1
|
Girgis MM, Christodoulides M. Vertebrate and Invertebrate Animal and New In Vitro Models for Studying Neisseria Biology. Pathogens 2023; 12:782. [PMID: 37375472 DOI: 10.3390/pathogens12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.
Collapse
Affiliation(s)
- Michael M Girgis
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Levy M, Aouiti Trabelsi M, Taha MK. Evidence for Multi-Organ Infection During Experimental Meningococcal Sepsis due to ST-11 Isolates in Human Transferrin-Transgenic Mice. Microorganisms 2020; 8:microorganisms8101456. [PMID: 32977487 PMCID: PMC7598264 DOI: 10.3390/microorganisms8101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022] Open
Abstract
The description of invasive meningococcal disease that is provoked by Neisseria meningitidis (Nm) is frequently restricted to meningitis. However, a wide panel of clinical presentations can be encountered including severe forms with intense inflammatory reaction leading to multi-organ failure. Several human factors are involved in the development of invasive infections such as transferrin, factor H or CEACAM1. In this study, we used an experimental meningococcal infection in transgenic mice expressing the human transferrin to show multi-organ infection. Mice were infected by an intraperitoneal injection of bacterial suspension (1.5 × 107 colony-forming unit/mouse) of a bioluminescent serogroup C strain belonging to the clonal complex ST-11. Dynamic imaging and histological analysis were performed. The results showed invasion of tissues by Nm with bacteria observed, outside blood vessels, in the kidneys, the heart and the brain as well as skin involvement. These data further support the systemic aspect of invasive meningococcal disease with involvement of several organs including skin as in humans. Thus, our model can be used to study severe forms of meningococcal invasive infections with multi-organ failure.
Collapse
Affiliation(s)
- Michael Levy
- Institut Pasteur, Invasive Bacterial Infection Unit, 28 rue du Dr Roux, 75724 Paris, France; (M.A.T.); (M.-K.T.)
- Paediatric Intensive Care Unit, Robert-Debré University Hospital, Assistance Publique Hôpitaux de Paris, 75019 Paris, France
- Université de Paris, 75019 Paris, France
- Correspondence:
| | - Myriam Aouiti Trabelsi
- Institut Pasteur, Invasive Bacterial Infection Unit, 28 rue du Dr Roux, 75724 Paris, France; (M.A.T.); (M.-K.T.)
| | - Muhamed-Kheir Taha
- Institut Pasteur, Invasive Bacterial Infection Unit, 28 rue du Dr Roux, 75724 Paris, France; (M.A.T.); (M.-K.T.)
| |
Collapse
|
3
|
Eriksson L, Stenmark B, Deghmane AE, Thulin Hedberg S, Säll O, Fredlund H, Mölling P, Taha MK. Difference in virulence between Neisseria meningitidis serogroups W and Y in transgenic mice. BMC Microbiol 2020; 20:92. [PMID: 32295520 PMCID: PMC7160935 DOI: 10.1186/s12866-020-01760-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/23/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Neisseria meningitidis serogroups W and Y are the most common serogroups causing invasive meningococcal disease in Sweden. The majority of cases are caused by the serogroup W UK 2013 strain of clonal complex (cc) 11, and subtype 1 of the serogroup Y, YI strain of cc23. In this study, virulence factors of several lineages within cc11 and cc23 were investigated in transgenic BALB/c mice expressing human transferrin. Transgenic mice were infected intraperitoneally with serogroup W and Y isolates. Levels of bacteria and the proinflammatory cytokine CXCL1 were determined in blood collected 3 h and 24 h post-infection. Apoptosis was investigated in immune cells from peritoneal washes of infected mice. Adhesion and induction of apoptosis in human epithelial cells were also scored. RESULTS The levels of bacteraemia, CXCL1, and apoptosis were higher in serogroup W infected mice than in serogroup Y infected mice. Serogroup W isolates also induced higher levels of apoptosis and adhesion in human epithelial cells. No significant differences were observed between different lineages within cc11 and cc23. CONCLUSIONS N. meningitidis Serogroup W displayed a higher virulence in vivo in transgenic mice, compared to serogroup Y. This was reflected by higher bacteremia, proinflammatory activity, and ability to induce apoptosis in mouse immune cells and human epithelial cells.
Collapse
Affiliation(s)
- Lorraine Eriksson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Bianca Stenmark
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Sara Thulin Hedberg
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Olof Säll
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Hans Fredlund
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Paula Mölling
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | |
Collapse
|
4
|
Zhou R, Sun X, Li Y, Huang Q, Qu Y, Mu D, Li X. Low-dose Dexamethasone Increases Autophagy in Cerebral Cortical Neurons of Juvenile Rats with Sepsis Associated Encephalopathy. Neuroscience 2019; 419:83-99. [PMID: 31682824 DOI: 10.1016/j.neuroscience.2019.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Studies have shown that a certain dose of dexamethasone can improve the survival rate of patients with sepsis, and in sepsis associated encephalopathy (SAE), autophagy plays a regulatory role in brain function. Here, we proved for the first time that small-dose dexamethasone (SdDex) can regulate the autophagy of cerebral cortex neurons in SAE rats and plays a protective role. Cortical neurons were cultured in vitro in a septic microenvironment and a sepsis rat model was established. The small-dose dexamethasone (SdDex) or high-dose dexamethasone (HdDex) was used to intervene in neurons or SAE rats. Through fluorescence microscopy and western blot analysis, the expressions of microtubule-associated protein 1 light chain 3 (LC3), p62/sequestosome1 (p62/SQSTM1), mammalian target of rapamycin (mTOR) signaling pathway related proteins, and apoptosis-related proteins were detected. Theresultsshowthat compared with those in SAE rats, the cortical pathological changes in SAE rats treated with SdDex were improved, and damaged substances were encapsulated and degraded by autophagosomes in neurons. Additionally, similar to neurons in vitro, cortical autophagy was further activated and the mTOR signaling pathway was inhibited. After HdDex treatment, the mTOR signaling pathway in cortex is inhibited, but further activation of autophagy is not obvious, the cortical pathological changes were further worsened and the ultrastructure of neurons was disturbed. Furthermore, the HdDex group exhibited the most obvious apoptosis. SdDex can regulate autophagy of cortical neurons by inhibiting the mTOR signaling pathway and plays a protective role. Brain damage induced by HdDex may be related to the activation of apoptosis.
Collapse
Affiliation(s)
- Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xuemei Sun
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yuyao Li
- Medical College, Xiamen University, Xiamen 361102, China
| | - Qun Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xihong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Ahmad A, Herndon DN, Szabo C. Oxandrolone protects against the development of multiorgan failure, modulates the systemic inflammatory response and promotes wound healing during burn injury. Burns 2018; 45:671-681. [PMID: 31018913 DOI: 10.1016/j.burns.2018.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022]
Abstract
Oxandrolone is a synthetic oral non-aromatizable testosterone derivative. This drug has been used successfully for several decades to safely treat growth delays in various diseases including Turner's syndrome. Currently the use of oxandrolone is under clinical testing in children with burn injury; the available data indicate that the anabolic steroid increases net muscle protein balance, maintains lean body mass, and reduces intensive care unit stay. Although oxandrolone is already in clinical trials in burn patients, preclinical burn-related studies with oxandrolone - especially those that go beyond muscle-related parameters and focus on burn-associated organ dysfunction, inflammatory response and wound healing - remain to be conducted. In the current project, using a well-characterized murine model of third-degree burn, we have tested the effect of oxandrolone on indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. In oxandrolone-treated mice (1mg/kg/day for up to 21 days) there was a significant amelioration of burn-induced accumulation of myeloperoxidase levels in heart and lung (but not the liver and kidney) and significantly lower degree of malon dialdehyde accumulation in the liver (but not the heart, lung and kidney). Oxandrolone-treated mice showed a significant attenuation of the burn-induced elevation in circulating alkaline aminotransferase and amylase levels, while blood urea nitrogen and creatinine levels remained unaffected, indicative of protective effects of the anabolic hormone against burn-induced hepatic and pancreatic (but not renal) functional impairment. Multiple burn-induced inflammatory mediators (TNF-α, IL-1α, IL-1β, IL-4, IL-6, IL-10, IL-12, IP-10, G-CSF, GM-CSF and interferon-γ) were significantly lower in the plasma of oxandrolone-treated animals after burn injury than in the plasma of controls subjected to burns. Finally, oxandrolone significantly accelerated burn wound healing. We conclude that oxandrolone improves organ function, modulates the systemic inflammatory response and accelerates wound healing in a murine model of burn injury.
Collapse
Affiliation(s)
- Akbar Ahmad
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - David N Herndon
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA,; Shriners Hospital for Children, Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospital for Children, Galveston, TX, USA.
| |
Collapse
|
6
|
Tolaj I, Ramadani H, Mehmeti M, Gashi H, Kasumi A, Gashi V, Jashari H. Does Dexamethasone Helps in Meningococcal Sepsis? Med Arch 2018; 71:173-177. [PMID: 28974828 PMCID: PMC5585801 DOI: 10.5455/medarh.2017.71.173-177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purpose: Prompt recognition and aggressive early treatment are the only effective measures against invasive meningococcal disease (IMD). Anti-inflammatory adjunctive treatment remains controversial and difficult to assess in patients with IMD. The purpose of this study was to evaluate the effect of dexamethasone (DXM) as adjunctive treatment in different clinical forms of IMD, and attempt to answer if DXM should be routinely used in the treatment of IMD. Methods: In this non-interventional clinical study (NIS), 39 patients with meningococcal septicaemia with or without of meningitis were included, and compared regarding the impact of dexamethasone (DXM), as an adjunctive treatment, on the outcome of IMD. SPSS statistics is used for statistical processing of data. Results: Thirty (76.9%) patients with IMD had sepsis and meningitis, and 9 (23.1%) of them had sepsis alone. Dexamethasone was used in 24 (61.5%) cases, in both clinical groups. The overall mortality rate was 10.3%. Pneumonia was diagnosed in 6 patients (15.4%), arthritis in 3 of them (7.7%), and subdural effusion in one patient (2.6%). The data showed a significant statistical difference on the length of hospitalization, and WBC normalization in groups of patients treated with DXM. Conclusion: The use of DXM as adjunctive therapy in invasive meningococcal disease has a degree of proven benefits and no harmful effects. In fighting this very dangerous and complex infection, even a limited benefit is sufficient to recommend the use of DXM as adjunctive treatment in invasive meningococcal disease.
Collapse
Affiliation(s)
- Ilir Tolaj
- Department of Infectious Diseases, University Clinical Centre in Pristina, Kosovo
| | - Hamdi Ramadani
- Department of Infectious Diseases, University Clinical Centre in Pristina, Kosovo
| | - Murat Mehmeti
- Department of Infectious Diseases, University Clinical Centre in Pristina, Kosovo
| | - Hatixhe Gashi
- Department of Infectious Diseases, University Clinical Centre in Pristina, Kosovo
| | - Arbana Kasumi
- Department of Infectious Diseases, University Clinical Centre in Pristina, Kosovo
| | - Visar Gashi
- Department of Infectious Diseases, University Clinical Centre in Pristina, Kosovo
| | - Haki Jashari
- Department of Infectious Diseases, University Clinical Centre in Pristina, Kosovo
| |
Collapse
|
7
|
Levy M, Deghmane AE, Aouiti-Trabelsi M, Dauger S, Faye A, Mariani-Kurkdjian P, Taha MK. Analysis of the impact of corticosteroids adjuvant treatment during experimental invasive meningococcal infection in mice. Steroids 2018; 136:32-39. [PMID: 29753775 DOI: 10.1016/j.steroids.2018.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
Abstract
Invasive meningococcal disease (IMD) is usually associated with intense inflammatory response that is correlated with severe infection. Corticosteroids may regulate this inflammatory response through an early but transient induction of IL-10 that is suggested to improve the outcome of IMD. We explored the mechanism of action of corticosteroids as an adjuvant treatment to antibiotics. Transgenic mice expressing the human transferrin were infected by a hyperinvasive meningococcal strain and transcriptomic analysis were then performed in the blood for all conditions of infection and treatment. Infected untreated mice, infected antibiotic-treated mice and infected amoxicillin and dexamethasone-treated mice were compared. Treatment using both corticosteroids and antibiotics was associated with differential gene expression in the blood especially in Monocytes-Macrophages pathways. Depletion of these cells in infected mice was associated with a more severe bacterial infection and uncontrolled production of both pro-inflammatory and anti-inflammatory cytokines. Accordingly, children suffering from severe IMD had low counts of monocytes at admission. Our data are in favor of a role of corticosteroids in enhancing a polarization from pro-inflammatory to anti-inflammatory phenotypes of Monocytes-Macrophages axis that may help controlling meningococcal invasive infections.
Collapse
Affiliation(s)
- Michaël Levy
- Invasive Bacterial Infection Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France; Pediatric Intensive Care Unit, Robert-Debré University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ala-Eddine Deghmane
- Invasive Bacterial Infection Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Myriam Aouiti-Trabelsi
- Invasive Bacterial Infection Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Stéphane Dauger
- Pediatric Intensive Care Unit, Robert-Debré University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Albert Faye
- Pediatric Infectious Disease Unit, Robert-Debré University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Patricia Mariani-Kurkdjian
- Microbiology Unit, Robert-Debré University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Muhamed-Kheir Taha
- Invasive Bacterial Infection Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France.
| |
Collapse
|
8
|
Johswich K. Innate immune recognition and inflammation in Neisseria meningitidis infection. Pathog Dis 2017; 75:3059204. [PMID: 28334203 DOI: 10.1093/femspd/ftx022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
Neisseria meningitidis (Nme) can cause meningitis and sepsis, diseases which are characterised by an overwhelming inflammatory response. Inflammation is triggered by host pattern recognition receptors (PRRs) which are activated by pathogen-associated molecular patterns (PAMPs). Nme contains multiple PAMPs including lipooligosaccharide, peptidoglycan, proteins and metabolites. Various classes of PRRs including Toll-like receptors, NOD-like receptors, C-type lectins, scavenger receptors, pentraxins and others are expressed by the host to respond to any given microbe. While Toll-like receptors and NOD-like receptors are pivotal in triggering inflammation, other PRRs act as modulators of inflammation or aid in functional antimicrobial responses such as phagocytosis or complement activation. This review aims to give an overview of the various Nme PAMPs reported to date, the PRRs they activate and their implications during the inflammatory response to infection.
Collapse
|
9
|
A Bioluminescent Francisella tularensis SCHU S4 Strain Enables Noninvasive Tracking of Bacterial Dissemination and the Evaluation of Antibiotics in an Inhalational Mouse Model of Tularemia. Antimicrob Agents Chemother 2016; 60:7206-7215. [PMID: 27671061 DOI: 10.1128/aac.01586-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Bioluminescence imaging (BLI) enables real-time, noninvasive tracking of infection in vivo and longitudinal infection studies. In this study, a bioluminescent Francisella tularensis strain, SCHU S4-lux, was used to develop an inhalational infection model in BALB/c mice. Mice were infected intranasally, and the progression of infection was monitored in real time using BLI. A bioluminescent signal was detectable from 3 days postinfection (3 dpi), initially in the spleen and then in the liver and lymph nodes, before finally becoming systemic. The level of bioluminescent signal correlated with bacterial numbers in vivo, enabling noninvasive quantification of bacterial burdens in tissues. Treatment with levofloxacin (commencing at 4 dpi) significantly reduced the BLI signal. Furthermore, BLI was able to distinguish noninvasively between different levofloxacin treatment regimens and to identify sites of relapse following treatment cessation. These data demonstrate that BLI and SCHU S4-lux are suitable for the study of F. tularensis pathogenesis and the evaluation of therapeutics for tularemia.
Collapse
|
10
|
Use of Animal Models To Support Revising Meningococcal Breakpoints of β-Lactams. Antimicrob Agents Chemother 2016; 60:4023-7. [PMID: 27090179 DOI: 10.1128/aac.00378-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/14/2016] [Indexed: 12/15/2022] Open
Abstract
Antibiotic susceptibility testing (AST) in Neisseria meningitidis is an important part of the management of invasive meningococcal disease. It defines MICs of antibiotics that are used in treatment and/or prophylaxis and that mainly belong to the beta-lactams. The interpretation of the AST results requires breakpoints to classify the isolates into susceptible, intermediate, or resistant. The resistance to penicillin G is defined by a MIC of >0.25 mg/liter, and that of amoxicillin is defined by a MIC of >1 mg/liter. We provide data that may support revision of resistance breakpoints for beta-lactams in meningococci. We used experimental intraperitoneal infection in 8-week-old transgenic female mice expressing human transferrin and human factor H. Dynamic bioluminescence imaging was performed to follow the infection by bioluminescent meningococcus strains with different MICs. Three hours later, infected mice were treated intramuscularly using several doses of amoxicillin or penicillin G. Signal decreased during infection with a meningococcus strain showing a penicillin G MIC of 0.064 mg/liter at all doses. Signals decreased for the strain with a penicillin G MIC of 0.5 mg/liter only after treatment with the highest doses, corresponding to 250,000 units/kg of penicillin G or 200 mg/kg of amoxicillin, although this decrease was at a lower rate than that of the strain with a MIC of 0.064 mg/liter. The decrease in bioluminescent signals was associated with a decrease in the levels of the proinflammatory cytokine interleukin-6 (IL-6). Our data suggest that a high dose of amoxicillin or penicillin G can reduce growth during infection by isolates showing penicillin G MICs of >0.25 mg/liter and ≤1 mg/liter.
Collapse
|