1
|
Ahmed SMQ, Sasikumar J, Laha S, Das SP. Multifaceted role of the DNA replication protein MCM10 in maintaining genome stability and its implication in human diseases. Cancer Metastasis Rev 2024; 43:1353-1371. [PMID: 39240414 DOI: 10.1007/s10555-024-10209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
MCM10 plays a vital role in genome duplication and is crucial for DNA replication initiation, elongation, and termination. It coordinates several proteins to assemble at the fork, form a functional replisome, trigger origin unwinding, and stabilize the replication bubble. MCM10 overexpression is associated with increased aggressiveness in breast, cervical, and several other cancers. Disruption of MCM10 leads to altered replication timing associated with initiation site gains and losses accompanied by genome instability. Knockdown of MCM10 affects the proliferation and migration of cancer cells, manifested by DNA damage and replication fork arrest, and has recently been shown to be associated with clinical conditions like CNKD and RCM. Loss of MCM10 function is associated with impaired telomerase activity, leading to the accumulation of abnormal replication forks and compromised telomere length. MCM10 interacts with histones, aids in nucleosome assembly, binds BRCA2 to maintain genome integrity during DNA damage, prevents lesion skipping, and inhibits PRIMPOL-mediated repriming. It also interacts with the fork reversal enzyme SMARCAL1 and inhibits fork regression. Additionally, MCM10 undergoes several post-translational modifications and contributes to transcriptional silencing by interacting with the SIR proteins. This review explores the mechanism associated with MCM10's multifaceted role in DNA replication initiation, chromatin organization, transcriptional silencing, replication stress, fork stability, telomere length maintenance, and DNA damage response. Finally, we discuss the role of MCM10 in the early detection of cancer, its prognostic significance, and its potential use in therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Sumayyah M Q Ahmed
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Suparna Laha
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
2
|
Cacialli P, Ricci S, Servetto GP, Franceschini V, Ruiz-Zepeda F, Vigliaturo R. Altered Morpho-Functional Features of Neurogenesis in Zebrafish Embryos Exposed to Non-Combustion-Derived Magnetite. Int J Mol Sci 2024; 25:6459. [PMID: 38928164 PMCID: PMC11203806 DOI: 10.3390/ijms25126459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Neurogenesis is the process by which new brain cells are formed. This crucial event emerges during embryonic life and proceeds in adulthood, and it could be influenced by environmental pollution. Non-combustion-derived magnetite represents a portion of the coarse particulate matter (PM) contributing to air and water pollution in urban settings. Studies on humans have reported that magnetite and other iron oxides have significant damaging effects at a central level, where these particles accumulate and promote oxidative stress. Similarly, magnetite nanoparticles can cross the placenta and damage the embryo brain during development, but the impact on neurogenesis is still unknown. Furthermore, an abnormal Fe cation concentration in cells and tissues might promote reactive oxygen species (ROS) generation and has been associated with multiple neurodegenerative conditions. In the present study, we used zebrafish as an in vivo system to analyze the specific effects of magnetite on embryonic neurogenesis. First, we characterized magnetite using mineralogical and spectroscopic analyses. Embryos treated with magnetite at sub-lethal concentrations showed a dose-response increase in ROS in the brain, which was accompanied by a massive decrease in antioxidant genes (sod2, cat, gsr, and nrf2). In addition, a higher number of apoptotic cells was observed in embryos treated with magnetite. Next, interestingly, embryos exposed to magnetite displayed a decrease in neural staminal progenitors (nestin, sox2, and pcna markers) and a neuronal marker (elavl3). Finally, we observed significative increases in apoeb (specific microglia marker) and interleukin-1b (il1b), confirming a status of inflammation in the brain embryos treated with magnetite. Our study represents the very first in vivo evidence concerning the effects of magnetite on brain development.
Collapse
Affiliation(s)
- Pietro Cacialli
- Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, 40126 Bologna, Italy
| | - Serena Ricci
- Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, 40126 Bologna, Italy
| | | | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, 40126 Bologna, Italy
| | - Francisco Ruiz-Zepeda
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ruggero Vigliaturo
- Department of Earth Sciences, University of Turin, 10124 Turin, Italy
- Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Turin, 10124 Turin, Italy
| |
Collapse
|
3
|
Schmit MM, Baxley RM, Wang L, Hinderlie P, Kaufman M, Simon E, Raju A, Miller JS, Bielinsky AK. A critical threshold of MCM10 is required to maintain genome stability during differentiation of induced pluripotent stem cells into natural killer cells. Open Biol 2024; 14:230407. [PMID: 38262603 PMCID: PMC10805602 DOI: 10.1098/rsob.230407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 01/25/2024] Open
Abstract
Natural killer (NK) cell deficiency (NKD) is a rare disease in which NK cell function is reduced, leaving affected individuals susceptible to repeated viral infections and cancer. Recently, a patient with NKD was identified carrying compound heterozygous variants of MCM10 (minichromosome maintenance protein 10), an essential gene required for DNA replication, that caused a significant decrease in the amount of functional MCM10. NKD in this patient presented as loss of functionally mature late-stage NK cells. To understand how MCM10 deficiency affects NK cell development, we generated MCM10 heterozygous (MCM10+/-) induced pluripotent stem cell (iPSC) lines. Analyses of these cell lines demonstrated that MCM10 was haploinsufficient, similar to results in other human cell lines. Reduced levels of MCM10 in mutant iPSCs was associated with impaired clonogenic survival and increased genomic instability, including micronuclei formation and telomere erosion. The severity of these phenotypes correlated with the extent of MCM10 depletion. Significantly, MCM10+/- iPSCs displayed defects in NK cell differentiation, exhibiting reduced yields of hematopoietic stem cells (HSCs). Although MCM10+/- HSCs were able to give rise to lymphoid progenitors, these did not generate mature NK cells. The lack of mature NK cells coincided with telomere erosion, suggesting that NKD caused by these MCM10 variants arose from the accumulation of genomic instability including degradation of chromosome ends.
Collapse
Affiliation(s)
- Megan M. Schmit
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ryan M. Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Peter Hinderlie
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Marissa Kaufman
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Emily Simon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Anjali Raju
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey S. Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Zhu M, Lai W, Yao L, Xu E, Chen X, Zhang YY, Li XG. Glutamine Regulates Gene Expression Profiles to Increase the Proliferation of Porcine Intestinal Epithelial Cells and the Expansion of Intestinal Stem Cells. Animals (Basel) 2023; 13:2917. [PMID: 37760316 PMCID: PMC10525449 DOI: 10.3390/ani13182917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal epithelium is known for its rapid self-renewal, and glutamine is crucial in providing carbon and nitrogen for biosynthesis. However, understanding how glutamine affects gene expression in the intestinal epithelium is limited, and identifying the essential genes and signals involved in regulating intestinal epithelial cell growth is particularly challenging. In this study, glutamine supplementation exhibited a robust acceleration of intestinal epithelial cell proliferation and stem cell expansion. RNA sequencing indicated diverse transcriptome changes between the control and glutamine supplementation groups, identifying 925 up-regulated and 1152 down-regulated genes. The up-regulated DEGs were enriched in the KEGG pathway of cell cycle and GO terms of DNA replication initiation, regulation of phosphatidylinositol 3-kinase activity, DNA replication, minichromosome maintenance protein (MCM) complex, and ATP binding, whereas the down-regulated DEGs were enriched in the KEGG pathway of p53 signaling pathway, TNF signaling pathway, and JAK-STAT signaling pathway and GO terms of inflammatory response and intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress. Furthermore, GSEA analysis revealed a significant up-regulation of the cell cycle, DNA replication initiation, ATP-dependent RNA helicase activity, and down-regulation of the TNF signaling pathway. The protein-protein association network of the intersecting genes highlighted the significance of DNA replication licensing factors (MCM3, MCM6, and MCM10) in promoting intestinal epithelial growth in response to glutamine. Based on these findings, we propose that glutamine may upregulate DNA replication licensing factors, leading to increased PI3K/Akt signaling and the suppression of TNF, JAK-STAT, and p53 pathways. Consequently, this mechanism results in the proliferation of porcine intestinal epithelial cells and the expansion of intestinal stem cells.
Collapse
Affiliation(s)
- Min Zhu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (M.Z.); (E.X.); (X.C.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Weiming Lai
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.L.); (L.Y.)
| | - Lewen Yao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.L.); (L.Y.)
| | - E Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (M.Z.); (E.X.); (X.C.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (M.Z.); (E.X.); (X.C.)
| | - Yi-yu Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (M.Z.); (E.X.); (X.C.)
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.L.); (L.Y.)
| |
Collapse
|