1
|
Manhas A, Tripathi D, Thomas D, Sayed N. Cardiovascular Toxicity in Cancer Therapy: Protecting the Heart while Combating Cancer. Curr Cardiol Rep 2024; 26:953-971. [PMID: 39042344 DOI: 10.1007/s11886-024-02099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE OF REVIEW This review explores the cardiovascular toxicity associated with cancer therapies, emphasizing the significance of the growing field of cardio-oncology. It aims to elucidate the mechanisms of cardiotoxicity due to radiotherapy, chemotherapy, and targeted therapies, and to discuss the advancements in human induced pluripotent stem cell technology (hiPSC) for predictive disease modeling. RECENT FINDINGS Recent studies have identified several chemotherapeutic agents, including anthracyclines and kinase inhibitors, that significantly increase cardiovascular risks. Advances in hiPSC technology have enabled the differentiation of these cells into cardiovascular lineages, facilitating more accurate modeling of drug-induced cardiotoxicity. Moreover, integrating hiPSCs into clinical trials holds promise for personalized cardiotoxicity assessments, potentially enhancing patient-specific therapeutic strategies. Cardio-oncology bridges oncology and cardiology to mitigate the cardiovascular side-effects of cancer treatments. Despite advancements in predictive models using hiPSCs, challenges persist in accurately replicating adult heart tissue and ensuring reproducibility. Ongoing research is essential for developing personalized therapies that balance effective cancer treatment with minimal cardiovascular harm.
Collapse
Affiliation(s)
- Amit Manhas
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
- Baszucki Family Vascular Surgery Biobank, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dipti Tripathi
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
- Division of Vascular Surgery, Department of Surgery, Stanford, CA, 94305, USA
- Baszucki Family Vascular Surgery Biobank, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA.
- Division of Vascular Surgery, Department of Surgery, Stanford, CA, 94305, USA.
- Baszucki Family Vascular Surgery Biobank, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Stafford LK, Tang X, Brandt A, Ma J, Banchs J, Livingston JA, Roth ME, Morrison AC, Hildebrandt MAT. Risk of anthracycline-induced cardiac dysfunction in adolescent and young adult (AYA) cancer survivors: role of genetic susceptibility loci. THE PHARMACOGENOMICS JOURNAL 2024; 24:21. [PMID: 38951505 DOI: 10.1038/s41397-024-00343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
There is a known genetic susceptibility to anthracycline-induced cardiac dysfunction in childhood cancer survivors, but this has not been adequately shown in adolescent and young adult (AYA) patients. Our aim was to determine if the previously identified variants associated with cardiac dysfunction in childhood cancer patients affect AYA cancer patients similarly. Forty-five variants were selected for analysis in 253 AYAs previously treated with anthracyclines. We identified four variants that were associated with cardiac dysfunction: SLC10A2:rs7319981 (p = 0.017), SLC22A17:rs4982753 (p = 0.019), HAS3:rs2232228 (p = 0.023), and RARG:rs2229774 (p = 0.050). HAS3:rs2232228 and SLC10A2:rs7319981 displayed significant effects in our AYA cancer survivor population that were in the opposite direction than that reported in childhood cancer survivors. Genetic variants in the host genes were further analyzed for additional associations with cardiotoxicity in AYA cancer survivors. The host genes were then evaluated in a panel of induced pluripotent stem cell-derived cardiomyocytes to assess changes in levels of expression when treated with doxorubicin. Significant upregulation of HAS3 and SLC22A17 expression was observed (p < 0.05), with non-significant anthracycline-responsivity observed for RARG. Our study demonstrates that there is a genetic influence on cardiac dysfunction in AYA cancer patients, but there may be a difference in the role of genetics between childhood and AYA cancer survivors.
Collapse
Affiliation(s)
- Lily K Stafford
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaohui Tang
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amanda Brandt
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianzhong Ma
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jose Banchs
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Andrew Livingston
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael E Roth
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michelle A T Hildebrandt
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Pang L, Cai C, Aggarwal P, Wang D, Vijay V, Bagam P, Blamer J, Matter A, Turner A, Ren L, Papineau K, Srinivasasainagendra V, Tiwari HK, Yang X, Schnackenberg L, Mattes W, Broeckel U. Predicting oncology drug-induced cardiotoxicity with donor-specific iPSC-CMs-a proof-of-concept study with doxorubicin. Toxicol Sci 2024; 200:79-94. [PMID: 38547396 PMCID: PMC11199917 DOI: 10.1093/toxsci/kfae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Many oncology drugs have been found to induce cardiotoxicity in a subset of patients, which significantly limits their clinical use and impedes the benefit of lifesaving anticancer treatments. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) carry donor-specific genetic information and have been proposed for exploring the interindividual difference in oncology drug-induced cardiotoxicity. Herein, we evaluated the inter- and intraindividual variability of iPSC-CM-related assays and presented a proof of concept to prospectively predict doxorubicin (DOX)-induced cardiotoxicity (DIC) using donor-specific iPSC-CMs. Our findings demonstrated that donor-specific iPSC-CMs exhibited greater line-to-line variability than the intraindividual variability in impedance cytotoxicity and transcriptome assays. The variable and dose-dependent cytotoxic responses of iPSC-CMs resembled those observed in clinical practice and largely replicated the reported mechanisms. By categorizing iPSC-CMs into resistant and sensitive cell lines based on their time- and concentration-related phenotypic responses to DOX, we found that the sensitivity of donor-specific iPSC-CMs to DOX may predict in vivo DIC risk. Furthermore, we identified a differentially expressed gene, DND microRNA-mediated repression inhibitor 1 (DND1), between the DOX-resistant and DOX-sensitive iPSC-CMs. Our results support the utilization of donor-specific iPSC-CMs in assessing interindividual differences in DIC. Further studies will encompass a large panel of donor-specific iPSC-CMs to identify potential novel molecular and genetic biomarkers for predicting DOX and other oncology drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Li Pang
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Chengzhong Cai
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Praful Aggarwal
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Dong Wang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Prathyusha Bagam
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Jacob Blamer
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Andrea Matter
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Amy Turner
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Lijun Ren
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Katy Papineau
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Vinodh Srinivasasainagendra
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Xi Yang
- Division of Pharmacology & Toxicology, Office of Cardiology, Hematology, Endocrinology, & Nephrology, Office of New Drug, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, USA
| | - Laura Schnackenberg
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - William Mattes
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Ulrich Broeckel
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
4
|
Robert Li Y, Traore K, Zhu H. Novel molecular mechanisms of doxorubicin cardiotoxicity: latest leading-edge advances and clinical implications. Mol Cell Biochem 2024; 479:1121-1132. [PMID: 37310587 DOI: 10.1007/s11010-023-04783-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
Doxorubicin (Dox) is among the most widely used cancer chemotherapeutic drugs. The clinical use of Dox is, however, limited due to its cardiotoxicity. Studies over the past several decades have suggested various mechanisms of Dox-induced cardiotoxicity (DIC). Among them are oxidative stress, topoisomerase inhibition, and mitochondrial damage. Several novel molecular targets and signaling pathways underlying DIC have emerged over the past few years. The most notable advances include discovery of ferroptosis as a major form of cell death in Dox cytotoxicity, and elucidation of the involvement of cardiogenetics and regulatory RNAs as well as multiple other targets in DIC. In this review, we discuss these advances, focusing on latest cutting-edge research discoveries from mechanistic studies reported in influential journals rather than surveying all research studies available in the literature.
Collapse
Affiliation(s)
- Y Robert Li
- Department of Pharmacology, Campbell University Jerry Wallace School of Osteopathic Medicine, Buies Creek, NC, 27560, USA.
| | - Kassim Traore
- Department of Biochemistry, Duquesne University College of Osteopathic Medicine, Pittsburgh, PA, 15282, USA
| | - Hong Zhu
- Department of Physiology and Pathophysiology, Campbell University Jerry Wallace School of Osteopathic Medicine, Buies Creek, NC, 27560, USA
| |
Collapse
|
5
|
Huang C, Pei J, Li D, Liu T, Li Z, Zhang G, Chen R, Xu X, Li B, Lian Z, Chu XM. Analysis and Validation of Critical Signatures and Immune Cell Infiltration Characteristics in Doxorubicin-Induced Cardiotoxicity by Integrating Bioinformatics and Machine Learning. J Inflamm Res 2024; 17:669-685. [PMID: 38328563 PMCID: PMC10849057 DOI: 10.2147/jir.s444600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Purpose Doxorubicin-induced cardiotoxicity (DIC) is a severe side reaction in cancer chemotherapy that greatly impacts the well-being of cancer patients. Currently, there is still an insufficiency of effective and reliable biomarkers in the field of clinical practice for the early detection of DIC. This study aimed to determine and validate the potential diagnostic and predictive values of critical signatures in DIC. Methods We obtained high-throughput sequencing data from the GEO database and performed data analysis and visualization using R software, GO, KEGG and Cytoscape. Machine learning methods and weighted gene coexpression network (WGCNA) were used to identify key genes for diagnostic model construction. Receiver operating characteristic (ROC) analysis and a nomogram were used to assess their diagnostic values. A multiregulatory network was built to reveal the possible regulatory relationships of critical signatures. Cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) analysis was used to investigate differential immune cell infiltration. Additionally, a cell and animal model were constructed to investigate the relationship between the identified genes and DIC. Results Among the 3713 differentially expressed genes, three key genes (CSGALNACT1, ZNF296 and FANCB) were identified. A nomogram and ROC curves based on three key genes showed excellent diagnostic predictive performance. The regulatory network analysis showed that the TFs CREB1, EP300, FLI1, FOXA1, MAX, and MAZ modulated three key genes. An analysis of immune cell infiltration indicated that many immune cells (activated NK cells, M0 macrophages, activated dendritic cells and neutrophils) might be related to the progression of DIC. Furthermore, there may be various degrees of correlation between the three critical signatures and immune cells. RT‒qPCR demonstrated that the mRNA expression of CSGALNACT1 and ZNF296 was significantly upregulated, while FANCB was significantly downregulated in DOX-treated cardiomyocytes in vitro and in vivo. Conclusion Our study suggested that the differential expression of CSGALNACT1, ZNF296 and FANCB is associated with cardiotoxicity and is also involved in immune cell infiltration in DIC. They might be potential biomarkers for the early occurrence of DIC.
Collapse
Affiliation(s)
- Chao Huang
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266100, People’s Republic of China
| | - Jixiang Pei
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266100, People’s Republic of China
| | - Daisong Li
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266100, People’s Republic of China
| | - Tao Liu
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong, 266042, People’s Republic of China
| | - Zhaoqing Li
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266100, People’s Republic of China
| | - Guoliang Zhang
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266100, People’s Republic of China
| | - Ruolan Chen
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266100, People’s Republic of China
| | - Xiaojian Xu
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266100, People’s Republic of China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266000, People’s Republic of China
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266033, People’s Republic of China
| | - Zhexun Lian
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266100, People’s Republic of China
| | - Xian-Ming Chu
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266100, People’s Republic of China
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China
| |
Collapse
|
6
|
Matthews ER, Johnson OD, Horn KJ, Gutiérrez JA, Powell SR, Ward MC. Anthracyclines induce cardiotoxicity through a shared gene expression response signature. PLoS Genet 2024; 20:e1011164. [PMID: 38416769 PMCID: PMC10927150 DOI: 10.1371/journal.pgen.1011164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/11/2024] [Accepted: 01/31/2024] [Indexed: 03/01/2024] Open
Abstract
TOP2 inhibitors (TOP2i) are effective drugs for breast cancer treatment. However, they can cause cardiotoxicity in some women. The most widely used TOP2i include anthracyclines (AC) Doxorubicin (DOX), Daunorubicin (DNR), Epirubicin (EPI), and the anthraquinone Mitoxantrone (MTX). It is unclear whether women would experience the same adverse effects from all drugs in this class, or if specific drugs would be preferable for certain individuals based on their cardiotoxicity risk profile. To investigate this, we studied the effects of treatment of DOX, DNR, EPI, MTX, and an unrelated monoclonal antibody Trastuzumab (TRZ) on iPSC-derived cardiomyocytes (iPSC-CMs) from six healthy females. All TOP2i induce cell death at concentrations observed in cancer patient serum, while TRZ does not. A sub-lethal dose of all TOP2i induces limited cellular stress but affects calcium handling, a function critical for cardiomyocyte contraction. TOP2i induce thousands of gene expression changes over time, giving rise to four distinct gene expression response signatures, denoted as TOP2i early-acute, early-sustained, and late response genes, and non-response genes. There is no drug- or AC-specific signature. TOP2i early response genes are enriched in chromatin regulators, which mediate AC sensitivity across breast cancer patients. However, there is increased transcriptional variability between individuals following AC treatments. To investigate potential genetic effects on response variability, we first identified a reported set of expression quantitative trait loci (eQTLs) uncovered following DOX treatment in iPSC-CMs. Indeed, DOX response eQTLs are enriched in genes that respond to all TOP2i. Next, we identified 38 genes in loci associated with AC toxicity by GWAS or TWAS. Two thirds of the genes that respond to at least one TOP2i, respond to all ACs with the same direction of effect. Our data demonstrate that TOP2i induce thousands of shared gene expression changes in cardiomyocytes, including genes near SNPs associated with inter-individual variation in response to DOX treatment and AC-induced cardiotoxicity.
Collapse
Affiliation(s)
- E. Renee Matthews
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Omar D. Johnson
- Biochemistry, Cellular and Molecular Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kandace J. Horn
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - José A. Gutiérrez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Simon R. Powell
- Neuroscience Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michelle C. Ward
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
7
|
Abstract
Anthracycline-induced cardiotoxicity (AIC) is a serious and common side effect of anthracycline therapy. Identification of genes and genetic variants associated with AIC risk has clinical potential as a cardiotoxicity predictive tool and to allow the development of personalized therapies. In this review, we provide an overview of the function of known AIC genes identified by association studies and categorize them based on their mechanistic implication in AIC. We also discuss the importance of functional validation of AIC-associated variants in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to advance the implementation of genetic predictive biomarkers. Finally, we review how patient-specific hiPSC-CMs can be used to identify novel patient-relevant functional targets and for the discovery of cardioprotectant drugs to prevent AIC. Implementation of functional validation and use of hiPSC-CMs for drug discovery will identify the next generation of highly effective and personalized cardioprotectants and accelerate the inclusion of approved AIC biomarkers into clinical practice.
Collapse
Affiliation(s)
- Romina B Cejas
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| | - Kateryna Petrykey
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Paul W Burridge
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| |
Collapse
|
8
|
Babini H, Jiménez-Sábado V, Stogova E, Arslanova A, Butt M, Dababneh S, Asghari P, Moore EDW, Claydon TW, Chiamvimonvat N, Hove-Madsen L, Tibbits GF. hiPSC-derived cardiomyocytes as a model to study the role of small-conductance Ca 2+-activated K + (SK) ion channel variants associated with atrial fibrillation. Front Cell Dev Biol 2024; 12:1298007. [PMID: 38304423 PMCID: PMC10830749 DOI: 10.3389/fcell.2024.1298007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Atrial fibrillation (AF), the most common arrhythmia, has been associated with different electrophysiological, molecular, and structural alterations in atrial cardiomyocytes. Therefore, more studies are required to elucidate the genetic and molecular basis of AF. Various genome-wide association studies (GWAS) have strongly associated different single nucleotide polymorphisms (SNPs) with AF. One of these GWAS identified the rs13376333 risk SNP as the most significant one from the 1q21 chromosomal region. The rs13376333 risk SNP is intronic to the KCNN3 gene that encodes for small conductance calcium-activated potassium channels type 3 (SK3). However, the functional electrophysiological effects of this variant are not known. SK channels represent a unique family of K+ channels, primarily regulated by cytosolic Ca2+ concentration, and different studies support their critical role in the regulation of atrial excitability and consequently in the development of arrhythmias like AF. Since different studies have shown that both upregulation and downregulation of SK3 channels can lead to arrhythmias by different mechanisms, an important goal is to elucidate whether the rs13376333 risk SNP is a gain-of-function (GoF) or a loss-of-function (LoF) variant. A better understanding of the functional consequences associated with these SNPs could influence clinical practice guidelines by improving genotype-based risk stratification and personalized treatment. Although research using native human atrial cardiomyocytes and animal models has provided useful insights, each model has its limitations. Therefore, there is a critical need to develop a human-derived model that represents human physiology more accurately than existing animal models. In this context, research with human induced pluripotent stem cells (hiPSC) and subsequent generation of cardiomyocytes derived from hiPSC (hiPSC-CMs) has revealed the underlying causes of various cardiovascular diseases and identified treatment opportunities that were not possible using in vitro or in vivo studies with animal models. Thus, the ability to generate atrial cardiomyocytes and atrial tissue derived from hiPSCs from human/patients with specific genetic diseases, incorporating novel genetic editing tools to generate isogenic controls and organelle-specific reporters, and 3D bioprinting of atrial tissue could be essential to study AF pathophysiological mechanisms. In this review, we will first give an overview of SK-channel function, its role in atrial fibrillation and outline pathophysiological mechanisms of KCNN3 risk SNPs. We will then highlight the advantages of using the hiPSC-CM model to investigate SNPs associated with AF, while addressing limitations and best practices for rigorous hiPSC studies.
Collapse
Affiliation(s)
- Hosna Babini
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Verónica Jiménez-Sábado
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ekaterina Stogova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mariam Butt
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edwin D. W. Moore
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Thomas W. Claydon
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | | | - Leif Hove-Madsen
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Glen F. Tibbits
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Uruski P, Matuszewska J, Leśniewska A, Rychlewski D, Niklas A, Mikuła-Pietrasik J, Tykarski A, Książek K. An integrative review of nonobvious puzzles of cellular and molecular cardiooncology. Cell Mol Biol Lett 2023; 28:44. [PMID: 37221467 DOI: 10.1186/s11658-023-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Oncologic patients are subjected to four major treatment types: surgery, radiotherapy, chemotherapy, and immunotherapy. All nonsurgical forms of cancer management are known to potentially violate the structural and functional integrity of the cardiovascular system. The prevalence and severity of cardiotoxicity and vascular abnormalities led to the emergence of a clinical subdiscipline, called cardiooncology. This relatively new, but rapidly expanding area of knowledge, primarily focuses on clinical observations linking the adverse effects of cancer therapy with deteriorated quality of life of cancer survivors and their increased morbidity and mortality. Cellular and molecular determinants of these relations are far less understood, mainly because of several unsolved paths and contradicting findings in the literature. In this article, we provide a comprehensive view of the cellular and molecular etiology of cardiooncology. We pay particular attention to various intracellular processes that arise in cardiomyocytes, vascular endothelial cells, and smooth muscle cells treated in experimentally-controlled conditions in vitro and in vivo with ionizing radiation and drugs representing diverse modes of anti-cancer activity.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Aleksandra Leśniewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland.
| |
Collapse
|
10
|
Li MY, Peng LM, Chen XP. Pharmacogenomics in drug-induced cardiotoxicity: Current status and the future. Front Cardiovasc Med 2022; 9:966261. [PMID: 36312261 PMCID: PMC9606405 DOI: 10.3389/fcvm.2022.966261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
Drug-induced cardiotoxicity (DICT) is an important concern of drug safety in both drug development and clinical application. The clinical manifestations of DICT include cardiomyopathy, arrhythmia, myocardial ischemia, heart failure, and a series of cardiac structural and functional changes. The occurrence of DICT has negative impacts on the life quality of the patients, brings additional social and economic burden. It is important to identify the potential factors and explore the mechanisms of DICT. Traditional cardiovascular risk factors can only partially explain the risk of DICT. Pharmacogenomic studies show accumulated evidence of genetics in DICT and suggest the potential to guide precision therapy to reduce risk of cardiotoxicity. The comprehensive application of technologies such as third-generation sequencing, human induced pluripotent stem (iPS) cells and genome editing has promoted the in-depth understanding of the functional role of susceptible genes in DICT. This paper reviewed drugs that cause DICT, the clinical manifestations and laboratory tests, as well as the related content of genetic variations associated with the risk of DICT, and further discussed the implication of new technologies in pharmacogenomics of DICT.
Collapse
Affiliation(s)
- Mo-Yun Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Li-Ming Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China,Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Li-Ming Peng
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Xiao-Ping Chen
| |
Collapse
|
11
|
Current Status and Trends of Research on Anthracycline-Induced Cardiotoxicity from 2002 to 2021: A Twenty-Year Bibliometric and Visualization Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6260243. [PMID: 35993025 PMCID: PMC9388240 DOI: 10.1155/2022/6260243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 12/30/2022]
Abstract
Anthracyclines constitute the cornerstone of numerous chemotherapy regimens for various cancers. However, the clinical application of anthracyclines is significantly limited to their dose-dependent cardiotoxicity. A comprehensive understanding of the current status of anthracycline-induced cardiotoxicity is necessary for in-depth research and optimal clinical protocols. Bibliometric analysis is widely applied in depicting development trends and tracking frontiers of a specific field. The present study is aimed at revealing the status and trends of anthracycline-induced cardiotoxicity during the past two decades by employing bibliometric software including R-bibliometric, VOSviewer, and CiteSpace. A total of 3504 publications concerning anthracycline-induced cardiotoxicity from 2002 to 2021 were collected from the Web of Science Core Collection database. Results showed significant growth in annual yields from 90 records in 2002 to 304 papers in 2021. The United States was the most productive country with the strongest collaboration worldwide in the field. Charles University in the Czech Republic was the institution that contributed the most papers, while 7 of the top 10 productive institutions were from the United States. The United States Department of Health and Human Services and the National Institutes of Health are the two agencies that provide financial support for more than 50% of sponsored publications. The research categories of included publications mainly belong to Oncology and Cardiac Cardiovascular Systems. The Journal of Clinical Oncology had a comprehensive impact on this research field with the highest IF value and many publications. Simunek Tomas from Charles University contributed the most publications, while Lipshultz Steven E. from the State University of New York possessed the highest H-index. In addition, the future research frontiers of anthracycline-induced cardiotoxicity might include early detection, pharmacogenomics, molecular mechanism, and cardiooncology. The present bibliometric analysis may provide a valuable reference for researchers and practitioners in future research directions.
Collapse
|