1
|
Tanvir MR, Mouri T, Tsutsumi E, Mustary UH, Farid MA, Hossain MF, Omori Y, Yamamoto C, Maeno A, Tokumoto T. Membrane progesterone receptor e (paqr9) is necessary for chorion elevation in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:1-12. [PMID: 39643858 DOI: 10.1007/s10695-024-01435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Paqr9 is a gene encoding membrane progestin receptor e (mPRe), the fifth subtype of the five mPR subtypes, and is currently classified a member of the progestin and adipoQ receptor (PAQR) family, which consists of 11 genes. To elucidate the physiological functions of the mPR subtypes, we established gene knockout (KO) fish via genome editing of seven paqr genes in zebrafish and analyzed their phenotypes. The null-mutant strain of paqr9 (paqr9-/-) that we established in this study presented reduced chorion elevation and a high percentage of abnormal embryos. Embryos exhibit various kinds of abnormal morphology, which are thought to be caused by insufficient elevation of the chorion. Immunohistochemical staining of ovaries with an anti-Paqr9 antibody revealed that Paqr9 was expressed in the periplasm of oocytes and the surface of chorion in the wild type, whereas signals were absent in paqr9-/- zebrafish. In histological sections, the periplasmic connection between the oocyte plasma membrane and chorion was absent in paqr9-/- oocytes. The number of cortical alveoli (CA) that are responsible for chorion elevation was significantly reduced in paqr9-/- zebrafish. SEM revealed that fiber-supported knob-like structures (KSs) on the chorion were absent in paqr9-/- zebrafish. These results indicate that Paqr9 is required for the preparation of CA during oogenesis. Insufficient formation of the chorion resulted in the abnormal development of embryos.
Collapse
Affiliation(s)
- Md Razain Tanvir
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takumi Mouri
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Eisei Tsutsumi
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Umme Habiba Mustary
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Almamun Farid
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Forhad Hossain
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yuki Omori
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Chihiro Yamamoto
- Division of Technical Service, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Akiteru Maeno
- Cell Architecture Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Toshinobu Tokumoto
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
2
|
Hossain F, Hossain S, Jyoti MS, Omori Y, Tokumoto T. Establishment of a steroid binding assay for goldfish membrane progesterone receptor (mPR) by coupling with graphene quantum dots (GQDs). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1331-1339. [PMID: 38329580 DOI: 10.1007/s10695-024-01315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
A homogeneous assay was developed to evaluate ligands that target the membrane progesterone receptor alpha (mPRα) of goldfish. This was achieved by employing graphene quantum dots (GQDs), a type of semiconductor nanoparticle conjugated to the goldfish mPRα. When progesterone-BSA-fluorescein isothiocyanate (P4-BSA-FITC) was combined with the other agents, fluorescence was observed through Förster resonance energy transfer (FRET). However, this fluorescence was quenched by binding between the ligand and receptor. This established method demonstrated the ligand selectivity of the mPRα protein. Then, the methylotrophic yeast Pichia pastoris was used to express the goldfish mPRα (GmPRα) protein. The recombinant purified GmPRα protein was coupled with graphene quantum dots (GQDs) to generate GQD-conjugated goldfish mPRα (GQD-GmPRα). Fluorescence at a wavelength of 520 nm was observed through FRET upon the combination of P4-BSA-FITC and subsequent activation by ultraviolet (UV) light. Adding free P4 to the reaction mixture resulted in a decrease in fluorescence intensity at a wavelength of 520 nm. The fluorescence was reduced by the administration of GmPRα ligands but not by steroids that do not interact with GmPRα. The findings indicated that the interaction between the ligand and receptor led to the formation of a complex involving GQD-GmPRα and P4-BSA-FITC. The interaction between the compounds and GQD-GmPRα was additionally validated by a binding experiment that employed the radiolabeled natural ligand [3H]-17α,20β-dihydroxy-4-pregnen-3-one. We established a ligand-binding assay for the fish membrane progesterone receptor that is applicable for screening compounds.
Collapse
Affiliation(s)
- Forhad Hossain
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Shakhawat Hossain
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Maisum Sarwar Jyoti
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Yuki Omori
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Toshinobu Tokumoto
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan.
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
3
|
Huber D, Hatzipanagiotou M, Schüler-Toprak S, Ortmann O, Treeck O. Effects of Endocrine Interventions Targeting ERα or PR on Breast Cancer Risk in the General Population and Carriers of BRCA1/2 Pathogenic Variants. Int J Mol Sci 2024; 25:5894. [PMID: 38892081 PMCID: PMC11172552 DOI: 10.3390/ijms25115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
There is evidence suggesting that endocrine interventions such as hormone replacement therapy and hormonal contraception can increase breast cancer (BC) risk. Sexual steroid hormones like estrogens have long been known for their adverse effects on BC development and progression via binding to estrogen receptor (ER) α. Thus, in recent years, endocrine interventions that include estrogens have been discussed more and more critically, and their impact on different BC subgroups has increasingly gained interest. Carriers of pathogenic variants in BRCA1/2 genes are known to have a high risk of developing BC and ovarian cancer. However, there remain open questions to what extent endocrine interventions targeting ERα or the progesterone receptor further increase cancer risk in this subgroup. This review article aims to provide an overview and update on the effects of endocrine interventions on breast cancer risk in the general population in comparison to BRCA1/2 mutation carriers. Finally, future directions of research are addressed, to further improve the understanding of the effects of endocrine interventions on high-risk pathogenic variant carriers.
Collapse
Affiliation(s)
- Deborah Huber
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany; (D.H.); (M.H.); (S.S.-T.); (O.O.)
- Department of Obstetrics and Gynecology, Technical University of Munich, 80333 Munich, Germany
| | - Maria Hatzipanagiotou
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany; (D.H.); (M.H.); (S.S.-T.); (O.O.)
| | - Susanne Schüler-Toprak
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany; (D.H.); (M.H.); (S.S.-T.); (O.O.)
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany; (D.H.); (M.H.); (S.S.-T.); (O.O.)
| | - Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany; (D.H.); (M.H.); (S.S.-T.); (O.O.)
| |
Collapse
|