1
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
2
|
Medina-Laver Y, Rodríguez-Varela C, Salsano S, Labarta E, Domínguez F. What Do We Know about Classical and Non-Classical Progesterone Receptors in the Human Female Reproductive Tract? A Review. Int J Mol Sci 2021; 22:11278. [PMID: 34681937 PMCID: PMC8538361 DOI: 10.3390/ijms222011278] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
The progesterone hormone regulates the human menstrual cycle, pregnancy, and parturition by its action via the different progesterone receptors and signaling pathways in the female reproductive tract. Progesterone actions can be exerted through classical and non-classical receptors, or even a combination of both. The former are nuclear receptors whose activation leads to transcriptional activity regulation and thus in turn leads to slower but long-lasting responses. The latter are composed of progesterone receptors membrane components (PGRMC) and membrane progestin receptors (mPRs). These receptors rapidly activate the appropriate intracellular signal transduction pathways, and they can subsequently initiate specific cell responses or even modulate genomic cell responses. This review covers our current knowledge on the mechanisms of action and the relevance of classical and non-classical progesterone receptors in female reproductive tissues ranging from the ovary and uterus to the cervix, and it exposes their crucial role in female infertility.
Collapse
Affiliation(s)
- Yassmin Medina-Laver
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| | | | - Stefania Salsano
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| | - Elena Labarta
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
- IVI RMA Valencia, 46015 Valencia, Spain
| | - Francisco Domínguez
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| |
Collapse
|
3
|
Tokmakov AA, Stefanov VE, Sato KI. Dissection of the Ovulatory Process Using ex vivo Approaches. Front Cell Dev Biol 2020; 8:605379. [PMID: 33363163 PMCID: PMC7755606 DOI: 10.3389/fcell.2020.605379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Ovulation is a unique physiological phenomenon that is essential for sexual reproduction. It refers to the entire process of ovarian follicle responses to hormonal stimulation resulting in the release of mature fertilization-competent oocytes from the follicles and ovaries. Remarkably, ovulation in different species can be reproduced out-of-body with high fidelity. Moreover, most of the molecular mechanisms and signaling pathways engaged in this process have been delineated using in vitro ovulation models. Here, we provide an overview of the major molecular and cytological events of ovulation observed in frogs, primarily in the African clawed frog Xenopus laevis, using mainly ex vivo approaches, with the focus on meiotic oocyte maturation and follicle rupture. For the purpose of comparison and generalization, we also refer extensively to ovulation in other biological species, most notoriously, in mammals.
Collapse
Affiliation(s)
| | - Vasily E Stefanov
- Department of Biochemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Ken-Ichi Sato
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
4
|
|
5
|
In Vitro Reconstruction of Xenopus Oocyte Ovulation. Int J Mol Sci 2019; 20:ijms20194766. [PMID: 31561408 PMCID: PMC6801927 DOI: 10.3390/ijms20194766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 11/17/2022] Open
Abstract
Progesterone is widely used to induce maturation of isolated fully grown oocytes of the African clawed frog, Xenopus laevis. However, the hormone fails to release oocytes from the layer of surrounding follicle cells. Here, we report that maturation and follicle rupture can be recapitulated in vitro by treating isolated follicular oocytes with progesterone and low doses of the matrix metalloproteinase (MMP), collagenase, which are ineffective in the absence of the steroid. Using this in vitro ovulation model, we demonstrate that germinal vesicle breakdown (GVBD) and oocyte liberation from ovarian follicles occur synchronously during ovulation. Inhibition of the MAPK pathway in these experimental settings suppresses both GVBD and follicular rupture, whereas inhibition of MMP activity delays follicular rupture without affecting GVBD. These results highlight importance of MAPK and MMP activities in the ovulation process and provide the first evidence for their involvement in the release of oocytes from ovarian follicles in frogs. The in vitro ovulation model developed in our study can be employed for further dissection of ovulation.
Collapse
|
6
|
Clulow J, Upton R, Trudeau VL, Clulow S. Amphibian Assisted Reproductive Technologies: Moving from Technology to Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:413-463. [PMID: 31471805 DOI: 10.1007/978-3-030-23633-5_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amphibians have experienced a catastrophic decline since the 1980s driven by disease, habitat loss, and impacts of invasive species and face ongoing threats from climate change. About 40% of extant amphibians are under threat of extinction and about 200 species have disappeared completely. Reproductive technologies and biobanking of cryopreserved materials offer technologies that could increase the efficiency and effectiveness of conservation programs involving management of captive breeding and wild populations through reduced costs, better genetic management and reduced risk of species extinctions. However, there are relatively few examples of applications of these technologies in practice in on-the-ground conservation programs, and no example that we know of where genetic diversity has been restored to a threatened amphibian species in captive breeding or in wild populations using cryopreserved genetic material. This gap in the application of technology to conservation programs needs to be addressed if assisted reproductive technologies (ARTs) and biobanking are to realise their potential in amphibian conservation. We review successful technologies including non-invasive gamete collection, IVF and sperm cryopreservation that work well enough to be applied to many current conservation programs. We consider new advances in technology (vitrification and laser warming) of cryopreservation of aquatic embryos of fish and some marine invertebrates that may help us to overcome factors limiting amphibian oocyte and embryo cryopreservation. Finally, we address two case studies that illustrate the urgent need and the opportunity to implement immediately ARTs, cryopreservation and biobanking to amphibian conservation. These are (1) managing the biosecurity (disease risk) of the frogs of New Guinea which are currently free of chytridiomycosis, but are at high risk (2) the Sehuencas water frog of Bolivia, which until recently had only one known surviving male.
Collapse
Affiliation(s)
- J Clulow
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia.
| | - R Upton
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - V L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - S Clulow
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
7
|
Clulow J, Pomering M, Herbert D, Upton R, Calatayud N, Clulow S, Mahony MJ, Trudeau VL. Differential success in obtaining gametes between male and female Australian temperate frogs by hormonal induction: A review. Gen Comp Endocrinol 2018; 265:141-148. [PMID: 29859744 DOI: 10.1016/j.ygcen.2018.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/13/2018] [Accepted: 05/30/2018] [Indexed: 01/19/2023]
Abstract
Most Australian frogs fall into two deeply split lineages, conveniently referred to as ground frogs (Myobatrachidae and Limnodynastidae) and tree frogs (Pelodryadidae). Species of both lineages are endangered because of the global chytrid pandemic, and there is increasing interest and research on the endocrine manipulation of reproduction to support the use of assisted reproductive technologies in conservation. Hormonal induction of gamete release in males and females is one such manipulation of the reproductive process. This paper reviews progress in temperate ground and tree frogs towards developing simple and efficient hormonal protocols for induction of spermiation and ovulation, and presents some new data, that together build towards an understanding of advances and obstacles towards progress in this area. We report that protocols for the non-invasive induction of sperm release, relying on single doses of gonadotropin-releasing hormone (GnRH) or human chorionic gonadotropin are very effective in both ground and tree frog species investigated to date. However, we find that, while protocols based on GnRH, and GnRH and dopamine antagonists, are moderately efficient in inducing ovulation in ground frogs, the same cannot be said for the use of such protocols in tree frogs. Although induced ovulation in the pelodryadid tree frogs has not been successfully implemented, and is difficult to explain in terms of the underlying endocrinology, we propose future avenues of investigation to address this problem, particularly the need for a source of purified or recombinant follicle-stimulating hormone and luteinising hormone for species from this group.
Collapse
Affiliation(s)
- John Clulow
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia.
| | - Melissa Pomering
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Danielle Herbert
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Rose Upton
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Natalie Calatayud
- San Diego Zoo Institute for Conservation Research, Escondido, CA, USA
| | - Simon Clulow
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia; Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109 Australia
| | - Michael J Mahony
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Manzano C, Benzal MG, Zelarayán LI. Dynamics of steroid-induced oocyte maturation in three amphibian species: Mathematical modeling and simulation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:589-596. [PMID: 30156763 DOI: 10.1002/jez.2222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/27/2018] [Indexed: 11/09/2022]
Abstract
Oocyte maturation in vertebrates involves morphological, biochemical, and functional changes through which meiosis, previously arrested in Profase I, is resumed. Within these changes, germinal vesicle breakdown (GVBD) constitutes morphological evidence of the resumption of the cellular cycle. Sex steroids (progestins and androgens) play a key role in oocyte maturation and are considered inducers of this process. The aims of this study were to analyze the effect of sex steroids on the oocyte maturation of amphibians and to model and simulate the dynamics of this process through the experimental data obtained. The oocytes of sexually mature females of Scinax fuscovarius, Pleurodema borellii, and Physalaemus biligonigerus were treated with different concentrations (0.001-1 µM) of sex steroids progesterone (P 4 ) and testosterone (T) for 24 hr. Dose- and time-response curves were performed with the results achieved. Sex steroids induced oocyte maturation in a dose-dependent manner in all three species. The dose at which the highest maturation percentage was found was 1 μM. No significant differences were observed between GVBD percentages of P 4 and T. However, time-response curves show that oocytes responded earlier and achieved higher GVBD percentages when treated with P 4 . Gompertz mathematical model was proposed in this study to simulate GVBD dynamics. This model properly fits the corresponding experimental data and allows the analysis of the behavior of oocyte maturation in amphibians and the quantification of parameters with biological meaning that are indicative of sex steroids efficiency in this process.
Collapse
Affiliation(s)
| | - Maria Graciela Benzal
- Facultad de Bioquímica, Química y Farmacia, Instituto de Matemática, Tucumán, Argentina
| | | |
Collapse
|
9
|
Aizen J, Pang Y, Harris C, Converse A, Zhu Y, Aguirre MA, Thomas P. Roles of progesterone receptor membrane component 1 and membrane progestin receptor alpha in regulation of zebrafish oocyte maturation. Gen Comp Endocrinol 2018; 263:51-61. [PMID: 29649418 PMCID: PMC6480306 DOI: 10.1016/j.ygcen.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/06/2018] [Accepted: 04/07/2018] [Indexed: 01/15/2023]
Abstract
Although previous studies suggest membrane progesterone receptor alpha (mPRα/Paqr7) mediates 17, 20β-dihydroxy-4-pregnen-3-one (DHP) induction of oocyte maturation (OM) in zebrafish, critical information needed to establish mPRα as the receptor mediating OM is lacking. The relative potencies of progestins and specific mPRα agonists in inducing OM matched their relative binding affinities for zebrafish mPRα, supporting its role in OM. Microinjection of pertussis toxin blocked DHP induction of OM and the progestin-induced decrease in cyclic AMP levels, suggesting mPRα activates an inhibitory G protein (Gi). Microinjection of morpholino antisense oligonucleotides to zebrafish pgrmc1 blocked induction of OM by DHP which was accompanied by decreased levels of Pgrmc1 and mPRα on the oocyte plasma membranes. Similarly, treatment of denuded oocytes with a PGRMC1 inhibitor, AG205, blocked the gonadotropin-induced increase in plasma membrane mPRα levels and attenuated DHP induction of OM. Co-incubation with two inhibitors of epidermal growth factor Erbb2, ErbB2 inhibitor II and AG 879, prevented induction of OM by DHP, indicating the likely involvement of Erbb2 in mPRα-mediated signaling. Treatment with AG205 reversed the inhibitory effects of the Erbb2 inhibitors on OM and also inhibited insulin-like growth factor-1 induction of OM. Close associations between Pgrmc1 and mPRα, and between Pgrmc1 and Erbb2 were detected in zebrafish oocytes with in situ proximity ligation assays. The results suggest progestin induction of OM in zebrafish is mediated through an mPRα/Gi/Erbb2 signaling pathway that requires Pgrmc1 for expression of mPRα on oocyte membranes and that Pgrmc1 also is required for induction of OM through Erbb2.
Collapse
Affiliation(s)
- Joseph Aizen
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Yefei Pang
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Caleb Harris
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Aubrey Converse
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Yong Zhu
- East Carolina University, Department of Biology, Greenville, NC 27858, USA
| | - Meagan A Aguirre
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Peter Thomas
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
10
|
Arias Torres AJ, Páez JB, Zelarayán LI. Oocyte maturation in the toad Rhinella arenarum (Amphibia, Anura): Evidence of cAMP involvement in steroid production and action. Mol Reprod Dev 2018; 85:137-145. [PMID: 29247588 DOI: 10.1002/mrd.22944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/07/2017] [Indexed: 11/11/2022]
Abstract
In this work, we describe the participation of the adenylate cyclase/3'-5'-cyclic adenonsine monophosphate (cAMP) pathway in the seasonal follicular secretion of progesterone (P4 ) and testosterone (T), and its relationship with the maturation of Rhinella arenarum oocytes. Under gonadotropin stimulation, P4 secretion was the dominant steroid produced during the reproductive period, resulting in 100% germinal vesicle breakdown (GVBD) in oocytes in vitro; in contrast, T and estradiol (E2 ) secretion increased (∼16 nM/20 follicles and ∼80 pM/20 follicles, respectively) during the non-reproductive period, but only yielded 50% GVBD. Treatment of the follicles with dibutyryl-cAMP or forskolin induced a significant increase in T secretion during both periods, but P4 secretion did not significantly change and GVBD did not occur. These results suggest that high cAMP levels in the oocyte maintain meiotic arrest and prevent the induction effect of follicular steroids. An increase in cAMP levels in denuded oocytes, however, negatively regulated T-induced maturation since treatment with increasing db-cAMP or forskolin inhibited their maturation. Therefore, we hypothesize that an elevation in T during the non-reproductive period favors its aromatization to E2 , leading to follicle growth. During the reproductive period, P4 production might promote oocyte maturation when environmental conditions are favorable for reproduction. Together, the results indicate that steroidogenesis is seasonal and depends on gonadotropic activity in R. arenarum.
Collapse
Affiliation(s)
- Ana J Arias Torres
- Instituto Superior de Investigaciones Biológicas (INSIBIO)-CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina.,Instituto de Ambiente de Montaña y Regiones Áridas (IAMRA), Universidad Nacional de Chilecito (UNdeC), Chilecito, La Rioja, Argentina
| | - José B Páez
- Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán, Tucumán, Argentina
| | - Liliana I Zelarayán
- Instituto Superior de Investigaciones Biológicas (INSIBIO)-CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
11
|
Sarhan D, El Mazny A, Taha T, Aziz A, Azmy O, Fakhry D, Torky H. Estradiol and luteinizing hormone concentrations in the follicular aspirate during ovum pickup as predictors of in vitro fertilization (IVF) outcome. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2017. [DOI: 10.1016/j.mefs.2016.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
12
|
Vu M, Trudeau VL. Neuroendocrine control of spawning in amphibians and its practical applications. Gen Comp Endocrinol 2016; 234:28-39. [PMID: 27013378 DOI: 10.1016/j.ygcen.2016.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 12/21/2022]
Abstract
Across vertebrates, ovulation and sperm release are primarily triggered by the timed surge of luteinizing hormone (LH). These key reproductive events are governed by the action of several brain neuropeptides, pituitary hormones and gonadal steroids which operate to synchronize physiology with behaviour. In amphibians, it has long been recognized that the neuropeptide gonadotropin-releasing hormone (GnRH) has stimulatory effects to induce spawning. Extensive work in teleosts reveals an inhibitory role of dopamine in the GnRH-regulated release of LH. Preliminary evidence suggests that this may be a conserved function in amphibians. Emerging studies are proposing a growing list of modulators beyond GnRH that are involved in the control of spawning including prolactin, kisspeptins, pituitary adenylate cyclase-activating polypeptide, gonadotropin-inhibitory hormone and endocannabinoids. Based on these physiological data, spawning induction methods have been developed to test on selective amphibian species. However, several limitations remain to be investigated to strengthen the evidence for future applications. The current state of knowledge regarding the neuroendocrine control of spawning in amphibians will be reviewed in detail, the elements of which will have wide implications towards the captive breeding of endangered amphibian species for conservation.
Collapse
Affiliation(s)
- Maria Vu
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 9B4, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 9B4, Canada.
| |
Collapse
|
13
|
Abstract
The genomic actions of thyroid hormone and steroids depend upon primary interactions of the hormones with their specific nuclear receptor proteins. Formation of nuclear co-activator or co-repressor complexes involving the liganded receptors subsequently result in transcriptional events-either activation or suppression-at genes that are specific targets of thyroid hormone or steroids. Nongenomic actions of thyroid hormone and steroids are in contrast initiated at binding sites on the plasma membrane or in cytoplasm or organelles and do not primarily require formation of intranuclear receptor protein-hormone complexes. Importantly, hormonal actions that begin nongenomically outside the nucleus often culminate in changes in nuclear transcriptional events that are regulated by both traditional intranuclear receptors as well as other nuclear transcription factors. In the case of thyroid hormone, the extranuclear receptor can be the classical "nuclear" thyroid receptor (TR), a TR isoform, or integrin αvβ3. In the case of steroid hormones, the membrane receptor is usually, but not always, the classical "nuclear" steroid receptor. This concept defines the paradigm of overlapping nongenomic and genomic hormone mechanisms of action. Here we review some examples of how extranuclear signaling by thyroid hormone and by estrogens and androgens modulates intranuclear hormone signaling to regulate a number of vital biological processes both in normal physiology and in cancer progression. We also point out that nongenomic actions of thyroid hormone may mimic effects of estrogen in certain tumors.
Collapse
Affiliation(s)
- Stephen R Hammes
- Division of Endocrinology, Department of Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Paul J Davis
- Department of Medicine, Albany Medical College, Albany, NY, USA; Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
14
|
Abstract
SummaryIn this work we showed the relationship between seasonal periods and the response of R. arenarum follicles and oocytes to different steroids. Using in vitro germinal vesicle breakdown (GVBD) assays, we demonstrated that P4 is the main steroid capable of inducing maturation in R. arenarum oocytes and follicles. In the second part of this work we showed that androgens can activate pre-maturation promoting factors (pre-MPFs) such as P4, by cytoplasm microinjection experiments. The results indicated that the steroids assayed induced oocyte and follicle maturation in a dose- and time-dependent manner. In oocytes, P4 was the most efficient steroid as a maturation inducer (EC50 of the reproductive period, 6 nM, EC50 of the non-reproductive period ≅ 30 nM). Androgens (DHEA, dehydroepiandrosterone; T, testosterone; and AD, androstenedione) were less efficient maturation inducers than P4 (EC50 reproductive period ≅ 50, 120 and 600 nM respectively). Similar results were obtained with intact follicles in both seasonal periods. Although the response of follicles to the different androgens was variable, in no case was it above the above the response induced by P4. Independently of the season, oocytes and follicles incubated in P4, P5 and T underwent GVBD after 6–10 h while oocytes and follicles incubated in DHEA and AD matured more slowly. Furthermore, we demonstrated that microinjection of mature cytoplasm from androgen-treated oocytes is sufficient to promote GVBD in immature recipient oocytes (DHEA, 57 ± 12%; AD, 60 ± 8%; T, 56 ± 13%). Thus, androgens such as DHEA, T and AD are as competent as P4 to activate pre-MPF.
Collapse
|
15
|
|
16
|
Protein-tyrosine kinase signaling in the biological functions associated with sperm. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:181560. [PMID: 23209895 PMCID: PMC3503396 DOI: 10.1155/2012/181560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/17/2012] [Accepted: 05/31/2012] [Indexed: 01/07/2023]
Abstract
In sexual reproduction, two gamete cells (i.e., egg and sperm) fuse (fertilization) to create a newborn with a genetic identity distinct from those of the parents. In the course of these developmental processes, a variety of signal transduction events occur simultaneously in each of the two gametes, as well as in the fertilized egg/zygote/early embryo. In particular, a growing body of knowledge suggests that the tyrosine kinase Src and/or other protein-tyrosine kinases are important elements that facilitate successful implementation of the aforementioned processes in many animal species. In this paper, we summarize recent findings on the roles of protein-tyrosine phosphorylation in many sperm-related processes (from spermatogenesis to epididymal maturation, capacitation, acrosomal exocytosis, and fertilization).
Collapse
|
17
|
Wang HW, Fang JS, Kuang X, Miao LY, Wang C, Xia GL, King ML, Zhang J. Activity of long-chain acyl-CoA synthetase is required for maintaining meiotic arrest in Xenopus laevis. Biol Reprod 2012; 87:74. [PMID: 22786823 DOI: 10.1095/biolreprod.112.100511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In most vertebrates, fully grown oocytes are arrested in meiotic prophase I and only resume the cell cycle upon external stimuli, such as hormones. The proper arrest and resumption of the meiotic cycle is critical for reproduction. A Galpha(S) signaling pathway essential for the arrest is conserved in organisms from Xenopus to mouse and human. A previous gene association study implicated that mutations of human ACSL6 may be related to premature ovarian failure. However, functional roles of ACSL6 in human infertility have yet to be reported. In the present study, we found that triacsin C, a potent and specific inhibitor for ACSL, triggers maturation in Xenopus and mouse oocytes in the absence of hormone, suggesting ACSL activity is required for the oocyte arrest. In Xenopus, acsl1b may fulfill a major role in the process, because inhibition of acsl1b by knocking down its RNA results in abnormal acceleration of oocyte maturation. Such abnormally matured eggs cannot support early embryonic development. Moreover, direct inhibition of protein palmitoylation, which lies downstream of ACSLs, also causes oocyte maturation. Furthermore, palmitoylation of Galpha(s), which is essential for its function, is inhibited when the ACSL activity is blocked by triacsin C in Xenopus. Thus, disruption of ACSL activity causes inhibition of the Galpha(s) signaling pathway in the oocytes, which may result in premature ovarian failure in human.
Collapse
Affiliation(s)
- Hua-wei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Akison LK, Robker RL. The Critical Roles of Progesterone Receptor (PGR) in Ovulation, Oocyte Developmental Competence and Oviductal Transport in Mammalian Reproduction. Reprod Domest Anim 2012; 47 Suppl 4:288-96. [DOI: 10.1111/j.1439-0531.2012.02088.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Arumugam K, MacNicol MC, Wang Y, Cragle CE, Tackett AJ, Hardy LL, MacNicol AM. Ringo/cyclin-dependent kinase and mitogen-activated protein kinase signaling pathways regulate the activity of the cell fate determinant Musashi to promote cell cycle re-entry in Xenopus oocytes. J Biol Chem 2012; 287:10639-10649. [PMID: 22215682 DOI: 10.1074/jbc.m111.300681] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell cycle re-entry during vertebrate oocyte maturation is mediated through translational activation of select target mRNAs, culminating in the activation of mitogen-activated protein kinase and cyclin B/cyclin-dependent kinase (CDK) signaling. The temporal order of targeted mRNA translation is crucial for cell cycle progression and is determined by the timing of activation of distinct mRNA-binding proteins. We have previously shown in oocytes from Xenopus laevis that the mRNA-binding protein Musashi targets translational activation of early class mRNAs including the mRNA encoding the Mos proto-oncogene. However, the molecular mechanism by which Musashi function is activated is unknown. We report here that activation of Musashi1 is mediated by Ringo/CDK signaling, revealing a novel role for early Ringo/CDK function. Interestingly, Musashi1 activation is subsequently sustained through mitogen-activated protein kinase signaling, the downstream effector of Mos mRNA translation, thus establishing a positive feedback loop to amplify Musashi function. The identified regulatory sites are present in mammalian Musashi proteins, and our data suggest that phosphorylation may represent an evolutionarily conserved mechanism to control Musashi-dependent target mRNA translation.
Collapse
Affiliation(s)
- Karthik Arumugam
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205; Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| | - Yiying Wang
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| | - Chad E Cragle
- Interdisciplinary BioSciences Graduate Program, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| | - Linda L Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| | - Angus M MacNicol
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205; Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205.
| |
Collapse
|
20
|
Sen A, Prizant H, Hammes SR. Understanding extranuclear (nongenomic) androgen signaling: what a frog oocyte can tell us about human biology. Steroids 2011; 76:822-8. [PMID: 21354434 PMCID: PMC4972037 DOI: 10.1016/j.steroids.2011.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/13/2011] [Accepted: 02/16/2011] [Indexed: 12/13/2022]
Abstract
Steroids are key factors in a myriad of mammalian biological systems, including the brain, kidney, heart, bones, and gonads. While alternative potential steroid receptors have been described, the majority of biologically relevant steroid responses appear to be mediated by classical steroid receptors that are located in all parts of the cell, from the plasma membrane to the nucleus. Interestingly, these classical steroid receptors modulate different signals depending upon their location. For example, receptors in the plasma membrane interact with membrane signaling molecules, including G proteins and kinases. In contrast, receptors in the nucleus interact with nuclear signaling molecules, including transcriptional co-regulators. These extranuclear and intranuclear signals function together in an integrated fashion to regulate important biological functions. While most studies on extranuclear steroid signaling have focused on estrogens, recent work has demonstrated that nongenomic androgen signaling is equally important and that these two steroids modulate similar signaling pathways. In fact, by taking advantage of a simple model system whereby a physiologically relevant androgen-mediated process is regulated completely independent of transcription (Xenopus laevis oocyte maturation), many novel and conserved concepts in nongenomic steroid signaling have been uncovered and characterized.
Collapse
Affiliation(s)
| | | | - Stephen R Hammes
- Corresponding author: Stephen R Hammes, M.D., Ph.D., Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave. Rochester, NY 14642. Phone: 585-275-2901; Fax: 585-273-1288;
| |
Collapse
|
21
|
Buschiazzo J, Alonso TS, Biscoglio M, Antollini SS, Bonini IC. Nongenomic steroid- and ceramide-induced maturation in amphibian oocytes involves functional caveolae-like microdomains associated with a cytoskeletal environment. Biol Reprod 2011; 85:808-22. [PMID: 21653896 DOI: 10.1095/biolreprod.110.090365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Stimulation of full-grown amphibian oocytes with progesterone initiates a nontranscriptional signaling pathway that converges in the activation of Cdc2/cyclin B and reentry into meiosis. We observed that cholesterol depletion mediated by methyl-beta-cyclodextrin (MbetaCD) inhibited meiotic maturation, suggesting involvement of membrane rafts. In the present study, we further characterized caveolae-like membranes from Rhinella arenarum oocytes biochemically and functionally. The identification by mass spectrometry of a nonmuscle myosin heavy-chain associated with caveolar membranes showed evidence of direct involvement of the underlying cytoskeletal environment in the structure of oocyte rafts. Biophysical analysis using the fluorescent probe Laurdan revealed that MbetaCD-mediated cholesterol depletion affected membrane lipid order. In line with this finding, cholesterol removal also affected the localization of the raft marker lipid GM1. Results demonstrated that ceramide is an effective inducer of maturation that alters the distribution of the raft markers caveolin-1, SRC, and GM1, while progesterone seems not to affect membrane microdomain integrity. Cholesterol depletion had a greater effect on ceramide-induced maturation, thus suggesting that ceramide is an inducer more vulnerable to changes in the plasma membrane. MbetaCD treatment delayed tyrosine phosphorylation and MAPK activation in progesterone-induced maturation. Functional studies regarding tyrosine phosphorylation raise the possibility that the hormone receptor is located in the nonraft membrane in the absence of ligand and that it translocates to the caveola when it binds to progesterone. The presence of raft markers and the finding of signaling molecules from MAPK cascade functionally associated to oocyte light membranes suggest that this caveolae-rich fraction efficiently recreates, in part, maturation signaling.
Collapse
Affiliation(s)
- Jorgelina Buschiazzo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | | | | | | |
Collapse
|
22
|
Abstract
Regulation of maturation in meiotically competent mammalian oocytes is a complex process involving the carefully coordinated exchange of signals between the somatic and germ cell compartments of the ovarian follicle via paracrine and cell-cell coupling pathways. This review highlights recent advances in our understanding of how such signaling controls both meiotic arrest and gonadotropin-triggered meiotic resumption in competent oocytes and relates them to the historical context. Emphasis will be on rodent systems, where many of these new findings have taken place. A regulatory scheme is then proposed that integrates this information into an overall framework for meiotic regulation that demonstrates the complex interplay between different follicular compartments.
Collapse
Affiliation(s)
- Stephen M Downs
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA.
| |
Collapse
|
23
|
Sen A, Hammes SR. Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Mol Endocrinol 2010; 24:1393-403. [PMID: 20501640 DOI: 10.1210/me.2010-0006] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The physiological significance of androgens in female reproduction was unclear until female mice with global knockout of androgen receptor (AR) expression were found to have reduced fertility with abnormal ovarian function. However, because ARs are expressed in a myriad of reproductive tissues, including the hypothalamus, pituitary, and various ovarian cells, the role of tissue-specific ARs in regulating female fertility remained unknown. To examine the importance of ovarian ARs in female reproduction, we generated granulosa cell (GC)- and oocyte-specific AR-knockout (ARKO) mice by crossing AR-flox mice with MisRIIcre (GC-specific) or growth differentiation factor growth differentiation factor-9cre (oocyte-specific) mice. Relative to heterozygous and wild-type mice, GC-specific ARKO mice had premature ovarian failure and were subfertile, with longer estrous cycles and fewer ovulated oocytes. In addition, ovaries from GC-specific knockout mice contained more preantral and atretic follicles, with fewer antral follicles and corpus lutea. Finally, in vitro growth of follicles from GC-specific AR-null mice was slower than follicles from wild-type animals. In contrast to GC-specific AR-null mice, fertility, estrous cycles, and ovarian morphology of oocyte-specific ARKO mice were normal, although androgens no longer promoted oocyte maturation in these animals. Together, our data indicate that nearly all reproductive phenotypes observed in global ARKO mice can be explained by the lack of AR expression in GCs. These GC-specific ARs appear to promote preantral follicle growth and prevent follicular atresia; thus they are essential for normal follicular development and fertility.
Collapse
Affiliation(s)
- Aritro Sen
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|