1
|
Wang P, Duckney P, Gao E, Hussey PJ, Kriechbaumer V, Li C, Zang J, Zhang T. Keep in contact: multiple roles of endoplasmic reticulum-membrane contact sites and the organelle interaction network in plants. THE NEW PHYTOLOGIST 2023; 238:482-499. [PMID: 36651025 DOI: 10.1111/nph.18745] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Functional regulation and structural maintenance of the different organelles in plants contribute directly to plant development, reproduction and stress responses. To ensure these activities take place effectively, cells have evolved an interconnected network amongst various subcellular compartments, regulating rapid signal transduction and the exchange of biomaterial. Many proteins that regulate membrane connections have recently been identified in plants, and this is the first step in elucidating both the mechanism and function of these connections. Amongst all organelles, the endoplasmic reticulum is the key structure, which likely links most of the different subcellular compartments through membrane contact sites (MCS) and the ER-PM contact sites (EPCS) have been the most intensely studied in plants. However, the molecular composition and function of plant MCS are being found to be different from other eukaryotic systems. In this article, we will summarise the most recent advances in this field and discuss the mechanism and biological relevance of these essential links in plants.
Collapse
Affiliation(s)
- Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick Duckney
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Erlin Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chengyang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
2
|
Singh RP, Poh YP, Sinha SD, Wideman JG. Evolutionary History of Oxysterol-Binding Proteins Reveals Complex History of Duplication and Loss in Animals and Fungi. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564221150428. [PMID: 37366416 PMCID: PMC10243569 DOI: 10.1177/25152564221150428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 06/28/2023]
Abstract
Cells maintain the specific lipid composition of distinct organelles by vesicular transport as well as non-vesicular lipid trafficking via lipid transport proteins. Oxysterol-binding proteins (OSBPs) are a family of lipid transport proteins that transfer lipids at various membrane contact sites (MCSs). OSBPs have been extensively investigated in human and yeast cells where 12 have been identified in Homo sapiens and 7 in Saccharomyces cerevisiae. The evolutionary relationship between these well-characterized OSBPs is still unclear. By reconstructing phylogenies of eukaryote OSBPs, we show that the ancestral Saccharomycotina had four OSBPs, the ancestral fungus had five OSBPs, and the ancestral animal had six OSBPs, whereas the shared ancestor of animals and fungi as well as the ancestral eukaryote had only three OSBPs. Our analyses identified three undescribed ancient OSBP orthologues, one fungal OSBP (Osh8) lost in the lineage leading to yeast, one animal OSBP (ORP12) lost in the lineage leading to vertebrates, and one eukaryotic OSBP (OshEu) lost in both the animal and fungal lineages.
Collapse
Affiliation(s)
- Rohan P. Singh
- Center for Mechanisms of Evolution, Biodesign Institute,
School of Life Sciences, Arizona State University, Tempe, USA
| | - Yu-Ping Poh
- Center for Mechanisms of Evolution, Biodesign Institute,
School of Life Sciences, Arizona State University, Tempe, USA
| | - Savar D. Sinha
- Center for Mechanisms of Evolution, Biodesign Institute,
School of Life Sciences, Arizona State University, Tempe, USA
| | - Jeremy G. Wideman
- Center for Mechanisms of Evolution, Biodesign Institute,
School of Life Sciences, Arizona State University, Tempe, USA
| |
Collapse
|
3
|
Weber-Boyvat M, Kroll J, Trimbuch T, Olkkonen VM, Rosenmund C. The lipid transporter ORP2 regulates synaptic neurotransmitter release via two distinct mechanisms. Cell Rep 2022; 41:111882. [PMID: 36577376 DOI: 10.1016/j.celrep.2022.111882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/26/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Cholesterol is crucial for neuronal synaptic transmission, assisting in the molecular and structural organization of lipid rafts, ion channels, and exocytic proteins. Although cholesterol absence was shown to result in impaired neurotransmission, how cholesterol locally traffics and its route of action are still under debate. Here, we characterized the lipid transfer protein ORP2 in murine hippocampal neurons. We show that ORP2 preferentially localizes to the presynapse. Loss of ORP2 reduces presynaptic cholesterol levels by 50%, coinciding with a profoundly reduced release probability, enhanced facilitation, and impaired presynaptic calcium influx. In addition, ORP2 plays a cholesterol-transport-independent role in regulating vesicle priming and spontaneous release, likely by competing with Munc18-1 in syntaxin1A binding. To conclude, we identified a dual function of ORP2 as a physiological modulator of the synaptic cholesterol content and a regulator of neuronal exocytosis.
Collapse
Affiliation(s)
- Marion Weber-Boyvat
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Jana Kroll
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Thorsten Trimbuch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Christian Rosenmund
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
4
|
Friedlová N, Zavadil Kokáš F, Hupp TR, Vojtěšek B, Nekulová M. IFITM protein regulation and functions: Far beyond the fight against viruses. Front Immunol 2022; 13:1042368. [PMID: 36466909 PMCID: PMC9716219 DOI: 10.3389/fimmu.2022.1042368] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Interferons (IFNs) are important cytokines that regulate immune responses through the activation of hundreds of genes, including interferon-induced transmembrane proteins (IFITMs). This evolutionarily conserved protein family includes five functionally active homologs in humans. Despite the high sequence homology, IFITMs vary in expression, subcellular localization and function. The initially described adhesive and antiproliferative or pro-oncogenic functions of IFITM proteins were diluted by the discovery of their antiviral properties. The large set of viruses that is inhibited by these proteins is constantly expanding, as are the possible mechanisms of action. In addition to their beneficial antiviral effects, IFITM proteins are often upregulated in a broad spectrum of cancers. IFITM proteins have been linked to most hallmarks of cancer, including tumor cell proliferation, therapeutic resistance, angiogenesis, invasion, and metastasis. Recent studies have described the involvement of IFITM proteins in antitumor immunity. This review summarizes various levels of IFITM protein regulation and the physiological and pathological functions of these proteins, with an emphasis on tumorigenesis and antitumor immunity.
Collapse
Affiliation(s)
- Nela Friedlová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Filip Zavadil Kokáš
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Ted R. Hupp
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Marta Nekulová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| |
Collapse
|
5
|
Ye H, Gao J, Liang Z, Lin Y, Yu Q, Huang S, Jiang L. Arabidopsis ORP2A mediates ER-autophagosomal membrane contact sites and regulates PI3P in plant autophagy. Proc Natl Acad Sci U S A 2022; 119:e2205314119. [PMID: 36252028 PMCID: PMC9618059 DOI: 10.1073/pnas.2205314119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/21/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an intracellular degradation system for cytoplasmic constituents which is mediated by the formation of a double-membrane organelle termed the autophagosome and its subsequent fusion with the lysosome/vacuole. The formation of the autophagosome requires membrane from the endoplasmic reticulum (ER) and is tightly regulated by a series of autophagy-related (ATG) proteins and lipids. However, how the ER contacts autophagosomes and regulates autophagy remain elusive in plants. In this study, we identified and demonstrated the roles of Arabidopsis oxysterol-binding protein-related protein 2A (ORP2A) in mediating ER-autophagosomal membrane contacts and autophagosome biogenesis. We showed that ORP2A localizes to both ER-plasma membrane contact sites (EPCSs) and autophagosomes, and that ORP2A interacts with both the ER-localized VAMP-associated protein (VAP) 27-1 and ATG8e on the autophagosomes to mediate the membrane contact sites (MCSs). In ORP2A artificial microRNA knockdown (KD) plants, seedlings display retarded growth and impaired autophagy levels. Both ATG1a and ATG8e accumulated and associated with the ER membrane in ORP2A KD lines. Moreover, ORP2A binds multiple phospholipids and shows colocalization with phosphatidylinositol 3-phosphate (PI3P) in vivo. Taken together, ORP2A mediates ER-autophagosomal MCSs and regulates autophagy through PI3P redistribution.
Collapse
Affiliation(s)
- Hao Ye
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zizhen Liang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Youshun Lin
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianyi Yu
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuxian Huang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Qiu S, Liu Q, Yuan Y, Zhou H, Zeng B. Aspergillus oryzae accelerates the conversion of ergosterol to ergosterol peroxide by efficiently utilizing cholesterol. Front Genet 2022; 13:984343. [PMID: 36072662 PMCID: PMC9441601 DOI: 10.3389/fgene.2022.984343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
It is well-known that excessive cholesterol leads to hypercholesterolemia, arteriosclerosis, coronary heart disease, stroke, and other diseases, which seriously threatens human health. Lactobacillus, a prokaryote, is reported to utilize cholesterol in the environment. However, little research focuses on the cholesterol utilization by eukaryote. Hence, the objectives of the present study were to investigate the mechanism of cholesterol utilization by the eukaryote and determine the role of oxysterol binding protein in this process. Our results showed for the first time that Aspergillus oryzae, a food-safe filamentous fungus, can utilize cholesterol efficiently. Our results also demonstrated that cholesterol utilization by A. oryzae might promote the conversion of ergosterol to ergosterol peroxide. Osh3, an oxysterol binding protein, can bind sterols (e.g., cholesterol, ergosterol, and ergosterol peroxide) and plays an important role in sterols transportation. This research is of considerable significance for developing low-fat food and cholesterol-lowering probiotics.
Collapse
Affiliation(s)
- Shangkun Qiu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Qicong Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Ya Yuan
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, China
| | - Hong Zhou
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, China
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
- *Correspondence: Bin Zeng,
| |
Collapse
|
7
|
Huang S, Zhang X, Luo K, Jiang L, Jiang J, Li R. Oxysterol-Binding Protein 2 Promotes Pancreatic Ductal Adenocarcinoma Progression Through Epithelial-Mesenchymal Transition. Front Oncol 2022; 11:762233. [PMID: 35127474 PMCID: PMC8810821 DOI: 10.3389/fonc.2021.762233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Oxysterol-binding protein 2 (OSBP2) is crucial for promoting the growth and development of cancers; however, its effects on pancreatic ductal adenocarcinoma (PDAC) are still unclear. Here, we report that OSBP2 is an efficient tumor-associated protein to lead to extremely malignant characteristics in PDAC. We discovered that increased OSBP2 expression in primary tumors was associated with shorter survival in PDAC patients. Therefore, we used immunohistochemistry (IHC) to analyze the levels of OSBP2 expression in PDAC tissues and adjacent paracancerous tissues. We used wound healing and Transwell assays to evaluate the effects of OSBP2 on PDAC cell (ASPC-1 and BXPC-3) migration and invasion, respectively, and CCK-8 and Annexin V/PI double staining to evaluate the effects of OSBP2 on PDAC cell proliferation and apoptosis, respectively. Western blotting was used to analyze the effect of OSBP2 on the PDAC cell phenotype. We also explored the effect of OSBP2 on chemosensitivity to gemcitabine (GEM) and 5-fluorouracil (5-FU). We validated these findings in an in vivo mouse model. The data show that OSBP2 overexpression promoted PDAC cell migration, invasion, proliferation and chemotherapy resistance, and decreased apoptosis. OSBP2 overexpression downregulated E-cadherin expression and upregulated N-cadherin, vimentin, Snail, Slug, ZEB1, and β-catenin expression. Taken together, our findings indicated that OSBP2 was overexpressed in PDAC and that upregulation of OSBP2 may promote PDAC progression. Therefore, OSBP2 may have potential diagnostic and therapeutic value in PDAC.
Collapse
Affiliation(s)
- Shuai Huang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xudong Zhang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Luo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Jiang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Jiang
- Department of General Surgery, Hua County People’s Hospital, Anyang, China
| | - Renfeng Li
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Pereira-Dutra FS, Bozza PT. Lipid droplets diversity and functions in inflammation and immune response. Expert Rev Proteomics 2021; 18:809-825. [PMID: 34668810 DOI: 10.1080/14789450.2021.1995356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Lipid droplets (LDs) are dynamic and evolutionary conserved lipid-enriched organelles composed of a core of neutral lipids surrounded by a monolayer of phospholipids associated with a diverse array of proteins that are cell- and stimulus-regulated. Far beyond being simply a deposit of neutral lipids, accumulating evidence demonstrate that LDs act as spatial and temporal local for lipid and protein compartmentalization and signaling organization. AREAS COVERED This review focuses on the progress in our understanding of LD protein diversity and LD functions in the context of cell signaling and immune responses, highlighting the relationship between LD composition with the multiple roles of this organelle in immunometabolism, inflammation and host-response to infection. EXPERT OPINION LDs are essential platforms for various cellular processes, including metabolic regulation, cell signaling, and immune responses. The functions of LD in infection and inflammatory disease are associated with the dynamic and complexity of their proteome. Our contemporary view place LDs as critical regulators of different inflammatory and infectious diseases and key markers of leukocyte activation.
Collapse
Affiliation(s)
- Filipe S Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Wakana Y, Hayashi K, Nemoto T, Watanabe C, Taoka M, Angulo-Capel J, Garcia-Parajo MF, Kumata H, Umemura T, Inoue H, Arasaki K, Campelo F, Tagaya M. The ER cholesterol sensor SCAP promotes CARTS biogenesis at ER-Golgi membrane contact sites. J Cell Biol 2021; 220:211521. [PMID: 33156328 PMCID: PMC7654440 DOI: 10.1083/jcb.202002150] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/15/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
In response to cholesterol deprivation, SCAP escorts SREBP transcription factors from the endoplasmic reticulum to the Golgi complex for their proteolytic activation, leading to gene expression for cholesterol synthesis and uptake. Here, we show that in cholesterol-fed cells, ER-localized SCAP interacts through Sac1 phosphatidylinositol 4-phosphate (PI4P) phosphatase with a VAP-OSBP complex, which mediates counter-transport of ER cholesterol and Golgi PI4P at ER-Golgi membrane contact sites (MCSs). SCAP knockdown inhibited the turnover of PI4P, perhaps due to a cholesterol transport defect, and altered the subcellular distribution of the VAP-OSBP complex. As in the case of perturbation of lipid transfer complexes at ER-Golgi MCSs, SCAP knockdown inhibited the biogenesis of the trans-Golgi network-derived transport carriers CARTS, which was reversed by expression of wild-type SCAP or a Golgi transport-defective mutant, but not of cholesterol sensing-defective mutants. Altogether, our findings reveal a new role for SCAP under cholesterol-fed conditions in the facilitation of CARTS biogenesis via ER-Golgi MCSs, depending on the ER cholesterol.
Collapse
Affiliation(s)
- Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kaito Hayashi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Takumi Nemoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Chiaki Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Masato Taoka
- Faculty of Science, Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Jessica Angulo-Capel
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria F Garcia-Parajo
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Hidetoshi Kumata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Tomonari Umemura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Felix Campelo
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
10
|
Delfosse V, Bourguet W, Drin G. Structural and Functional Specialization of OSBP-Related Proteins. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420946627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipids are precisely distributed in the eukaryotic cell where they help to define organelle identity and function, in addition to their structural role. Once synthesized, many lipids must be delivered to other compartments by non-vesicular routes, a process that is undertaken by proteins called Lipid Transfer Proteins (LTPs). OSBP and the closely-related ORP and Osh proteins constitute a major, evolutionarily conserved family of LTPs in eukaryotes. Most of these target one or more subcellular regions, and membrane contact sites in particular, where two organelle membranes are in close proximity. It was initially thought that such proteins were strictly dedicated to sterol sensing or transport. However, over the last decade, numerous studies have revealed that these proteins have many more functions, and we have expanded our understanding of their mechanisms. In particular, many of them are lipid exchangers that exploit PI(4)P or possibly other phosphoinositide gradients to directionally transfer sterol or PS between two compartments. Importantly, these transfer activities are tightly coupled to processes such as lipid metabolism, cellular signalling and vesicular trafficking. This review describes the molecular architecture of OSBP/ORP/Osh proteins, showing how their specific structural features and internal configurations impart unique cellular functions.
Collapse
Affiliation(s)
- Vanessa Delfosse
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Guillaume Drin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
11
|
Affiliation(s)
- Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster
- Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster
| |
Collapse
|
12
|
Hugenroth M, Bohnert M. Come a little bit closer! Lipid droplet-ER contact sites are getting crowded. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118603. [PMID: 31733263 DOI: 10.1016/j.bbamcr.2019.118603] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Not so long ago, contact sites between the endoplasmic reticulum (ER) and lipid droplets (LDs) were largely unexplored on a molecular level. In recent years however, numerous proteins have been identified that are enriched or exclusively located at the interfaces between LDs and the ER. These comprise members of protein classes typically found in diverse types of contacts, such as organelle tethers and lipid transfer proteins, but also proteins that have no similarities to known contact site machineries. This structurally heterogeneous group of contact site residents might be required to fulfill unique aspects of LD-ER contact biology, such as de novo LD biogenesis, and maintenance of lipidic connections between LDs and ER. Here, we summarize the current knowledge on the molecular components of this special organelle contact site, and discuss their features and functions.
Collapse
Affiliation(s)
- Marie Hugenroth
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Germany.
| |
Collapse
|
13
|
Shi H, Wang H, Yao J, Lin C, Wei Q, Lu Y, Cao X. Comparative transcriptome analysis of auditory OC-1 cells and zebrafish inner ear tissues in the absence of human OSBPL2 orthologues. Biochem Biophys Res Commun 2019; 521:42-49. [PMID: 31629475 DOI: 10.1016/j.bbrc.2019.10.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022]
Abstract
In our previous study, Oxysterol-binding protein-related protein 2 (OSBPL2) was first identified as a new deafness-causative gene contribute to non-syndromic hearing loss. However, the underlying mechanism of OSBPL2-induced hearing loss remains unknown. Here, we used hearing-specific cells and tissues OC-1 cells and zebrafish inner ear tissues as models to identify common transcriptome changes in genes and pathways in the absence of human OSBPL2 orthologues by RNA-seq analysis. In total, 2112 differentially expressed genes (DEGs) were identified between wild-type (WT) and Osbpl2-/- OC-1 cells, and 877 DEGs were identified between WT and osbpl2b-/- zebrafish inner ear tissues. Functional annotation implicated Osbpl2/osbpl2b in lipid metabolism, cell adhesion and the extracellular matrix in both OC-1 cells and zebrafish inner ear tissues. Protein-protein interaction (PPI) analysis indicated that Osbpl2/osbpl2b were also involved in ubiquitination. Further experiments showed that Osbpl2-/- OC-1 cells exhibited an abnormal focal adhesion morphology characterized by inhibited FAK activity and impaired cell adhesion. In conclusion, we identified novel pathways modulated by OSBPL2 orthologues, providing new insight into the mechanism of hearing loss induced by OSBPL2 deficiency.
Collapse
Affiliation(s)
- Hairong Shi
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Olkkonen VM, Koponen A, Arora A. OSBP-related protein 2 (ORP2): Unraveling its functions in cellular lipid/carbohydrate metabolism, signaling and F-actin regulation. J Steroid Biochem Mol Biol 2019; 192:105298. [PMID: 30716465 DOI: 10.1016/j.jsbmb.2019.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Oxysterol-binding protein (OSBP)-related proteins (ORPs) constitute a family of intracellular lipid-binding/transport proteins (LTPs) in eukaryotes. They typically have a modular structure comprising a lipid-binding domain and membrane targeting determinants, being thus suited for function at membrane contact sites. Among the mammalian ORPs, ORP2/OSBPL2 is the only member that only exists as a 'short' variant lacking a membrane-targeting pleckstrin homology domain. ORP2 is expressed ubiquitously and has been assigned a multitude of functions. Its OSBP-related domain binds cholesterol, oxysterols, and phosphoinositides, and its overexpression enhances cellular cholesterol efflux. Consistently, the latest observations suggest a function of ORP2 in cholesterol transport to the plasma membrane (PM) in exchange for phosphatidylinositol 4,5-bisphosphate (PI4,5P2), with significant impacts on the concentrations of PM cholesterol and PI4,5P2. On the other hand, ORP2 localizes at the surface of cytoplasmic lipid droplets (LDs) and at endoplasmic-reticulum-LD contact sites, and its depletion modifies cellular triglyceride (TG) metabolism. Study in an adrenocortical cell line further suggested a function of ORP2 in the synthesis of steroid hormones. Our recent knock-out of ORP2 in human hepatoma cells revealed its function in hepatocellular PI3K/Akt signaling, glucose and triglyceride metabolism, as well as in actin cytoskeletal regulation, cell adhesion, migration and proliferation. ORP2 was shown to interact physically with F-actin regulators such as DIAPH1, ARHGAP12, SEPT9 and MLC12, as well as with IQGAP1 and the Cdc37-Hsp90 chaperone complex controlling the activity of Akt. Interestingly, mutations in OSBPL2 encoding ORP2 are associated with autosomal dominant non-syndromic hearing loss, and the protein was found to localize in cochlear hair cell stereocilia. The functions assigned to ORP2 suggest that this protein, in concert with other LTPs, controls the subcellular distribution of cholesterol in various cell types and steroid hormone synthesis in adrenocortical cells. However, it also impacts cellular TG and carbohydrate metabolism and F-actin-dependent functions, revealing a bewildering spectrum of activities.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland.
| | - Annika Koponen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Amita Arora
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| |
Collapse
|
15
|
Arnal-Levron M, Chen Y, Greimel P, Calevro F, Gaget K, Riols F, Batut A, Bertrand-Michel J, Hullin-Matsuda F, Olkkonen VM, Delton I, Luquain-Costaz C. Bis(monoacylglycero)phosphate regulates oxysterol binding protein-related protein 11 dependent sterol trafficking. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1247-1257. [DOI: 10.1016/j.bbalip.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
|
16
|
Galindo I, Cuesta-Geijo MÁ, Del Puerto A, Soriano E, Alonso C. Lipid Exchange Factors at Membrane Contact Sites in African Swine Fever Virus Infection. Viruses 2019; 11:v11030199. [PMID: 30813555 PMCID: PMC6466349 DOI: 10.3390/v11030199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/23/2023] Open
Abstract
African swine fever (ASF) is a hemorrhagic fever of wild and domestic pigs with a high rate of mortality. Originally endemic in Africa, this disease is currently disseminating in Europe and China, causing a large socioeconomic impact. ASF is caused by a DNA virus, African swine fever virus (ASFV). There is no vaccine available against ASFV, limiting the options for disease control. ASFV reorganizes intracellular membranes to generate viral factories (VFs) in order to amplify its genome. However, little is known about the process involved in the formation of these viral replication organelles. Membrane contact sites (MCSs) allow nonvesicular lipids and ion exchange between organelles. Lipid exchange to form VFs apparently requires a number of proteins at MCSs, such as the oxysterol-binding protein (OSBP), the acyl-coenzyme A binding domain containing 3 (ACBD3) and the phosphatidylinositol-phosphate-4-kinase III beta (PI4Kβ). Itraconazole (ITZ) is an antifungal agent that targets sterol-transport molecules such as OSBP and OSBP-related protein 4 (ORP4). 25-Hydroxycholesterol (25-HC) inhibits lipid transport by high affinity binding OSBP. In this work, we analyzed the antiviral function of ITZ and 25-HC against ASFV in Vero cell cultures using the cell-adapted Ba71V isolate. ITZ and 25-HC decreased significantly ASFV replication. Our study revealed OSBP distribution in cytoplasmic membranes in uninfected Vero cells and to the periphery of VFs in infected cells. In addition, we showed that OSBP and OSBP-related proteins, PI4Kβ and ACBD3 were recruited to VFs in the context ASFV infection.
Collapse
Affiliation(s)
- Inmaculada Galindo
- Department Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain.
| | - Miguel Ángel Cuesta-Geijo
- Department Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain.
| | - Ana Del Puerto
- Department Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain.
| | - Eva Soriano
- Department Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain.
| | - Covadonga Alonso
- Department Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain.
| |
Collapse
|
17
|
Koponen A, Arora A, Takahashi K, Kentala H, Kivelä AM, Jääskeläinen E, Peränen J, Somerharju P, Ikonen E, Viitala T, Olkkonen VM. ORP2 interacts with phosphoinositides and controls the subcellular distribution of cholesterol. Biochimie 2018; 158:90-101. [PMID: 30590084 DOI: 10.1016/j.biochi.2018.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
ORP2 is a sterol-binding protein with documented functions in lipid and glucose metabolism, Akt signaling, steroidogenesis, cell adhesion, migration and proliferation. Here we investigate the interactions of ORP2 with phosphoinositides (PIPs) by surface plasmon resonance (SPR), its affinity for cholesterol with a pull-down assay, and its capacity to transfer sterol in vitro. Moreover, we determine the effects of wild-type (wt) ORP2 and a mutant with attenuated PIP binding, ORP2(mHHK), on the subcellular distribution of cholesterol, and analyze the interaction of ORP2 with the related cholesterol transporter ORP1L. ORP2 showed specific affinity for PI(4,5)P2, PI(3,4,5)P3 and PI(4)P, with suggestive Kd values in the μM range. Also binding of cholesterol by ORP2 was detectable, but a Kd could not be determined. Wt ORP2 was in HeLa cells mainly detected in the cytosol, ER, late endosomes, and occasionally on lipid droplets (LDs), while ORP2(mHHK) displayed an enhanced LD localization. Overexpression of wt ORP2 shifted the D4H cholesterol probe away from endosomes, while ORP2(mHHK) caused endosomal accumulation of the probe. Although ORP2 failed to transfer dehydroergosterol in an in vitro assay where OSBP is active, its knock-down resulted in the accumulation of cholesterol in late endocytic compartments, as detected by both D4H and filipin probes. Interestingly, ORP2 was shown to interact and partially co-localize on late endosomes with ORP1L, a cholesterol transporter/sensor at ER-late endosome junctions. Our data demonstrates that ORP2 binds several phosphoinositides, both PI(4)P and multiply phosphorylated species. ORP2 regulates the subcellular distribution of cholesterol dependent on its PIP-binding capacity. The interaction of ORP2 with ORP1L suggests a concerted action of the two ORPs.
Collapse
Affiliation(s)
- Annika Koponen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Amita Arora
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Kohta Takahashi
- Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Annukka M Kivelä
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Eeva Jääskeläinen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Johan Peränen
- Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Pentti Somerharju
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, FI-00014, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland.
| |
Collapse
|
18
|
Kentala H, Koponen A, Vihinen H, Pirhonen J, Liebisch G, Pataj Z, Kivelä A, Li S, Karhinen L, Jääskeläinen E, Andrews R, Meriläinen L, Matysik S, Ikonen E, Zhou Y, Jokitalo E, Olkkonen VM. OSBP-related protein-2 (ORP2): a novel Akt effector that controls cellular energy metabolism. Cell Mol Life Sci 2018; 75:4041-4057. [PMID: 29947926 PMCID: PMC11105326 DOI: 10.1007/s00018-018-2850-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022]
Abstract
ORP2 is a ubiquitously expressed OSBP-related protein previously implicated in endoplasmic reticulum (ER)-lipid droplet (LD) contacts, triacylglycerol (TG) metabolism, cholesterol transport, adrenocortical steroidogenesis, and actin-dependent cell dynamics. Here, we characterize the role of ORP2 in carbohydrate and lipid metabolism by employing ORP2-knockout (KO) hepatoma cells (HuH7) generated by CRISPR-Cas9 gene editing. The ORP2-KO and control HuH7 cells were subjected to RNA sequencing, analyses of Akt signaling, carbohydrate and TG metabolism, the extracellular acidification rate, and the lipidome, as well as to transmission electron microscopy. The loss of ORP2 resulted in a marked reduction of active phosphorylated Akt(Ser473) and its target Glycogen synthase kinase 3β(Ser9), consistent with defective Akt signaling. ORP2 was found to form a physical complex with the key controllers of Akt activity, Cdc37, and Hsp90, and to co-localize with Cdc37 and active Akt(Ser473) at lamellipodial plasma membrane regions, in addition to the previously reported ER-LD localization. ORP2-KO reduced glucose uptake, glycogen synthesis, glycolysis, mRNA-encoding glycolytic enzymes, and SREBP-1 target gene expression, and led to defective TG synthesis and storage. ORP2-KO did not reduce but rather increased ER-LD contacts under basal culture conditions and interfered with their expansion upon fatty acid loading. Together with our recently published work (Kentala et al. in FASEB J 32:1281-1295, 2018), this study identifies ORP2 as a new regulatory nexus of Akt signaling, cellular energy metabolism, actin cytoskeletal function, cell migration, and proliferation.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Annika Koponen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Juho Pirhonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Zoltan Pataj
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Annukka Kivelä
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Shiqian Li
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Leena Karhinen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Eeva Jääskeläinen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Robert Andrews
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Leena Meriläinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - You Zhou
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
19
|
Pan G, Cao X, Liu B, Li C, Li D, Zheng J, Lai C, Olkkonen VM, Zhong W, Yan D. OSBP-related protein 4L promotes phospholipase Cβ3 translocation from the nucleus to the plasma membrane in Jurkat T-cells. J Biol Chem 2018; 293:17430-17441. [PMID: 30237164 DOI: 10.1074/jbc.ra118.005437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/06/2018] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositide phospholipases C (PLCs) are a family of eukaryotic intracellular enzymes with important roles in signal transduction. In addition to their location at the plasma membrane, PLCs also exist within the cell nucleus where they are stored. We previously demonstrated that OSBP-related protein 4L (ORP4L) anchors cluster of differentiation 3ϵ (CD3ϵ) to the heterotrimeric G protein subunit (Gαq/11) to control PLCβ3 relocation and activation. However, the underlying mechanism by which ORP4L facilitates PLCβ3 translocation remains unknown. Here, using confocal immunofluorescence microscopy and coimmunoprecipitation assays, we report that ORP4L stimulates PLCβ3 translocation from the nucleus to the plasma membrane in Jurkat T-cells in two steps. First, we found that ORP4L is required for the activation of Ras-related nuclear protein (RAN), a GTP-binding nuclear protein that binds to exportin 1 and eventually promotes the nuclear export of PLCβ3. Second, we also observed that ORP4L interacts with vesicle-associated membrane protein-associated protein A (VAPA) through its two phenylalanines in an acidic tract (FFAT) motif. This complex enabled PLCβ3 movement to the plasma membrane, indicating that PLCβ3 translocation occurs in a VAPA-dependent manner. This study reveals detailed mechanistic insight into the role of ORP4L in PLCβ3 redistribution from storage within the nucleus to the plasma membrane via RAN activation and interaction with VAPA in Jurkat T-cells.
Collapse
Affiliation(s)
- Guoping Pan
- From the Department of Biology, Jinan University, Guangzhou 510632, China and
| | - Xiuye Cao
- From the Department of Biology, Jinan University, Guangzhou 510632, China and
| | - Bo Liu
- From the Department of Biology, Jinan University, Guangzhou 510632, China and
| | - Chaowen Li
- From the Department of Biology, Jinan University, Guangzhou 510632, China and
| | - Dan Li
- From the Department of Biology, Jinan University, Guangzhou 510632, China and
| | - Jie Zheng
- From the Department of Biology, Jinan University, Guangzhou 510632, China and
| | - Chaofeng Lai
- From the Department of Biology, Jinan University, Guangzhou 510632, China and
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland
| | - Wenbin Zhong
- From the Department of Biology, Jinan University, Guangzhou 510632, China and
| | - Daoguang Yan
- From the Department of Biology, Jinan University, Guangzhou 510632, China and
| |
Collapse
|
20
|
Kentala H, Koponen A, Kivelä AM, Andrews R, Li C, Zhou Y, Olkkonen VM. Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation. FASEB J 2018; 32:1281-1295. [PMID: 29092904 DOI: 10.1096/fj.201700604r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ORP2 is implicated in cholesterol transport, triglyceride metabolism, and adrenocortical steroid hormone production. We addressed ORP2 function in hepatocytes by generating ORP2-knockout (KO) HuH7 cells by CRISPR-Cas9 gene editing, followed by analyses of transcriptome, F-actin morphology, migration, adhesion, and proliferation. RNA sequencing of ORP2-KO cells revealed >2-fold changes in 579 mRNAs. The Ingenuity Pathway Analysis (IPA) uncovered alterations in the following functional categories: cellular movement, cell-cell signaling and interaction, cellular development, cellular function and maintenance, cellular growth and proliferation, and cell morphology. Many pathways in these categories involved actin cytoskeleton, cell migration, adhesion, or proliferation. Analysis of the ORP2 interactome uncovered 109 putative new partners. Their IPA analysis revealed Ras homolog A (RhoA) signaling as the most significant pathway. Interactions of ORP2 with SEPT9, MLC12, and ARHGAP12 were validated by independent assays. ORP2-KO resulted in abnormal F-actin morphology characterized by impaired capacity to form lamellipodia, migration defect, and impaired adhesion and proliferation. Rescue of the migration phenotype and generation of typical cell surface morphology required an intact ORP2 phosphoinositide binding site, suggesting that ORP2 function involves phosphoinositide binding and transport. The results point at a novel function of ORP2 as a lipid-sensing regulator of the actin cytoskeleton, with impacts on hepatocellular migration, adhesion, and proliferation.-Kentala, H., Koponen, A., Kivelä, A. M., Andrews, R., Li, C., Zhou, Y., Olkkonen, V. M. Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annika Koponen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annukka M Kivelä
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Robert Andrews
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - ChunHei Li
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - You Zhou
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
21
|
Zhang X, Liu L, Hu J, Chen F, Zeng B. Recombinant expression and purification of an Oxysterol Binding Protein fromAspergillus oryzae3.042. BIO WEB OF CONFERENCES 2017. [DOI: 10.1051/bioconf/20170803006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Guillemot-Legris O, Mutemberezi V, Muccioli GG. Oxysterols in Metabolic Syndrome: From Bystander Molecules to Bioactive Lipids. Trends Mol Med 2016; 22:594-614. [PMID: 27286741 DOI: 10.1016/j.molmed.2016.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
Abstract
Oxysterols are cholesterol metabolites now considered bona fide bioactive lipids. Recent studies have identified new receptors for oxysterols involved in immune and inflammatory processes, hence reviving their appeal. Through multiple receptors, oxysterols are involved in numerous metabolic and inflammatory processes, thus emerging as key mediators in metabolic syndrome. This syndrome is characterized by complex interactions between inflammation and a dysregulated metabolism. Presently, the use of synthetic ligands and genetic models has facilitated a better understanding of the roles of oxysterols in metabolism, but also raised interesting questions. We discuss recent findings on the absolute levels of oxysterols in tissues, their newly identified targets, and the mechanistic studies emphasizing their importance in metabolic disease, as there is a pressing need to further comprehend these intriguing bioactive lipids.
Collapse
Affiliation(s)
- Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium
| | - Valentin Mutemberezi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium.
| |
Collapse
|
23
|
Kentala H, Weber-Boyvat M, Olkkonen VM. OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:299-340. [PMID: 26811291 DOI: 10.1016/bs.ircmb.2015.09.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxysterol-binding protein (OSBP) and its related protein homologs, ORPs, constitute a conserved family of lipid-binding/transfer proteins (LTPs) expressed ubiquitously in eukaryotes. The ligand-binding domain of ORPs accommodates cholesterol and oxysterols, but also glycerophospholipids, particularly phosphatidylinositol-4-phosphate (PI4P). ORPs have been implicated as intracellular lipid sensors or transporters. Most ORPs carry targeting determinants for the endoplasmic reticulum (ER) and non-ER organelle membrane. ORPs are located and function at membrane contact sites (MCSs), at which ER is closely apposed with other organelle limiting membranes. Such sites have roles in lipid transport and metabolism, control of Ca(2+) fluxes, and signaling events. ORPs are postulated either to transport lipids over MCSs to maintain the distinct lipid compositions of organelle membranes, or to control the activity of enzymes/protein complexes with functions in signaling and lipid metabolism. ORPs may transfer PI4P and another lipid class bidirectionally. Transport of PI4P followed by its hydrolysis would in this model provide the energy for transfer of the other lipid against its concentration gradient. Control of organelle lipid compositions by OSBP/ORPs is important for the life cycles of several pathogenic viruses. Targeting ORPs with small-molecular antagonists is proposed as a new strategy to combat viral infections. Several ORPs are reported to modulate vesicle transport along the secretory or endocytic pathways. Moreover, antagonists of certain ORPs inhibit cancer cell proliferation. Thus, ORPs are LTPs, which mediate interorganelle lipid transport and coordinate lipid signals with a variety of cellular regimes.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| |
Collapse
|