1
|
Naughton KJ, Song X, Childress AR, Skaggs EM, Byrd AL, Gosser CM, Esoe DP, DuCote TJ, Plaugher DR, Lukyanchuk A, Goettl RA, Liu J, Brainson CF. Methionine Restriction Reduces Lung Cancer Progression and Increases Chemotherapy Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.599795. [PMID: 38979225 PMCID: PMC11230185 DOI: 10.1101/2024.06.25.599795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Targeting tumor metabolism through dietary interventions is an area of growing interest, and may help to improve the significant mortality of aggressive cancers, including non-small cell lung cancer (NSCLC). Here we show that the restriction of methionine in the aggressive KRAS/Lkb1-mutant NSCLC autochthonous mouse model drives decreased tumor progression and increased carboplatin treatment efficacy. Importantly, methionine restriction during early stages of tumorigenesis prevents the lineage switching known to occur in the model, and alters the tumor immune microenvironment (TIME) to have fewer tumor-infiltrating neutrophils. Mechanistically, mutations in LKB1 are linked to anti-oxidant production through changes to cystathionine-β-synthase (CBS) expression. Human cell lines with rescued LKB1 show increased CBS levels and resistance to carboplatin, which can be partially rescued by methionine restriction. Furthermore, LKB1 rescued cells, but not mutant cells, show less G2-M arrest and apoptosis in high methionine conditions. Knock-down of CBS sensitized both LKB1 mutant and non-mutated lines to carboplatin, again rescuing the carboplatin resistance of the LKB1 rescued lines. Given that immunotherapy is commonly combined with chemotherapy for NSCLC, we next wanted to understand if T cells are impaired by MR. Therefore, we examined the ability of T cells from MR and control tumor bearing mice to proliferate in culture and found that T cells from MR treated mice had no defects in proliferation, even though we continued the MR conditions ex vivo. We also identified that CBS is most highly correlated with smoking, adenocarcinomas with alveolar and bronchiolar features, and adenosquamous cell carcinomas, implicating its roles in oxidative stress response and lineage fate in human tumors. Taken together, we have shown the importance of MR as a dietary intervention to slow tumor growth and improve treatment outcomes for NSCLC.
Collapse
Affiliation(s)
- Kassandra J Naughton
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Xiulong Song
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Avery R Childress
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Erika M Skaggs
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Aria L Byrd
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Christian M Gosser
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Tanner J DuCote
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Daniel R Plaugher
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Alexsandr Lukyanchuk
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Ryan A Goettl
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
- Department of Internal Medicine, University of Kentucky, Lexington KY 40536
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
- Corresponding author
| |
Collapse
|
2
|
Seasock MJ, Shafiquzzaman M, Ruiz-Echartea ME, Kanchi RS, Tran BT, Simon LM, Meyer MD, Erice PA, Lotlikar SL, Wenlock SC, Ochsner SA, Enright A, Carisey AF, Romero F, Rosas IO, King KY, McKenna NJ, Coarfa C, Rodriguez A. Let-7 restrains an oncogenic epigenetic circuit in AT2 cells to prevent ectopic formation of fibrogenic transitional cell intermediates and pulmonary fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595205. [PMID: 38826218 PMCID: PMC11142151 DOI: 10.1101/2024.05.22.595205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Analysis of lung alveolar type 2 (AT2) progenitor stem cells has highlighted fundamental mechanisms that direct their differentiation into alveolar type 1 cells (AT1s) in lung repair and disease. However, microRNA (miRNA) mediated post-transcriptional mechanisms which govern this nexus remain understudied. We show here that the let-7 miRNA family serves a homeostatic role in governance of AT2 quiescence, specifically by preventing the uncontrolled accumulation of AT2 transitional cells and by promoting AT1 differentiation to safeguard the lung from spontaneous alveolar destruction and fibrosis. Using mice and organoid models with genetic ablation of let-7a1/let-7f1/let-7d cluster (let-7afd) in AT2 cells, we demonstrate prevents AT1 differentiation and results in aberrant accumulation of AT2 transitional cells in progressive pulmonary fibrosis. Integration of enhanced AGO2 UV-crosslinking and immunoprecipitation sequencing (AGO2-eCLIP) with RNA-sequencing from AT2 cells uncovered the induction of direct targets of let-7 in an oncogene feed-forward regulatory network including BACH1/EZH2 which drives an aberrant fibrotic cascade. Additional analyses by CUT&RUN-sequencing revealed loss of let-7afd hampers AT1 differentiation by eliciting aberrant histone EZH2 methylation which prevents the exit of AT2 transitional cells into terminal AT1s. This study identifies let-7 as a key gatekeeper of post-transcriptional and epigenetic chromatin signals to prevent AT2-driven pulmonary fibrosis.
Collapse
Affiliation(s)
- Matthew J. Seasock
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, 77030
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of Medicine Houston TX, 77030
| | - Md Shafiquzzaman
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of Medicine Houston TX, 77030
| | - Maria E. Ruiz-Echartea
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Rupa S. Kanchi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, 77030
| | - Brandon T. Tran
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030
- Department of Pediatrics, Division of Infectious Diseases, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, 77030
| | - Lukas M. Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030
| | | | - Phillip A. Erice
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, 77030
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of Medicine Houston TX, 77030
| | - Shivani L. Lotlikar
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of Medicine Houston TX, 77030
| | | | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Anton Enright
- Department of Pathology, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Alex F. Carisey
- William T. Shearer Center for Immunobiology, Texas Children’s Hospital, Houston, TX, 77030
- Current Address: Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Freddy Romero
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of Medicine. Houston, TX, 77030
- Current Address: Vertex Pharmaceuticals, 3215 Merryfield Row, San Diego, CA, 92121
| | - Ivan O. Rosas
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of Medicine. Houston, TX, 77030
| | - Katherine Y. King
- Department of Pediatrics, Division of Infectious Diseases, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, 77030
| | - Neil J. McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, 77030
| | - Antony Rodriguez
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of Medicine Houston TX, 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, 77030
- Center for Translational Research on Inflammatory Diseases, Michael E. Debakey, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
3
|
Song B, Chen Y. Long non-coding RNA SNHG4 aggravates cigarette smoke-induced COPD by regulating miR-144-3p/EZH2 axis. BMC Pulm Med 2023; 23:513. [PMID: 38114929 PMCID: PMC10731904 DOI: 10.1186/s12890-023-02818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
OBJECTIVE The purpose of this study was to explore the expression level of SNHG4 in patients with COPD and its diagnostic value in COPD, to probe the biological function of SNHG4 in COPD at the cellular level, and to reveal the interaction between SNHG4 and miR-144-3p/EZH2 axis. METHODS The serum levels of SNHG4, miR-144-3p and EZH2 in healthy people and patients with COPD were detected by RT-qPCR. The diagnostic value of SNHG4 in COPD was evaluated by ROC curve. Pearson method was chosen to estimate the correlation between SNHG4 and clinical indicators in patients with COPD. Cigarette smoke extract (CSE) was obtained, and Beas-2B cells were exposed with 2% CSE to establish an inflammatory cell model of COPD in vitro. MTT assay was used to detect cell viability, flow cytometry was used to evaluate cell apoptosis, and ELISA was performed to detect inflammatory cytokines. Dual-luciferase reporting assay was carried out to verify the targeting of lncRNA-miRNA or miRNA-mRNA. RESULTS (1) The expression of SNHG4 is decreased in patients with COPD, and the expression level in acute exacerbation COPD was lower than that in stable COPD. SNHG4 demonstrated high diagnostic accuracy in distinguishing between stable and acute exacerbation COPD. (2) The expression of SNHG4 was decreased in CSE-induced Beas-2B cells, and overexpression of SNHG4 was beneficial to alleviate CSE-induced apoptosis and inflammation. (3) The expression of miR-144-3p is up-regulated in patients with COPD and CSE-induced Beas-2B cells. MiR-144-3p has a targeting relationship with SNHG4, which is negatively regulated by SNHG4. Overexpression of miR-144-3p could counteract the beneficial effects of increased SNHG4 on CSE-induced cells. (4) The expression of EZH2 is reduced in patients with COPD and CSE-induced Beas-2B cells. Bioinformatics analysis and luciferase reporter gene confirmed that EZH2 is the downstream target gene of miR-144-3p and is negatively regulated by miR-144-3p. CONCLUSION The expression of SNHG4 decreased in patients with COPD, and it may promote the progression of COPD by inhibiting the viability, promoting apoptosis and inflammatory response of bronchial epithelial cells via regulating the miR-144-3p/EZH2 axis.
Collapse
Affiliation(s)
- Benyan Song
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Panzhihua University, No. 27, Taoyuan Street, Bingcaogang, East District, Panzhihua, 617000, China
| | - Yusi Chen
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Panzhihua University, No. 27, Taoyuan Street, Bingcaogang, East District, Panzhihua, 617000, China.
| |
Collapse
|
4
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|