1
|
Wang Z, Yan Y, Chen W, Tan Z, Yan Q, Chen Q, Ding X, Shen J, Gao M, Yang Y, Yu L, Lin F, Fu Y, Jin X, Yu X. Preparation and characterization of neural stem cell-loaded conductive hydrogel cochlear implant electrode coatings. BIOMATERIALS ADVANCES 2025; 167:214109. [PMID: 39561577 DOI: 10.1016/j.bioadv.2024.214109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Sensorineural deafness is a hearing impairment resulting from damage to the auditory nerve or inner ear hair cells. Currently, cochlear implants (CIs) are widely used as hearing aids for sensorineural deafness patients. A fundamental limitation of cochlear implants (CIs) is that spiral ganglion neurons (SGNs) cannot be replenished. This greatly restricts the rehabilitation of sensorineural deafness. Additionally, the insertion of CIs can cause secondary cochlear damage, worsening the condition of the patients' cochlear. Therefore, a new type of neural stem cells (NSCs) loaded graphene oxide-polyaniline/GelMA (GO-PAni/GelMA) conductive hydrogel electrode for cochlear implant was fabricated via in-situ radical polymerization and cyclic UV curing technique. On the one hand, the hydrogel electrode, as a direct contact layer, helps to avoid the physical hurt for cochlear. On the other hand, NSCs were supplemented via the hydrogel carrier and neuronal differentiation was induced by electrical stimulation, which was validated by the experimental results of immunofluorescence, Phalloidin Staining and RT-qPCR. Furthermore, based on RNA sequencing and transcriptome analysis, we hypothesized that the neuronal differentiation of NSCs was adjusted by the calcium signaling pathway and GABAergic synapse. Overall, our cell loading conductive hydrogel electrode may be an effective solution to sensorineural deafness. The revelation of the mechanism of neuronal differentiation promoted by electrical stimulation provides a basis for further sensorineural deafness treatment using conductive hydrogel CI electrode.
Collapse
Affiliation(s)
- Zhiyi Wang
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Yu Yan
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Wenxin Chen
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Zhiping Tan
- Zhejiang Nurotron Biotechnology Co., Ltd, Hangzhou 311121, Zhejiang Province, China
| | - Qingfeng Yan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Qingqing Chen
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Xue Ding
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jiahua Shen
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Min Gao
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Yang Yang
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Lulu Yu
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Fuzhi Lin
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Yong Fu
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China.
| | - Xiaoqiang Jin
- Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang, Hangzhou 310003, Zhejiang Province, China.
| | - Xiaohua Yu
- Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
2
|
Wu M, Jia G, Liu Y, Lou Y, Li Y, Xia M, Li H, Li W. PKM2 controls cochlear development through lactate-dependent transcriptional regulation. Proc Natl Acad Sci U S A 2025; 122:e2410829122. [PMID: 39773029 PMCID: PMC11745320 DOI: 10.1073/pnas.2410829122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Understanding the role of metabolic processes during inner ear development is essential for identifying targets for hair cell (HC) regeneration, as metabolic choices play a crucial role in cell proliferation and differentiation. Among the metabolic processes, growing evidence shows that glucose metabolism is closely related to organ development. However, the role of glucose metabolism in mammalian inner ear development and HC regeneration remains unclear. In this study, we found that glycolytic metabolism is highly active during mouse and human cochlear prosensory epithelium expansion. Using mouse cochlear organoids, we revealed that glycolytic activity in cochlear nonsensory epithelial cells was predominantly dominated by pyruvate kinase M2 (PKM2). Deletion of PKM2 induced a metabolic switch from glycolysis to oxidative phosphorylation, impairing cochlear organoid formation. Furthermore, conditional loss of PKM2 in cochlear progenitors hindered sensory epithelium morphogenesis, as demonstrated in PKM2 knockout mice. Mechanistically, pyruvate is generated by PKM2 catalysis and then converted into lactate, which then lactylates histone H3, regulating the transcription of key genes for cochlear development. Specifically, accumulated lactate causes histone H3 lactylation at lysine 9 (H3K9la), upregulating the expression of Sox family transcription factors through epigenetic modification. Moreover, overexpression of PKM2 in supporting cells (SCs) triggered metabolism reprogramming and enhanced HC generation in cultured mouse and human cochlear explants. Our findings uncover a molecular mechanism of sensory epithelium formation driven by glycolysis-lactate flow and suggest unique approaches for mammalian HC regeneration.
Collapse
Affiliation(s)
- Mingxuan Wu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Gaogan Jia
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Yaoqian Liu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Yiyun Lou
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Yunjie Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Mingyu Xia
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai200032, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai200032, China
- Shanghai Engineering Research Centre of Cochlear Implant, Shanghai200031, China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai200032, China
- Shanghai Engineering Research Centre of Cochlear Implant, Shanghai200031, China
| |
Collapse
|
3
|
Cai J, Huang K, Li W, Wang T, Yue S, Chen Z, Xing G, Wei Q, Yao J, Cao X. Implication of GPRASP2 in the Proliferation and Hair Cell-Forming of Cochlear Supporting Cells. Cell Prolif 2024:e13792. [PMID: 39675768 DOI: 10.1111/cpr.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
G protein-coupled receptor-associated sorting protein 2 (GPRASP2) has been identified as the causative gene for X-linked recessive syndromic hearing loss (SHL) in our previous study. However, the role of GPRASP2 in auditory function remains unclear. The present study demonstrated that Gprasp2 overexpression in mouse organoids promoted the proliferation of supporting cells (SCs), which was mainly mediated by the Hedgehog signalling pathway. Meanwhile, GPRASP2 promoted hair cell (HC) formation from SCs via β-catenin signalling. In addition, GPRASP2 deficiency resulted in increased lysosomal degradation of SMO protein, leading to decreased expression of β-catenin and the Hedgehog pathway transcription factor GLI1. In neomycin-treated mouse cochlear explant, the smoothened agonist (SAG) recured the HC loss and further facilitated AAV-ie-Gprasp2 to promote the proliferation of SCs and formation of HCs. Our results suggested that GPRASP2 could be a potential candidate for gene therapy in the regeneration of HCs.
Collapse
Affiliation(s)
- Jing Cai
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Kun Huang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Wenrui Li
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Tianming Wang
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Shen Yue
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Diensthuber M, Stöver T. Organoids-the key to novel therapies for the inner ear? HNO 2024; 72:83-88. [PMID: 38775829 DOI: 10.1007/s00106-023-01367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 12/05/2024]
Abstract
The sensitivity and the complexity of the human inner ear in conjunction with the lack of regenerative capacity are the main reasons for hearing loss and tinnitus. Progress in the development of protective and regenerative therapies for the inner ear often failed in the past not least due to the fact that no suitable model systems for cell biological and pharmacological in vitro studies were available. A novel technology for creating "mini-organs", so-called organoids, could solve this problem and has now also reached inner ear research. It makes it possible to produce inner ear organoids from cochlear stem/progenitor cells, embryonic and induced pluripotent stem cells that mimic the structural characteristics and functional properties of the natural inner ear. This review focuses on the biological basis of these inner ear organoids, the current state of research and the promising prospects that are now opening up for basic and translational inner ear research.
Collapse
Affiliation(s)
- Marc Diensthuber
- University Hospital, Department of Otorhinolaryngology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/M, Germany.
| | - Timo Stöver
- University Hospital, Department of Otorhinolaryngology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/M, Germany
| |
Collapse
|
5
|
Chung K, Millet M, Rouillon L, Zine A. Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells. Biomedicines 2024; 12:2262. [PMID: 39457575 PMCID: PMC11504183 DOI: 10.3390/biomedicines12102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pluripotent stem cells (PSCs) offer many potential research and clinical benefits due to their ability to differentiate into nearly every cell type in the body. They are often used as model systems to study early stages of ontogenesis to better understand key developmental pathways, as well as for drug screening. However, in order to fully realise the potential of PSCs and their translational applications, a deeper understanding of developmental pathways, especially in humans, is required. Several signalling molecules play important roles during development and are required for proper differentiation of PSCs. The concentration and timing of signal activation are important, with perturbations resulting in improper development and/or pathology. Bone morphogenetic proteins (BMPs) are one such key group of signalling molecules involved in the specification and differentiation of various cell types and tissues in the human body, including those related to tooth and otic development. In this review, we describe the role of BMP signalling and its regulation, the consequences of BMP dysregulation in disease and differentiation, and how PSCs can be used to investigate the effects of BMP modulation during development, mainly focusing on otic development. Finally, we emphasise the unique role of BMP4 in otic specification and how refined understanding of controlling its regulation could lead to the generation of more robust and reproducible human PSC-derived otic organoids for research and translational applications.
Collapse
Affiliation(s)
- Keshi Chung
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Malvina Millet
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ludivine Rouillon
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| |
Collapse
|
6
|
Zong Y, Liu X, Zhang Y, Zhao J, Shi X, Zhao Z, Sun Y. Recent Progress in Generation of Inner Ear Organoid. Adv Biol (Weinh) 2024; 8:e2400223. [PMID: 39051423 DOI: 10.1002/adbi.202400223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/06/2024] [Indexed: 07/27/2024]
Abstract
Inner ear organoids play a crucial role in hearing research. In comparison to other animal models and 2D cell culture systems, inner ear organoids offer significant advantages for studying the mechanisms of inner ear development and exploring novel approaches to disease treatment. Inner ear organoids derived from human cells are more closely resemble normal human organs in development and function. The 3D culture system of the inner ear organoid enhances cell-cell interactions and mimics the internal environment. In this review, the progress and limitations of organoid culture methods derived from tissue-specific progenitors and pluripotent stem cells (PSCs) are summarized, which may offer new insights into generating organoids that closely resemble the inner ear in terms of morphology and function.
Collapse
Affiliation(s)
- Yanjun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yaqi Zhang
- Santa Clara University, Santa Clara, 95053, USA
| | - Jiahui Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhengdong Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
7
|
Liu Q, Zhang L, Chen Z, He Y, Huang Y, Qiu C, Zhu C, Zhou D, Gan Z, Gao X, Wan G. Metabolic Profiling of Cochlear Organoids Identifies α-Ketoglutarate and NAD + as Limiting Factors for Hair Cell Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308032. [PMID: 38993037 PMCID: PMC11425867 DOI: 10.1002/advs.202308032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/11/2024] [Indexed: 07/13/2024]
Abstract
Cochlear hair cells are the sensory cells responsible for transduction of acoustic signals. In mammals, damaged hair cells do not regenerate, resulting in permanent hearing loss. Reprogramming of the surrounding supporting cells to functional hair cells represent a novel strategy to hearing restoration. However, cellular processes governing the efficient and functional hair cell reprogramming are not completely understood. Employing the mouse cochlear organoid system, detailed metabolomic characterizations of the expanding and differentiating organoids are performed. It is found that hair cell differentiation is associated with increased mitochondrial electron transport chain (ETC) activity and reactive oxidative species generation. Transcriptome and metabolome analyses indicate reduced expression of oxidoreductases and tricyclic acid (TCA) cycle metabolites. The metabolic decoupling between ETC and TCA cycle limits the availability of the key metabolic cofactors, α-ketoglutarate (α-KG) and nicotinamide adenine dinucleotide (NAD+). Reduced expression of NAD+ in cochlear supporting cells by PGC1α deficiency further impairs hair cell reprogramming, while supplementation of α-KG and NAD+ promotes hair cell reprogramming both in vitro and in vivo. These findings reveal metabolic rewiring as a central cellular process during hair cell differentiation, and highlight the insufficiency of key metabolites as a metabolic barrier for efficient hair cell reprogramming.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Linqing Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Zhen Chen
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Yihan He
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Yuhang Huang
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Cui Qiu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Chengwen Zhu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Xia Gao
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Guoqiang Wan
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| |
Collapse
|
8
|
Lou Y, Ma J, Hu Y, Yao X, Liu Y, Wu M, Jia G, Chen Y, Chai R, Xia M, Li W. Integration of Functional Human Auditory Neural Circuits Based on a 3D Carbon Nanotube System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309617. [PMID: 38889308 PMCID: PMC11348147 DOI: 10.1002/advs.202309617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/27/2024] [Indexed: 06/20/2024]
Abstract
The physiological interactions between the peripheral and central auditory systems are crucial for auditory information transmission and perception, while reliable models for auditory neural circuits are currently lacking. To address this issue, mouse and human neural pathways are generated by utilizing a carbon nanotube nanofiber system. The super-aligned pattern of the scaffold renders the axons of the bipolar and multipolar neurons extending in a parallel direction. In addition, the electrical conductivity of the scaffold maintains the electrophysiological activity of the primary mouse auditory neurons. The mouse and human primary neurons from peripheral and central auditory units in the system are then co-cultured and showed that the two kinds of neurons form synaptic connections. Moreover, neural progenitor cells of the cochlea and auditory cortex are derived from human embryos to generate region-specific organoids and these organoids are assembled in the nanofiber-combined 3D system. Using optogenetic stimulation, calcium imaging, and electrophysiological recording, it is revealed that functional synaptic connections are formed between peripheral neurons and central neurons, as evidenced by calcium spiking and postsynaptic currents. The auditory circuit model will enable the study of the auditory neural pathway and advance the search for treatment strategies for disorders of neuronal connectivity in sensorineural hearing loss.
Collapse
Affiliation(s)
- Yiyun Lou
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Jiaoyao Ma
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Xiaoying Yao
- Obstetrics and Gynecology HospitalFudan UniversityShanghai200011China
| | - Yaoqian Liu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Mingxuan Wu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Gaogan Jia
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Yan Chen
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghai200032China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Mingyu Xia
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghai200032China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghai200032China
| |
Collapse
|
9
|
Ma X, Guo J, Tian M, Fu Y, Jiang P, Zhang Y, Chai R. Advance and Application of Single-cell Transcriptomics in Auditory Research. Neurosci Bull 2024; 40:963-980. [PMID: 38015350 PMCID: PMC11250760 DOI: 10.1007/s12264-023-01149-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/03/2023] [Indexed: 11/29/2023] Open
Abstract
Hearing loss and deafness, as a worldwide disability disease, have been troubling human beings. However, the auditory organ of the inner ear is highly heterogeneous and has a very limited number of cells, which are largely uncharacterized in depth. Recently, with the development and utilization of single-cell RNA sequencing (scRNA-seq), researchers have been able to unveil the complex and sophisticated biological mechanisms of various types of cells in the auditory organ at the single-cell level and address the challenges of cellular heterogeneity that are not resolved through by conventional bulk RNA sequencing (bulk RNA-seq). Herein, we reviewed the application of scRNA-seq technology in auditory research, with the aim of providing a reference for the development of auditory organs, the pathogenesis of hearing loss, and regenerative therapy. Prospects about spatial transcriptomic scRNA-seq, single-cell based genome, and Live-seq technology will also be discussed.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiamin Guo
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mengyao Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yaoyang Fu
- Department of Psychiatry, Affiliated Hangzhou First People's Hospital, Zhejiang University school of Medicine, Hangzhou, 310030, China
| | - Pei Jiang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 101408, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
10
|
Osonoi S, Takebe T. Organoid-guided precision hepatology for metabolic liver disease. J Hepatol 2024; 80:805-821. [PMID: 38237864 DOI: 10.1016/j.jhep.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease affects millions of people worldwide. Progress towards a definitive cure has been incremental and treatment is currently limited to lifestyle modification. Hepatocyte-specific lipid accumulation is the main trigger of lipotoxic events, driving inflammation and fibrosis. The underlying pathology is extraordinarily heterogenous, and the manifestations of steatohepatitis are markedly influenced by metabolic communications across non-hepatic organs. Synthetic human tissue models have emerged as powerful platforms to better capture the mechanistic diversity in disease progression, while preserving person-specific genetic traits. In this review, we will outline current research efforts focused on integrating multiple synthetic tissue models of key metabolic organs, with an emphasis on organoid-based systems. By combining functional genomics and population-scale en masse profiling methodologies, human tissues derived from patients can provide insights into personalised genetic, transcriptional, biochemical, and metabolic states. These collective efforts will advance our understanding of steatohepatitis and guide the development of rational solutions for mechanism-directed diagnostic and therapeutic investigation.
Collapse
Affiliation(s)
- Sho Osonoi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Takanori Takebe
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; WPI Premium Institute for Human Metaverse Medicine (WPI-PRIMe) and Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
11
|
Shah JJ, Jimenez-Jaramillo CA, Lybrand ZR, Yuan TT, Erbele ID. Modern In Vitro Techniques for Modeling Hearing Loss. Bioengineering (Basel) 2024; 11:425. [PMID: 38790292 PMCID: PMC11118046 DOI: 10.3390/bioengineering11050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is a prevalent and growing global health concern, especially within operational medicine, with limited therapeutic options available. This review article explores the emerging field of in vitro otic organoids as a promising platform for modeling hearing loss and developing novel therapeutic strategies. SNHL primarily results from the irreversible loss or dysfunction of cochlear mechanosensory hair cells (HCs) and spiral ganglion neurons (SGNs), emphasizing the need for innovative solutions. Current interventions offer symptomatic relief but do not address the root causes. Otic organoids, three-dimensional multicellular constructs that mimic the inner ear's architecture, have shown immense potential in several critical areas. They enable the testing of gene therapies, drug discovery for sensory cell regeneration, and the study of inner ear development and pathology. Unlike traditional animal models, otic organoids closely replicate human inner ear pathophysiology, making them invaluable for translational research. This review discusses methodological advances in otic organoid generation, emphasizing the use of human pluripotent stem cells (hPSCs) to replicate inner ear development. Cellular and molecular characterization efforts have identified key markers and pathways essential for otic organoid development, shedding light on their potential in modeling inner ear disorders. Technological innovations, such as 3D bioprinting and microfluidics, have further enhanced the fidelity of these models. Despite challenges and limitations, including the need for standardized protocols and ethical considerations, otic organoids offer a transformative approach to understanding and treating auditory dysfunctions. As this field matures, it holds the potential to revolutionize the treatment landscape for hearing and balance disorders, moving us closer to personalized medicine for inner ear conditions.
Collapse
Affiliation(s)
- Jamie J. Shah
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Couger A. Jimenez-Jaramillo
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Zane R. Lybrand
- Division of Biology, Texas Woman’s University, Denton, TX 76204, USA;
| | - Tony T. Yuan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
| | - Isaac D. Erbele
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
- Department of Otolaryngology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
12
|
Lu J, Wang M, Wang X, Meng Y, Chen F, Zhuang J, Han Y, Wang H, Liu W. A basement membrane extract-based three-dimensional culture system promotes the neuronal differentiation of cochlear Sox10-positive glial cells in vitro. Mater Today Bio 2024; 24:100937. [PMID: 38269057 PMCID: PMC10805941 DOI: 10.1016/j.mtbio.2023.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Spiral ganglion neurons (SGNs) in the mammalian cochleae are essential for the delivery of acoustic information, and damage to SGNs can lead to permanent sensorineural hearing loss as SGNs are not capable of regeneration. Cochlear glial cells (GCs) might be a potential source for SGN regeneration, but the neuronal differentiation ability of GCs is limited and its properties are not clear yet. Here, we characterized the cochlear Sox10-positive (Sox10+) GCs as a neural progenitor population and developed a basement membrane extract-based three-dimensional (BME-3D) culture system to promote its neuronal generation capacity in vitro. Firstly, the purified Sox10+ GCs, isolated from Sox10-creER/tdTomato mice via flow cytometry, were able to form neurospheres after being cultured in the traditional suspension culture system, while significantly more neurospheres were found and the expression of stem cell-related genes was upregulated in the BME-3D culture group. Next, the BME-3D culture system promoted the neuronal differentiation ability of Sox10+ GCs, as evidenced by the increased number, neurite outgrowth, area of growth cones, and synapse density as well as the promoted excitability of newly induced neurons. Notably, the BME-3D culture system also intensified the reinnervation of newly generated neurons with HCs and protected the neurospheres and derived-neurons against cisplatin-induced damage. Finally, transcriptome sequencing analysis was performed to identify the characteristics of the differentiated neurons. These findings suggest that the BME-3D culture system considerably promotes the proliferation capacity and neuronal differentiation efficiency of Sox10+ GCs in vitro, thus providing a possible strategy for the SGN regeneration study.
Collapse
Affiliation(s)
- Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Fang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Jinzhu Zhuang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| |
Collapse
|
13
|
Qi J, Zhang L, Wang X, Chen X, Li Y, Wang T, Wu P, Chai R. Modeling, applications and challenges of inner ear organoid. SMART MEDICINE 2024; 3:e20230028. [PMID: 39188517 PMCID: PMC11235738 DOI: 10.1002/smmd.20230028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/28/2023] [Indexed: 08/28/2024]
Abstract
More than 6% of the world's population is suffering from hearing loss and balance disorders. The inner ear is the organ that senses sound and balance. Although inner ear disorders are common, there are limited ways to intervene and restore its sensory and balance functions. The development and establishment of biologically therapeutic interventions for auditory disorders require clarification of the basics of signaling pathways that control inner ear development and the establishment of endogenous or exogenous cell-based therapeutic methods. In vitro models of the inner ear, such as organoid systems, can help identify new protective or regenerative drugs, develop new gene therapies, and be considered as potential tools for future clinical applications. Advances in stem cell technology and organoid culture offer unique opportunities for modeling inner ear diseases and developing personalized therapies for hearing loss. Here, we review and discuss the mechanisms for the establishment and the potential applications of inner ear organoids.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Liyan Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Xiaohan Wang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Xin Chen
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yiyuan Li
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Tian Wang
- Department of Otolaryngology‐Head and Neck SurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of Otolaryngology‐Head and Neck SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| | - Peina Wu
- School of MedicineSouth China University of TechnologyGuangzhouChina
- Department of OtolaryngologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
14
|
Lu J, Wang M, Meng Y, An W, Wang X, Sun G, Wang H, Liu W. Current advances in biomaterials for inner ear cell regeneration. Front Neurosci 2024; 17:1334162. [PMID: 38282621 PMCID: PMC10811200 DOI: 10.3389/fnins.2023.1334162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Inner ear cell regeneration from stem/progenitor cells provides potential therapeutic strategies for the restoration of sensorineural hearing loss (SNHL), however, the efficiency of regeneration is low and the functions of differentiated cells are not yet mature. Biomaterials have been used in inner ear cell regeneration to construct a more physiologically relevant 3D culture system which mimics the stem cell microenvironment and facilitates cellular interactions. Currently, these biomaterials include hydrogel, conductive materials, magneto-responsive materials, photo-responsive materials, etc. We analyzed the characteristics and described the advantages and limitations of these materials. Furthermore, we reviewed the mechanisms by which biomaterials with different physicochemical properties act on the inner ear cell regeneration and depicted the current status of the material selection based on their characteristics to achieve the reconstruction of the auditory circuits. The application of biomaterials in inner ear cell regeneration offers promising opportunities for the reconstruction of the auditory circuits and the restoration of hearing, yet biomaterials should be strategically explored and combined according to the obstacles to be solved in the inner ear cell regeneration research.
Collapse
Affiliation(s)
- Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Weibin An
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Gaoying Sun
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| |
Collapse
|
15
|
Xia M, Wu M, Li Y, Liu Y, Jia G, Lou Y, Ma J, Gao Q, Xie M, Chen Y, He Y, Li H, Li W. Varying mechanical forces drive sensory epithelium formation. SCIENCE ADVANCES 2023; 9:eadf2664. [PMID: 37922362 PMCID: PMC10624343 DOI: 10.1126/sciadv.adf2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/05/2023] [Indexed: 11/05/2023]
Abstract
The mechanical cues of the external microenvironment have been recognized as essential clues driving cell behavior. Although intracellular signals modulating cell fate during sensory epithelium development is well understood, the driving force of sensory epithelium formation remains elusive. Here, we manufactured a hybrid hydrogel with tunable mechanical properties for the cochlear organoids culture and revealed that the extracellular matrix (ECM) drives sensory epithelium formation through shifting stiffness in a stage-dependent pattern. As the driving force, moderate ECM stiffness activated the expansion of cochlear progenitor cell (CPC)-derived epithelial organoids by modulating the integrin α3 (ITGA3)/F-actin cytoskeleton/YAP signaling. Higher stiffness induced the transition of CPCs into sensory hair cells (HCs) through increasing the intracellular Ca2+ signaling mediated by PIEZO2 and then activating KLF2 to accomplish the cell specification . Our results identify the molecular mechanism of sensory epithelium formation guided by ECM mechanical force and contribute to developing therapeutic approaches for HC regeneration.
Collapse
Affiliation(s)
- Mingyu Xia
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Mingxuan Wu
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaoqian Liu
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Gaogan Jia
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yiyun Lou
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiaoyao Ma
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mingjun Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huawei Li
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Centre of Cochlear Implant, Shanghai 200031, China
| | - Wenyan Li
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Diensthuber M, Stöver T. [Organoids-the key to novel therapies for the inner ear? German version]. HNO 2023; 71:702-707. [PMID: 37845538 DOI: 10.1007/s00106-023-01366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 10/18/2023]
Abstract
The sensitivity and the complexity of the human inner ear in conjunction with the lack of regenerative capacity are the main reasons for hearing loss and tinnitus. Progress in the development of protective and regenerative therapies for the inner ear often failed in the past not least due to the fact that no suitable model systems for cell biological and pharmacological in vitro studies were available. A novel technology for creating "mini-organs", so-called organoids, could solve this problem and has now also reached inner ear research. It makes it possible to produce inner ear organoids from cochlear stem/progenitor cells, embryonic and induced pluripotent stem cells that mimic the structural characteristics and functional properties of the natural inner ear. This review focuses on the biological basis of these inner ear organoids, the current state of research and the promising prospects that are now opening up for basic and translational inner ear research.
Collapse
Affiliation(s)
- Marc Diensthuber
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/M., Deutschland.
| | - Timo Stöver
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/M., Deutschland
| |
Collapse
|
17
|
Sun G, Tang M, Wang X, Li D, Liu W, Qi J, Wang H, Hu B. Generation of human otic neuronal organoids using pluripotent stem cells. Cell Prolif 2023; 56:e13434. [PMID: 36825797 DOI: 10.1111/cpr.13434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Otic neurons, also known as spiral ganglion neurons (SGNs) in mammalian cochlea, transmit electrical signals from sensory hair cells to cochlear nuclei of the auditory system. SGNs are sensitive to toxic insults, vulnerable to get irreversible damaged and hardly regenerate after damage, causing persistent sensorineural hearing loss. Yet, to get authentic SGNs for research or therapeutic purpose remains challenging. Here we developed a protocol to generate human otic neuronal organoids (hONOs) from human pluripotent stem cells (hESCs), in which hESCs were step-wisely induced to SGNs of the corresponding stages according to their developmental trajectory. The hONOs were enriched for SGN-like cells at early stage, and for both neurons and astrocytes, Schwann cells or supporting cells thereafter. In these hONOs, we also determined the existence of typical Type I and Type II SGNs. Mature hONOs (at differentiation Day 60) formed neural network, featured by giant depolarizing potential (GDP)-like events and rosette-organized regions-elicited calcium traces. Electrophysiological analysis confirmed the existence of glutamate-responsive neurons in these hONOs. The otic neuronal organoids generated in this study provide an ideal model to study SGNs and related disorders, facilitating therapeutic development for sensorineural hearing loss.
Collapse
Affiliation(s)
- Gaoying Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingming Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xinyue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Da Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Gao Y. Using Human iPSC-Derived Peripheral Nervous System Disease Models for Drug Discovery. Handb Exp Pharmacol 2023; 281:191-205. [PMID: 37815594 DOI: 10.1007/164_2023_690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Induced pluripotent stem cells (IPSCs), with their remarkable ability to differentiate into various cell types, including peripheral nervous system cells such as neurons and glial cells, offer an excellent platform for in vitro disease modeling. These iPSC-derived disease models have proven valuable in drug discovery, as they provide more precise simulations of a patient's disease state and allow for the assessment of potential therapeutic effectiveness and safety.
Collapse
Affiliation(s)
- Yuan Gao
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| |
Collapse
|