human body, including the metabolism of drugs and nutrients. After liver damage, the organ can rapidly return to its original size if the causative factor is promptly eliminated. However, when the harmful stimulus persists, the liver's regenerative capacity becomes compromised. Substantial theoretical feasibility has been demonstrated at the levels of gene expression, molecular interactions, and intercellular dynamics, complemented by numerous successful animal studies. However, a robust model and carrier that closely resemble human physiology are still lacking for translating these theories into practice. The potential for liver regeneration has been a central focus of ongoing research. Over the past decade, the advent of organoid technology has provided improved models and materials for advancing research efforts. Liver organoid technology represents a novel in vitro culture system. After several years of refinement, human liver organoids can now accurately replicate the liver's morphological structure, nutrient and drug metabolism, gene expression, and secretory functions, providing a robust model for liver disease research. Regenerative medicine aims to replicate human organ or tissue functions to repair or replace damaged tissues, restore their structure or function, or stimulate the regeneration of tissues or organs within the body. Liver organoids possess the same structure and function as liver tissue, offering the potential to serve as a viable replacement for the liver, aligning with the goals of regenerative medicine. This review examines the role of liver organoids in regenerative medicine.
Collapse
Affiliation(s)
- Da Gong
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiaye Mo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
- Guangxi University of Chinese Medicine, Nanning, China
| | - Mei Zhai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Fulin Zhou
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guocai Wang
- Department of Physiology, School of Medicine and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University Shenzhen International Graduate School, Guangdong, China
| | - Xiaoyong Dai
- Department of Physiology, School of Medicine and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University Shenzhen International Graduate School, Guangdong, China
| | - Xuesong Deng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
3
|
Zhang Y, Li L, Dong L, Cheng Y, Huang X, Xue B, Jiang C, Cao Y, Yang J. Hydrogel-Based Strategies for Liver Tissue Engineering. CHEM & BIO ENGINEERING 2024; 1:887-915. [PMID: 39975572 PMCID: PMC11835278 DOI: 10.1021/cbe.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 02/21/2025]
Abstract
The liver's role in metabolism, detoxification, and immune regulation underscores the urgency of addressing liver diseases, which claim millions of lives annually. Due to donor shortages in liver transplantation, liver tissue engineering (LTE) offers a promising alternative. Hydrogels, with their biocompatibility and ability to mimic the liver's extracellular matrix (ECM), support cell survival and function in LTE. This review analyzes recent advances in hydrogel-based strategies for LTE, including decellularized liver tissue hydrogels, natural polymer-based hydrogels, and synthetic polymer-based hydrogels. These materials are ideal for in vitro cell culture and obtaining functional hepatocytes. Hydrogels' tunable properties facilitate creating artificial liver models, such as organoids, 3D bioprinting, and liver-on-a-chip technologies. These developments demonstrate hydrogels' versatility in advancing LTE's applications, including hepatotoxicity testing, liver tissue regeneration, and treating acute liver failure. This review highlights the transformative potential of hydrogels in LTE and their implications for future research and clinical practice.
Collapse
Affiliation(s)
- Yu Zhang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Luofei Li
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Liang Dong
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yuanqi Cheng
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Xiaoyu Huang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Bin Xue
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yi Cao
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Jiapeng Yang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
4
|
Naidoo J, Hurrell T, Scholefield J. The generation of human induced pluripotent stem cell lines from individuals of Black African ancestry in South Africa. Stem Cell Res 2024; 81:103534. [PMID: 39146664 DOI: 10.1016/j.scr.2024.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
The lack of equitable representation of African diversity in scientific resources, such as genome-wide association studies and human induced pluripotent stem cell (hiPSC) repositories, has perpetuated inequalities in the advancement of health research. HiPSCs could be transformative in regenerative and precision medicine, therefore, the generation of diverse lines is critical in the establishment of African-relevant preclinical cellular models. HiPSC lines were derived from two healthy donors of Black African ancestry using Sendai virus reprogramming of dermal fibroblasts, and characterised to confirm stemness markers, trilineage differentiation, and genetic integrity. These hiPSCs represent a valuable resource for modelling African relevant disease biology.
Collapse
Affiliation(s)
- Jerolen Naidoo
- Bioengineering and Integrated Genomics Group, Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, PO Box 395, Pretoria 0001, South Africa; Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - Tracey Hurrell
- Bioengineering and Integrated Genomics Group, Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, PO Box 395, Pretoria 0001, South Africa
| | - Janine Scholefield
- Bioengineering and Integrated Genomics Group, Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, PO Box 395, Pretoria 0001, South Africa; Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa; Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, PO Box 1038, Johannesburg 2000, South Africa.
| |
Collapse
|
5
|
Shi H, Ding Y, Sun P, Lv Z, Wang C, Ma H, Lu J, Yu B, Li W, Wang C. Chemical approaches targeting the hurdles of hepatocyte transplantation: mechanisms, applications, and advances. Front Cell Dev Biol 2024; 12:1480226. [PMID: 39544361 PMCID: PMC11560891 DOI: 10.3389/fcell.2024.1480226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatocyte transplantation (HTx) has been a novel cell-based therapy for severe liver diseases, as the donor livers for orthotopic liver transplantation are of great shortage. However, HTx has been confronted with two main hurdles: limited high-quality hepatocyte sources and low cell engraftment and repopulation rate. To cope with, researchers have investigated on various strategies, including small molecule drugs with unique advantages. Small molecules are promising chemical tools to modulate cell fate and function for generating high quality hepatocyte sources. In addition, endothelial barrier, immune responses, and low proliferative efficiency of donor hepatocytes mainly contributes to low cell engraftment and repopulation rate. Interfering these biological processes with small molecules is beneficial for improving cell engraftment and repopulation. In this review, we will discuss the applications and advances of small molecules in modulating cell differentiation and reprogramming for hepatocyte resources and in improving cell engraftment and repopulation as well as its underlying mechanisms.
Collapse
Affiliation(s)
- Huanxiao Shi
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Yi Ding
- Experimental Teaching Center, Naval Medical University, Shanghai, China
| | - Pingxin Sun
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Zhuman Lv
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Chunyan Wang
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Haoxin Ma
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Junyu Lu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Wenlin Li
- Department of Cell Biology, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai, China
| | - Chao Wang
- Department of Cell Biology, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Foglia M, Guarrera L, Kurosaki M, Cassanmagnago GA, Bolis M, Miduri M, Cereseto A, Umbach A, Craparotta I, Fratelli M, Vallerga A, Paroni G, Zanetti A, Cavallaro AV, Russo L, Garattini E, Terao M. The NIPBL-gene mutation of a Cornelia de Lange Syndrome patient causes deficits in the hepatocyte differentiation of induced Pluripotent Stem Cells via altered chromatin-accessibility. Cell Mol Life Sci 2024; 81:439. [PMID: 39453535 PMCID: PMC11511806 DOI: 10.1007/s00018-024-05481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
The Cornelia de Lange syndrome (CdLS) is a rare genetic disease, which is characterized by a cohesinopathy. Mutations of the NIPBL gene are observed in 65% of CdLS patients. A novel iPSC (induced Pluripotent Stem Cell) line was reprogrammed from the leukocytes of a CdLS patient carrying a missense mutation of the NIPBL gene. A mutation-corrected isogenic iPSC-line and two iPSC-lines generated from the healthy parents were used as controls. The iPSC lines were differentiated along the hepatocyte-lineage. Comparative immunofluorescence, RNA-seq and ATAC-seq analyses were performed on undifferentiated and differentiated iPSCs. In addition, chromatin organization was studied by ChIP-Seq analysis on the patient derived iPSCs as well as the respective controls. Relative to the mutation-corrected and the healthy-parents iPSCs, the patient-derived counterparts are defective in terms of differentiation along the hepatocyte-lineage. One-third of the genes selectively up-regulated in CdLS-derived iPSCs and hepatic cells are non-protein-coding genes. By converse, most of the selectively down-regulated genes code for transcription factors and proteins regulating neural differentiation. Some of the transcriptionally silenced loci, such as the DPP6 gene on chromosome 7q36.2 and the ZNF gene cluster on chromosome 19p12, are located in closed-chromatin regions. Relative to the corresponding controls, the global transcriptomic differences observed in CdLS undifferentiated iPSCs are associated with altered chromatin accessibility, which was confirmed by ChIP-Seq analysis. Thus, the deficits in the differentiation along the hepatocyte lineage observed in our CdLS patient is likely to be due to a transcriptional dysregulation resulting from a cohesin-dependent alteration of chromatin accessibility.
Collapse
Affiliation(s)
- Marika Foglia
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Luca Guarrera
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Giada Andrea Cassanmagnago
- Department of Oncology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Marco Bolis
- Department of Oncology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, 6500, Bellinzona, TI, Switzerland
| | - Matteo Miduri
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Anna Cereseto
- Laboratory of Molecular Virology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Povo, TN, Italy
| | - Alessandro Umbach
- Laboratory of Molecular Virology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Povo, TN, Italy
| | - Ilaria Craparotta
- Department of Oncology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Arianna Vallerga
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Gabriela Paroni
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Adriana Zanetti
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Andrea Vincenzo Cavallaro
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Luca Russo
- Laboratory of Biochemistry and Protein Chemistry, Department of Biochemistry and Molecular Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| |
Collapse
|
7
|
Wang J, Wu X, Zhao J, Ren H, Zhao Y. Developing Liver Microphysiological Systems for Biomedical Applications. Adv Healthc Mater 2024; 13:e2302217. [PMID: 37983733 DOI: 10.1002/adhm.202302217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Microphysiological systems (MPSs), also known as organ chips, are micro-units that integrate cells with diverse physical and biochemical environmental cues. In the field of liver MPSs, cellular components have advanced from simple planar cell cultures to more sophisticated 3D formations such as spheroids and organoids. Additionally, progress in microfluidic devices, bioprinting, engineering of matrix materials, and interdisciplinary technologies have significant promise for producing MPSs with biomimetic structures and functions. This review provides a comprehensive summary of biomimetic liver MPSs including their clinical applications and future developmental potential. First, the key components of liver MPSs, including the principal cell types and engineered structures utilized for cell cultivation, are briefly introduced. Subsequently, the biomedical applications of liver MPSs, including the creation of disease models, drug absorption, distribution, metabolism, excretion, and toxicity, are discussed. Finally, the challenges encountered by MPSs are summarized, and future research directions for their development are proposed.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiangyi Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Junqi Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518071, China
| |
Collapse
|
8
|
Chen S, Saito Y, Waki Y, Ikemoto T, Teraoku H, Yamada S, Morine Y, Shimada M. Generation of Highly Functional Hepatocyte-like Organoids from Human Adipose-Derived Mesenchymal Stem Cells Cultured with Endothelial Cells. Cells 2024; 13:547. [PMID: 38534391 PMCID: PMC10969286 DOI: 10.3390/cells13060547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Previously, we successfully established a highly functional, three-dimensional hepatocyte-like cell (3D-HLC) model from adipose-derived mesenchymal stem cells (ADSCs) via a three-step differentiation protocol. The aim of the present study was to investigate whether generating hepatocyte-like organoids (H-organoids) by adding endothelial cells further improved the liver-like functionality of 3D-HLCs and to assess H-organoids' immunogenicity properties. Genes representing liver maturation and function were detected by quantitative reverse transcription-PCR analysis. The expression of hepatic maturation proteins was measured using immunofluorescence staining. Cytochrome P (CYP)450 metabolism activity and ammonia metabolism tests were used to assess liver function. H-organoids were successfully established by adding human umbilical vein endothelial cells at the beginning of the definitive endoderm stage in our 3D differentiation protocol. The gene expression of alpha-1 antitrypsin, carbamoyl-phosphate synthase 1, and apolipoprotein E, which represent liver maturation state and function, was higher in H-organoids than non-organoid 3D-HLCs. H-organoids possessed higher CYP3A4 metabolism activity and comparable ammonia metabolism capacity than 3D-HLCs. Moreover, although H-organoids expressed human leukocyte antigen class I, they expressed little human leukocyte antigen class II, cluster of differentiation (CD)40, CD80, CD86, and programmed cell death ligand 1, suggesting their immunogenicity properties were not significantly upregulated during differentiation from ADSCs. In conclusion, we successfully established an H-organoid model with higher liver-like functionality than previously established 3D-HLCs and comparable immunogenicity to ADSCs.
Collapse
Affiliation(s)
| | - Yu Saito
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (S.C.); (Y.W.); (T.I.); (H.T.); (S.Y.); (Y.M.); (M.S.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Telles-Silva KA, Pacheco L, Chianca F, Komatsu S, Chiovatto C, Zatz M, Goulart E. iPSC-derived cells for whole liver bioengineering. Front Bioeng Biotechnol 2024; 12:1338762. [PMID: 38384436 PMCID: PMC10879941 DOI: 10.3389/fbioe.2024.1338762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 02/23/2024] Open
Abstract
Liver bioengineering stands as a prominent alternative to conventional hepatic transplantation. Through liver decellularization and/or bioprinting, researchers can generate acellular scaffolds to overcome immune rejection, genetic manipulation, and ethical concerns that often accompany traditional transplantation methods, in vivo regeneration, and xenotransplantation. Hepatic cell lines derived from induced pluripotent stem cells (iPSCs) can repopulate decellularized and bioprinted scaffolds, producing an increasingly functional organ potentially suitable for autologous use. In this mini-review, we overview recent advancements in vitro hepatocyte differentiation protocols, shedding light on their pivotal role in liver recellularization and bioprinting, thereby offering a novel source for hepatic transplantation. Finally, we identify future directions for liver bioengineering research that may allow the implementation of these systems for diverse applications, including drug screening and liver disease modeling.
Collapse
Affiliation(s)
- Kayque Alves Telles-Silva
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, Genentech Hall, University of California, San Francisco, San Francisco, CA, United States
| | - Lara Pacheco
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Chianca
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Sabrina Komatsu
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline Chiovatto
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
10
|
Lotto J, Stephan TL, Hoodless PA. Fetal liver development and implications for liver disease pathogenesis. Nat Rev Gastroenterol Hepatol 2023; 20:561-581. [PMID: 37208503 DOI: 10.1038/s41575-023-00775-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/21/2023]
Abstract
The metabolic, digestive and homeostatic roles of the liver are dependent on proper crosstalk and organization of hepatic cell lineages. These hepatic cell lineages are derived from their respective progenitors early in organogenesis in a spatiotemporally controlled manner, contributing to the liver's specialized and diverse microarchitecture. Advances in genomics, lineage tracing and microscopy have led to seminal discoveries in the past decade that have elucidated liver cell lineage hierarchies. In particular, single-cell genomics has enabled researchers to explore diversity within the liver, especially early in development when the application of bulk genomics was previously constrained due to the organ's small scale, resulting in low cell numbers. These discoveries have substantially advanced our understanding of cell differentiation trajectories, cell fate decisions, cell lineage plasticity and the signalling microenvironment underlying the formation of the liver. In addition, they have provided insights into the pathogenesis of liver disease and cancer, in which developmental processes participate in disease emergence and regeneration. Future work will focus on the translation of this knowledge to optimize in vitro models of liver development and fine-tune regenerative medicine strategies to treat liver disease. In this Review, we discuss the emergence of hepatic parenchymal and non-parenchymal cells, advances that have been made in in vitro modelling of liver development and draw parallels between developmental and pathological processes.
Collapse
Affiliation(s)
- Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada
| | - Tabea L Stephan
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada.
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
11
|
Helena GA, Watanabe T, Kato Y, Shiraki N, Kume S. Activation of cAMP (EPAC2) signaling pathway promotes hepatocyte attachment. Sci Rep 2023; 13:12352. [PMID: 37524826 PMCID: PMC10390557 DOI: 10.1038/s41598-023-39712-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/29/2023] [Indexed: 08/02/2023] Open
Abstract
Primary Human Hepatocyte (PHH) remains undefeated as the gold standard in hepatic studies. Despite its valuable properties, partial attachment loss due to the extraction process and cryopreservation remained the main hurdle in its application. We hypothesized that we could overcome the loss of PHH cell attachment through thawing protocol adjustment and medium composition. We reported a novel use of a medium designed for iPSC-derived hepatocytes, increasing PHH attachment on the collagen matrix. Delving further into the medium composition, we discovered that removing BSA and exposure to cAMP activators such as IBMX and Forskolin benefit PHH attachment. We found that activating EPAC2, the cAMP downstream effector, by S-220 significantly increased PHH attachment. We also found that EPAC2 activation induced bile canaliculi formation in iPS-derived hepatocytes. Combining these factors in studies involving PHH or iPS-hepatocyte culture provides promising means to improve cell attachment and maintenance of hepatic function.
Collapse
Affiliation(s)
- Grace Aprilia Helena
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Teruhiko Watanabe
- Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., 21 Suzukawa, Isehara, Kanagawa, 259-1146, Japan
| | - Yusuke Kato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
12
|
Ouchi R, Koike H. Modeling human liver organ development and diseases with pluripotent stem cell-derived organoids. Front Cell Dev Biol 2023; 11:1133534. [PMID: 36875751 PMCID: PMC9974642 DOI: 10.3389/fcell.2023.1133534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The discoveries of human pluripotent stem cells (PSCs) including embryonic stem cells and induced pluripotent stem cells (iPSCs) has led to dramatic advances in our understanding of basic human developmental and cell biology and has also been applied to research aimed at drug discovery and development of disease treatments. Research using human PSCs has been largely dominated by studies using two-dimensional cultures. In the past decade, however, ex vivo tissue "organoids," which have a complex and functional three-dimensional structure similar to human organs, have been created from PSCs and are now being used in various fields. Organoids created from PSCs are composed of multiple cell types and are valuable models with which it is better to reproduce the complex structures of living organs and study organogenesis through niche reproduction and pathological modeling through cell-cell interactions. Organoids derived from iPSCs, which inherit the genetic background of the donor, are helpful for disease modeling, elucidation of pathophysiology, and drug screening. Moreover, it is anticipated that iPSC-derived organoids will contribute significantly to regenerative medicine by providing treatment alternatives to organ transplantation with which the risk of immune rejection is low. This review summarizes how PSC-derived organoids are used in developmental biology, disease modeling, drug discovery, and regenerative medicine. Highlighted is the liver, an organ that play crucial roles in metabolic regulation and is composed of diverse cell types.
Collapse
Affiliation(s)
- Rie Ouchi
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroyuki Koike
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
13
|
Hepatic Polarized Differentiation Promoted the Maturity and Liver Function of Human Embryonic Stem Cell-Derived Hepatocytes via Activating Hippo and AMPK Signaling Pathways. Cells 2022; 11:cells11244117. [PMID: 36552880 PMCID: PMC9776724 DOI: 10.3390/cells11244117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocytes exhibit a multi-polarized state under the in vivo physiological environment, however, human embryonic stem cell-derived hepatocytes (hEHs) rarely exhibit polarity features in a two-dimensional (2D) condition. Thus, we hypothesized whether the polarized differentiation might enhance the maturity and liver function of hEHs. In this study, we obtained the polarized hEHs (phEHs) by using 2D differentiation in conjunct with employing transwell-based polarized culture. Our results showed that phEHs directionally secreted albumin, urea and bile acids, and afterward, the apical membrane and blood-bile barrier (BBIB) were identified to form in phEHs. Moreover, phEHs exhibited a higher maturity and capacitity of cellular secretory and drug metabolism than those of non-phEHs. Through transcriptome analysis, it was found that the polarized differentiation induced obvious changes in gene expression profiles of cellular adhesion and membrane transport in hEHs. Our further investigation revealed that the activation of Hippo and AMPK signaling pathways made contributions to the regulation of function and cellular polarity in phEHs, further verifying that the liver function of hEHs was closely related with their polarization state. These results not only demonstrated that the polarized differentiation enhanced the maturity and liver function of hEHs, but also identified the molecular targets that regulated the polarization state of hEHs.
Collapse
|
14
|
Suzuki T, Furuhata E, Maeda S, Kishima M, Miyajima Y, Tanaka Y, Lim J, Nishimura H, Nakanishi Y, Shojima A, Suzuki H. GATA6 is predicted to regulate DNA methylation in an in vitro model of human hepatocyte differentiation. Commun Biol 2022; 5:414. [PMID: 35508708 PMCID: PMC9068788 DOI: 10.1038/s42003-022-03365-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/14/2022] [Indexed: 01/02/2023] Open
Abstract
Hepatocytes are the dominant cell type in the human liver, with functions in metabolism, detoxification, and producing secreted proteins. Although gene regulation and master transcription factors involved in the hepatocyte differentiation have been extensively investigated, little is known about how the epigenome is regulated, particularly the dynamics of DNA methylation and the critical upstream factors. Here, by examining changes in the transcriptome and the methylome using an in vitro hepatocyte differentiation model, we show putative DNA methylation-regulating transcription factors, which are likely involved in DNA demethylation and maintenance of hypo-methylation in a differentiation stage-specific manner. Of these factors, we further reveal that GATA6 induces DNA demethylation together with chromatin activation in a binding-site-specific manner during endoderm differentiation. These results provide an insight into the spatiotemporal regulatory mechanisms exerted on the DNA methylation landscape by transcription factors and uncover an epigenetic role for transcription factors in early liver development.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrated Medical Science (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Erina Furuhata
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrated Medical Science (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Shiori Maeda
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrated Medical Science (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Mami Kishima
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrated Medical Science (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yurina Miyajima
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrated Medical Science (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yuki Tanaka
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrated Medical Science (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Joanne Lim
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrated Medical Science (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Hajime Nishimura
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrated Medical Science (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yuri Nakanishi
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrated Medical Science (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Aiko Shojima
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrated Medical Science (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrated Medical Science (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan.
| |
Collapse
|
15
|
Hurrell T, Naidoo J, Scholefield J. Hepatic Models in Precision Medicine: An African Perspective on Pharmacovigilance. Front Genet 2022; 13:864725. [PMID: 35495161 PMCID: PMC9046844 DOI: 10.3389/fgene.2022.864725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/29/2022] [Indexed: 01/02/2023] Open
Abstract
Pharmaceuticals are indispensable to healthcare as the burgeoning global population is challenged by diseases. The African continent harbors unparalleled genetic diversity, yet remains largely underrepresented in pharmaceutical research and development, which has serious implications for pharmaceuticals approved for use within the African population. Adverse drug reactions (ADRs) are often underpinned by unique variations in genes encoding the enzymes responsible for their uptake, metabolism, and clearance. As an example, individuals of African descent (14-34%) harbor an exclusive genetic variant in the gene encoding a liver metabolizing enzyme (CYP2D6) which reduces the efficacy of the breast cancer chemotherapeutic Tamoxifen. However, CYP2D6 genotyping is not required prior to dispensing Tamoxifen in sub-Saharan Africa. Pharmacogenomics is fundamental to precision medicine and the absence of its implementation suggests that Africa has, to date, been largely excluded from the global narrative around stratified healthcare. Models which could address this need, include primary human hepatocytes, immortalized hepatic cell lines, and induced pluripotent stem cell (iPSC) derived hepatocyte-like cells. Of these, iPSCs, are promising as a functional in vitro model for the empirical evaluation of drug metabolism. The scale with which pharmaceutically relevant African genetic variants can be stratified, the expediency with which these platforms can be established, and their subsequent sustainability suggest that they will have an important role to play in the democratization of stratified healthcare in Africa. Here we discuss the requirement for African hepatic models, and their implications for the future of pharmacovigilance on the African continent.
Collapse
Affiliation(s)
- Tracey Hurrell
- Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Jerolen Naidoo
- Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Janine Scholefield
- Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Ilic D, Liovic M. Industry updates from the field of stem cell research and regenerative medicine in February 2022. Regen Med 2022. [PMID: 35354328 DOI: 10.2217/rme-2022-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from non academic institutions in February 2022.
Collapse
Affiliation(s)
- Dusko Ilic
- Department of Women & Children's Health, Stem Cell Laboratories, Guy's Assisted Conception Unit, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9RT, UK
| | - Mirjana Liovic
- Medical Center for Molecular Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| |
Collapse
|
17
|
Raggi C, Selleri S, M'Callum MA, Paganelli M. Generation of Complex Syngeneic Liver Organoids from Induced Pluripotent Stem Cells to Model Human Liver Pathophysiology. Curr Protoc 2022; 2:e389. [PMID: 35263041 DOI: 10.1002/cpz1.389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The study of human liver pathophysiology has been hampered for decades by the lack of easily accessible, robust, and representative in vitro models. The discovery of induced pluripotent stem cells (iPSCs)-which can be generated from patients' somatic cells, engineered to harbor specific mutations, and differentiated into hepatocyte-like cells-opened the way to more meaningful modeling of liver development and disease. Nevertheless, representative modeling of many complex liver conditions requires the recreation of the interplay between hepatocytes and nonparenchymal liver cells. Here we describe protocols we developed to generate and characterize complex human liver organoids composed of iPSC-derived hepatic, endothelial, and mesenchymal cells. With all cell types derived from the same iPSC population, such organoids reproduce the liver niche, allowing for the study of liver development and the modeling of complex inflammatory and fibrotic conditions. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Differentiation of human iPSCs into hepatic progenitor cells (hepatoblasts) Basic Protocol 2: Differentiation of human iPSCs into endothelial progenitor cells Support Protocol 1: Characterization of iPSC-derived endothelial progenitor cells Basic Protocol 3: Differentiation of human iPSCs into mesenchymal progenitor cells Support Protocol 2: Characterization of iPSC-derived mesenchymal progenitor cells Basic Protocol 4: Generation of complex syngeneic liver organoids.
Collapse
Affiliation(s)
- Claudia Raggi
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine Research Centre, Montreal, Canada
- Morphocell Technologies, Inc., Montreal, Canada
| | - Silvia Selleri
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine Research Centre, Montreal, Canada
| | - Marie-Agnes M'Callum
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine Research Centre, Montreal, Canada
| | - Massimiliano Paganelli
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine Research Centre, Montreal, Canada
- Pediatric Hepatology, CHU Sainte-Justine, Montreal, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montréal, Montreal, Canada
| |
Collapse
|