1
|
Godara P, Reddy KS, Sahu W, Naik B, Srivastava V, Das R, Mahor A, Kumar P, Giri R, Anirudh J, Tak H, Banavath HN, Bhatt TK, Goyal AK, Prusty D. Structure-based virtual screening against multiple Plasmodium falciparum kinases reveals antimalarial compounds. Mol Divers 2024; 28:3661-3681. [PMID: 38127294 DOI: 10.1007/s11030-023-10770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
The continuous emergence of resistance against most frontline antimalarial drugs has led to countless deaths in malaria-endemic countries, counting 619,000 deaths in 2021, with mutation in drug targets being the sole cause. As mutation is correlated frequently with fitness cost, the likelihood of mutation emergence in multiple targets at a time is extremely low. Hence, multitargeting compounds may seem promising to address drug resistance issues with additional benefits like increased efficacy, improved safety profile, and the requirement of fewer pills compared to traditional single and combinational drugs. In this study, we attempted to use the High Throughput Virtual Screening approach to predict multitarget inhibitors against six chemically validated Plasmodium falciparum (Pf) kinases (PfPKG, PfMAP2, PfCDPK4, PfTMK, PfPK5, PfPI4K), resulting in 21 multitargeting hits. The molecular dynamic simulation of the top six complexes (Myricetin-MAP2, Quercetin-CDPK4, Myricetin-TMK, Quercetin-PKG, Salidroside-PK5, and Salidroside-PI4K) showed stable interactions. Moreover, hierarchical clustering reveals the structural divergence of the compounds from the existing antimalarials, indicating less chance of cross-resistance. Additionally, the top three hits were validated through parasite growth inhibition assays, with quercetin and myricetin exhibiting an IC50 value of 1.84 and 3.93 µM, respectively.
Collapse
Affiliation(s)
- Priya Godara
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Welka Sahu
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Biswajit Naik
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Varshita Srivastava
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Rusham Das
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Ajay Mahor
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Jivanage Anirudh
- Department of Sports Biosciences, School of Sport Sciences, Central University of Rajasthan, Ajmer, India
| | - Harshita Tak
- Department of Sports Biosciences, School of Sport Sciences, Central University of Rajasthan, Ajmer, India
| | - Hemanth Naick Banavath
- Department of Sports Biosciences, School of Sport Sciences, Central University of Rajasthan, Ajmer, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Amit Kumar Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
2
|
Sarma M, Abdalla M, Zothantluanga JH, Abdullah Thagfan F, Umar AK, Chetia D, Almanaa TN, Al-Shouli ST. Multi-target molecular dynamic simulations reveal glutathione-S-transferase as the most favorable drug target of knipholone in Plasmodium falciparum. J Biomol Struct Dyn 2023; 41:12808-12824. [PMID: 36752355 DOI: 10.1080/07391102.2023.2175378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/07/2023] [Indexed: 02/09/2023]
Abstract
Knipholone is an antiplasmodial phytocompound obtained from the roots of Kniphofia foliosa. Despite several available studies, the molecular drug targets of knipholone in P. falciparum remained unknown. Nowadays, in silico techniques are widely used to study the molecular interactions between compounds and proteins as they provide results quickly with high precision and accuracy. In this study, we aim to identify the potential molecular drug targets of knipholone in P. falciparum. We selected 10 proteins of P. falciparum with unique metabolic functions and we found that knipholone showed better binding affinity than the native ligands of 6 proteins. Out of the 6 proteins, knipholone showed better enzyme inhibitory potential than the native ligands of 4 proteins. We carried out a 100 ns MD simulations for knipholone and the native ligands of four proteins and this was followed by binding free energy calculations. In each step, the performance of knipholone was compared to the native ligands of the proteins. Knipholone outperformed the native ligand of Glutathione-S-Transferase (1OKT) at crucial computational studies as evidence from the lower protein-ligand root mean square deviation value, protein root mean square fluctuation value, and protein-ligand binding free energies. The ligand properties of knipholone provide additional evidence for its stability and it maintains adequate protein-ligand contacts during the entire simulation. The density functional theory study also supported the stability of knipholone at the active binding site of 1OKT. From the studied proteins, we conclude that Glutathione-S-Transferase is the most favorable drug target for knipholone in P. falciparum.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Malita Sarma
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Felwa Abdullah Thagfan
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abd Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia
| | - Dipak Chetia
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samia T Al-Shouli
- Immunology Unit, Pathology department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Adderley J, Doerig C. Comparative analysis of the kinomes of Plasmodium falciparum, Plasmodium vivax and their host Homo sapiens. BMC Genomics 2022; 23:237. [PMID: 35346035 PMCID: PMC8960227 DOI: 10.1186/s12864-022-08457-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Background Novel antimalarials should be effective across all species of malaria parasites that infect humans, especially the two species that bear the most impact, Plasmodium falciparum and Plasmodium vivax. Protein kinases encoded by pathogens, as well as host kinases required for survival of intracellular pathogens, carry considerable potential as targets for antimalarial intervention (Adderley et al. Trends Parasitol 37:508–524, 2021; Wei et al. Cell Rep Med 2:100423, 2021). To date, no comprehensive P. vivax kinome assembly has been conducted; and the P. falciparum kinome, first assembled in 2004, requires an update. The present study, aimed to fill these gaps, utilises a recently published structurally-validated multiple sequence alignment (MSA) of the human kinome (Modi et al. Sci Rep 9:19790, 2019). This MSA is used as a scaffold to assist the alignment of all protein kinase sequences from P. falciparum and P. vivax, and (where possible) their assignment to specific kinase groups/families. Results We were able to assign six P. falciparum previously classified as OPK or ‘orphans’ (i.e. with no clear phylogenetic relation to any of the established ePK groups) to one of the aforementioned ePK groups. Direct phylogenetic comparison established that despite an overall high level of similarity between the P. falciparum and P. vivax kinomes, which will help in selecting targets for intervention, there are differences that may underlie the biological specificities of these species. Furthermore, we highlight a number of Plasmodium kinases that have a surprisingly high level of similarity with their human counterparts and therefore not well suited as targets for drug discovery. Conclusions Direct comparison of the kinomes of Homo sapiens, P. falciparum and P. vivax sheds additional light on the previously documented divergence of many P. falciparum and P. vivax kinases from those of their human host. We provide the first direct kinome comparison between the phylogenetically distinct species of P. falciparum and P. vivax, illustrating the key similarities and differences which must be considered in the context of kinase-directed antimalarial drug discovery, and discuss the divergences and similarities between the human and Plasmodium kinomes to inform future searches for selective antimalarial intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08457-0.
Collapse
|
4
|
Toviwek B, Phuangsawai O, Konsue A, Hannongbua S, Riley J, Mutter N, Anderson M, Webster L, Hallyburton I, Read KD, Gleeson MP. Preparation, biological & cheminformatics-based assessment of N 2,N 4-diphenylpyrimidine-2,4-diamine as potential Kinase-targeted antimalarials. Bioorg Med Chem 2021; 46:116348. [PMID: 34479064 DOI: 10.1016/j.bmc.2021.116348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
Twenty eight new N2,N4-diphenylpyrimidine-2,4-diamines have been prepared in order to expand our understanding of the anti-malarial SAR of the scaffold. The aim of the study was to make structural modifications to improve the overall potency, selectivity and solubility of the series by varying the anilino groups attached to the 2- and 4-position. We evaluated the activity of the compounds against Plasmodium falciparum (Pf) 3D7, cytotoxicity against HepG2, % inhibition at a panel of 10 human kinases, solubility, permeability and lipophilicity, and human and rat in vitro clearance. 11 was identified as a potent anti-malarial with an IC50 of 0.66 µM at the 3D7 strain and a selectivity (SI) of ~ 40 in terms of cytotoxicity against the HepG2 cell line. It also displayed low experimental logD7.4 (2.27), reasonable solubility (124 µg/ml), good metabolic stability, but low permeability. A proteo-chemometric workflow was employed to identify putative Pf targets of the most promising compounds. Ligand-based similarity searching of the ChEMBL database led to the identification of most probable human targets. These were then used as input for sequence-based searching of the Pf proteome. Homology modelling and molecular docking were used to evaluate whether compounds could indeed bind to these targets with valid binding modes. In vitro biological testing against close human analogs of these targets was subsequently undertaken. This allowed us to identify potential Pf targets and human anti-targets that could be exploited in future development.
Collapse
Affiliation(s)
- Borvornwat Toviwek
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand; Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Oraphan Phuangsawai
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Adchatawut Konsue
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jennifer Riley
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Nicole Mutter
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Mark Anderson
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Lauren Webster
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Irene Hallyburton
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kevin D Read
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - M Paul Gleeson
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
5
|
Lande DH, Nasereddin A, Alder A, Gilberger TW, Dzikowski R, Grünefeld J, Kunick C. Synthesis and Antiplasmodial Activity of Bisindolylcyclobutenediones. Molecules 2021; 26:4739. [PMID: 34443327 PMCID: PMC8402075 DOI: 10.3390/molecules26164739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria is one of the most dangerous infectious diseases. Because the causative Plasmodium parasites have developed resistances against virtually all established antimalarial drugs, novel antiplasmodial agents are required. In order to target plasmodial kinases, novel N-unsubstituted bisindolylcyclobutenediones were designed as analogs to the kinase inhibitory bisindolylmaleimides. Molecular docking experiments produced favorable poses of the unsubstituted bisindolylcyclobutenedione in the ATP binding pocket of various plasmodial protein kinases. The synthesis of the title compounds was accomplished by sequential Friedel-Crafts acylation procedures. In vitro screening of the new compounds against transgenic NF54-luc P. falciparum parasites revealed a set of derivatives with submicromolar activity, of which some displayed a reasonable selectivity profile against a human cell line. Although the molecular docking studies suggested the plasmodial protein kinase PfGSK-3 as the putative biological target, the title compounds failed to inhibit the isolated enzyme in vitro. As selective submicromolar antiplasmodial agents, the N-unsubstituted bisindolylcyclobutenediones are promising starting structures in the search for antimalarial drugs, albeit for a rational development, the biological target addressed by these compounds has yet to be identified.
Collapse
Affiliation(s)
- Duc Hoàng Lande
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
| | - Abed Nasereddin
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (A.N.); (R.D.)
- Genomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Arne Alder
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; (A.A.); (T.W.G.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Tim W. Gilberger
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; (A.A.); (T.W.G.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (A.N.); (R.D.)
| | - Johann Grünefeld
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Lima MNN, Borba JVB, Cassiano GC, Mottin M, Mendonça SS, Silva AC, Tomaz KCP, Calit J, Bargieri DY, Costa FTM, Andrade CH. Artificial Intelligence Applied to the Rapid Identification of New Antimalarial Candidates with Dual-Stage Activity. ChemMedChem 2021; 16:1093-1103. [PMID: 33247522 DOI: 10.1002/cmdc.202000685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2002] [Revised: 11/16/2020] [Indexed: 01/06/2023]
Abstract
Increasing reports of multidrug-resistant malaria parasites urge the discovery of new effective drugs with different chemical scaffolds. Protein kinases play a key role in many cellular processes such as signal transduction and cell division, making them interesting targets in many diseases. Protein kinase 7 (PK7) is an orphan kinase from the Plasmodium genus, essential for the sporogonic cycle of these parasites. Here, we applied a robust and integrative artificial intelligence-assisted virtual-screening (VS) approach using shape-based and machine learning models to identify new potential PK7 inhibitors with in vitro antiplasmodial activity. Eight virtual hits were experimentally evaluated, and compound LabMol-167 inhibited ookinete conversion of Plasmodium berghei and blood stages of Plasmodium falciparum at nanomolar concentrations with low cytotoxicity in mammalian cells. As PK7 does not have an essential role in the Plasmodium blood stage and our virtual screening strategy aimed for both PK7 and blood-stage inhibition, we conducted an in silico target fishing approach and propose that this compound might also inhibit P. falciparum PK5, acting as a possible dual-target inhibitor. Finally, docking studies of LabMol-167 with P. falciparum PK7 and PK5 proteins highlighted key interactions for further hit-to lead optimization.
Collapse
Affiliation(s)
- Marilia N N Lima
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Rua 240, qd. 87, Goiânia, GO, 74605-170, Brazil
| | - Joyce V B Borba
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Rua 240, qd. 87, Goiânia, GO, 74605-170, Brazil.,Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, 13083-970, Campinas, SP, Brazil
| | - Gustavo C Cassiano
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, 13083-970, Campinas, SP, Brazil.,Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Melina Mottin
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Rua 240, qd. 87, Goiânia, GO, 74605-170, Brazil
| | - Sabrina S Mendonça
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Rua 240, qd. 87, Goiânia, GO, 74605-170, Brazil
| | - Arthur C Silva
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Rua 240, qd. 87, Goiânia, GO, 74605-170, Brazil
| | - Kaira C P Tomaz
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, 13083-970, Campinas, SP, Brazil
| | - Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Daniel Y Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Fabio T M Costa
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, 13083-970, Campinas, SP, Brazil
| | - Carolina H Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Rua 240, qd. 87, Goiânia, GO, 74605-170, Brazil.,Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, 13083-970, Campinas, SP, Brazil
| |
Collapse
|
7
|
Arendse LB, Wyllie S, Chibale K, Gilbert IH. Plasmodium Kinases as Potential Drug Targets for Malaria: Challenges and Opportunities. ACS Infect Dis 2021; 7:518-534. [PMID: 33590753 PMCID: PMC7961706 DOI: 10.1021/acsinfecdis.0c00724] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Protein and phosphoinositide kinases have been successfully exploited as drug targets in various disease areas, principally in oncology. In malaria, several protein kinases are under investigation as potential drug targets, and an inhibitor of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4KIIIβ) is currently in phase 2 clinical studies. In this Perspective, we review the potential of kinases as drug targets for the treatment of malaria. Kinases are known to be readily druggable, and many are essential for parasite survival. A key challenge in the design of Plasmodium kinase inhibitors is obtaining selectivity over the corresponding human orthologue(s) and other human kinases due to the highly conserved nature of the shared ATP binding site. Notwithstanding this, there are some notable differences between the Plasmodium and human kinome that may be exploitable. There is also the potential for designed polypharmacology, where several Plasmodium kinases are inhibited by the same drug. Prior to starting the drug discovery process, it is important to carefully assess potential kinase targets to ensure that the inhibition of the desired kinase will kill the parasites in the required life-cycle stages with a sufficiently fast rate of kill. Here, we highlight key target attributes and experimental approaches to consider and summarize the progress that has been made targeting Plasmodium PI4KIIIβ, cGMP-dependent protein kinase, and cyclin-dependent-like kinase 3.
Collapse
Affiliation(s)
- Lauren B. Arendse
- Drug
Discovery and Development Centre (H3D), South African Medical Research
Council Drug Discovery and Development Research Unit, Department of
Chemistry, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, Western Cape 7701, South Africa
| | - Susan Wyllie
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kelly Chibale
- Drug
Discovery and Development Centre (H3D), South African Medical Research
Council Drug Discovery and Development Research Unit, Department of
Chemistry, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, Western Cape 7701, South Africa
| | - Ian H. Gilbert
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
8
|
Elsworth B, Duraisingh MT. A framework for signaling throughout the life cycle of Babesia species. Mol Microbiol 2020; 115:882-890. [PMID: 33274587 DOI: 10.1111/mmi.14650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023]
Abstract
Babesia species are tick-borne intracellular parasites that infect the red blood cells of their mammalian host, leading to severe or fatal disease. Babesia spp. infect a wide range of mammalian species and cause a significant economic burden globally, predominantly through disease in cattle. Several Babesia spp. are increasingly being recognized as zoonotic pathogens of humans. Babesia spp. have complex life cycles involving multiple stages in the tick and the mammalian host. The parasite utilizes complex signaling pathways during replication, egress, and invasion in each of these stages. They must also rapidly respond to their environment when switching between the mammalian and tick stages. This review will focus on the signaling pathways and environmental stimuli that Babesia spp. utilize in the bloodstream and for transmission to the tick, with an emphasis on the role of phosphorylation- and calcium-based signaling during egress and invasion. The expanding availability of in vitro and in vivo culture systems, genomes, transcriptomes, and transgenic systems available for a range of Babesia spp. should encourage further biological and translational studies of these ubiquitous parasites.
Collapse
Affiliation(s)
- Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
9
|
Borba JVVB, Silva AC, Lima MNN, Mendonca SS, Furnham N, Costa FTM, Andrade CH. Chemogenomics and bioinformatics approaches for prioritizing kinases as drug targets for neglected tropical diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:187-223. [PMID: 33632465 DOI: 10.1016/bs.apcsb.2020.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neglected tropical diseases (NTDs) are a group of twenty-one diseases classified by the World Health Organization that prevail in regions with tropical and subtropical climate and affect more than one billion people. There is an urgent need to develop new and safer drugs for these diseases. Protein kinases are a potential class of targets for developing new drugs against NTDs, since they play crucial role in many biological processes, such as signaling pathways, regulating cellular communication, division, metabolism and death. Bioinformatics is a field that aims to organize large amounts of biological data as well as develop and use tools for understanding and analyze them in order to produce meaningful information in a biological manner. In combination with chemogenomics, which analyzes chemical-biological interactions to screen ligands against selected targets families, these approaches can be used to stablish a rational strategy for prioritizing new drug targets for NTDs. Here, we describe how bioinformatics and chemogenomics tools can help to identify protein kinases and their potential inhibitors for the development of new drugs for NTDs. We present a review of bioinformatics tools and techniques that can be used to define an organisms kinome for drug prioritization, drug and target repurposing, multi-quinase inhibition approachs and selectivity profiling. We also present some successful examples of the application of such approaches in recent case studies.
Collapse
Affiliation(s)
- Joyce Villa Verde Bastos Borba
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Tropical Diseases-Prof. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, University of Campinas, Campinas, SP, Brazil
| | - Arthur Carvalho Silva
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marilia Nunes Nascimento Lima
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Sabrina Silva Mendonca
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, University of Campinas, Campinas, SP, Brazil
| | - Carolina Horta Andrade
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil; Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
10
|
Panday SK, Ghosh I. Application and Comprehensive Analysis of Neighbor Approximated Information Theoretic Configurational Entropy Methods to Protein-Ligand Binding Cases. J Chem Theory Comput 2020; 16:7581-7600. [PMID: 33190491 DOI: 10.1021/acs.jctc.0c00764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The binding entropy is an important thermodynamic quantity which has numerous applications in studies of the biophysical process, and configurational entropy is often one of the major contributors in it. Therefore, its accurate estimation is important, though it is challenging mostly due to sampling limitations, anharmonicity, and multimodality of atomic fluctuations. The present work reports a Neighbor Approximated Maximum Information Spanning Tree (A-MIST) method for conformational entropy and presents its performance and computational advantage over conventional Mutual Information Expansion (MIE) and Maximum Information Spanning Tree (MIST) for two protein-ligand binding cases: indirubin-5-sulfonate to Plasmodium falciparum Protein Kinase 5 (PfPK5) and P. falciparum RON2-peptide to P. falciparum Apical Membrane Antigen 1 (PfAMA1). Important structural regions considering binding configurational entropy are identified, and physical origins for such are discussed. A thorough performance evaluation is done of a set of four entropy estimators (Maximum Likelihood (ML), Miller-Madow (MM), Chao-Shen (CS), and James and Stein shrinkage (JS)) with known varying degrees of sensitivity of the entropy estimate on the extent of sampling, each with two schemes for discretization of fluctuation data of Degrees of Freedom (DFs) to estimate Probability Density Functions (PDFs). Our comprehensive evaluation of influences of variations of parameters shows Neighbor Approximated MIE (A-MIE) outperforms MIE in terms of convergence and computational efficiency. In the case of A-MIE/MIE, results are sensitive to the choice of root atoms, graph search algorithm used for the Bond-Angle-Torsion (BAT) conversion, and entropy estimator, while A-MIST/MIST are not. A-MIST yields binding entropy within 0.5 kcal/mol of MIST with only 20-30% computation. Moreover, all these methods have been implemented in an OpenMP/MPI hybrid parallel C++11 code, and also a python package for data preprocessing and entropy contribution analysis is developed and made available. A comparative analysis of features of current implementation and existing tools is also presented.
Collapse
Affiliation(s)
- Shailesh Kumar Panday
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Indira Ghosh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
11
|
Moolman C, van der Sluis R, Beteck RM, Legoabe LJ. An Update on Development of Small-Molecule Plasmodial Kinase Inhibitors. Molecules 2020; 25:E5182. [PMID: 33171706 PMCID: PMC7664427 DOI: 10.3390/molecules25215182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.
Collapse
Affiliation(s)
- Chantalle Moolman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, Biochemistry, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa;
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| |
Collapse
|
12
|
Abstract
Malaria is one of the most impacting public health problems in tropical and subtropical areas of the globe, with approximately 200 million cases worldwide annually. In the absence of an effective vaccine, rapid treatment is vital for effective malaria control. However, parasite resistance to currently available drugs underscores the urgent need for identifying new antimalarial therapies with new mechanisms of action. Among potential drug targets for developing new antimalarial candidates, protein kinases are attractive. These enzymes catalyze the phosphorylation of several proteins, thereby regulating a variety of cellular processes and playing crucial roles in the development of all stages of the malaria parasite life cycle. Moreover, the large phylogenetic distance between Plasmodium species and its human host is reflected in marked differences in structure and function of malaria protein kinases between the homologs of both species, indicating that selectivity can be attained. In this review, we describe the functions of the different types of Plasmodium kinases and highlight the main recent advances in the discovery of kinase inhibitors as potential new antimalarial drug candidates.
Collapse
|
13
|
Eubanks AL, Perkins MM, Sylvester K, Ganley JG, Posfai D, Sanschargrin PC, Hong J, Sliz P, Derbyshire ER. In silico Screening and Evaluation of Plasmodium falciparum Protein Kinase 5 (PK5) Inhibitors. ChemMedChem 2018; 13:2479-2483. [PMID: 30328274 PMCID: PMC6436633 DOI: 10.1002/cmdc.201800625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/03/2018] [Indexed: 11/12/2022]
Abstract
An in silico screen of 350 000 commercially available compounds was conducted with an unbiased approach to identify potential malaria inhibitors that bind to the Plasmodium falciparum protein kinase 5 (PfPK5) ATP-binding site. PfPK5 is a cyclin-dependent kinase-like protein with high sequence similarity to human cyclin-dependent kinase 2 (HsCDK2), but its precise role in cell-cycle regulation remains unclear. After two-dimensional fingerprinting of the top scoring compounds, 182 candidates were prioritized for biochemical testing based on their structural diversity. Evaluation of these compounds demonstrated that 135 bound to PfPK5 to a similar degree or better than known PfPK5 inhibitors, confirming that the library was enriched with PfPK5-binding compounds. A previously reported triazolodiamine HsCDK2 inhibitor and the screening hit 4-methylumbelliferone were each selected for an analogue study. The results of this study highlight the difficult balance between optimization of PfPK5 affinity and binding selectivity for PfPK5 over its closest human homologue HsCDK2. Our approach enabled the discovery of several new PfPK5-binding compounds from a modest screening campaign and revealed the first scaffold to have improved PfPK5/HsCDK2 selectivity. These steps are critical for the development of PfPK5-targeting probes for functional studies and antimalarials with decreased risks of host toxicity.
Collapse
Affiliation(s)
- Amber L. Eubanks
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708 (USA),
| | - Marisha M. Perkins
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708 (USA),
| | - Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, North Carolina 27710 (USA)
| | - Jack G. Ganley
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708 (USA),
| | - Dora Posfai
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, North Carolina 27710 (USA)
| | - Paul C. Sanschargrin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 45 Shattuck Street, Boston, Massachusetts 02115 (USA)
| | - Jiyong Hong
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708 (USA),
| | - Piotr Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 45 Shattuck Street, Boston, Massachusetts 02115 (USA)
| | - Emily R. Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708 (USA),
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, North Carolina 27710 (USA)
| |
Collapse
|
14
|
Morales-Bayuelo A. New molecular target insights about protein kinases of the Plasmodium falciparum. Using molecular docking and DFT-based reactivity descriptors. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Currently, there is increasing interest in the potential of malaria inhibitors in Plasmodium falciparum activity. In this work, is propose a possible alternative to classifying 154 antimalarials, with P. falciparum activity. These antimalarials were synthesized by the Chibale’s group ( http://www.kellychibaleresearch.uct.ac.za/ ), with the goal of finding new insights on the binding pocket of the protein kinase PfPK5, PfPK7, PfCDPK1, PfCDPK4, PfMAP1, and PfPK6 of the malaria parasite. However, there is only information about crystallography of PfPK5 and PfPK7. The protein kinases PfCDPK1, PfCDPK4, PfMAP1, and PfPK6 were modeled using molecular homology. The validation used shows that our homology models can be an alternative for the protein kinases from P. falciparum, unknown today. The antimalarials were classified by taking into account the interactions in the hinge zone. These ligands bind to the kinase through the formation of one of two hydrogen bonds, with the backbone residues of the hinge region connecting the kinase N- and C-terminal loops. These interactions were supported by a reactivity chemistry analysis, using global chemical reactivity descriptors such as chemical potential, hardness, softness, electrophilicity, and the Fukui functions as local reactivity descriptors, within the Density Functional Theory (DFT) context.
Collapse
Affiliation(s)
- Alejandro Morales-Bayuelo
- Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT), proyecto postdoctoral N0 3150035, Chile
| |
Collapse
|
15
|
The Malaria Parasite Cyclin H Homolog PfCyc1 Is Required for Efficient Cytokinesis in Blood-Stage Plasmodium falciparum. mBio 2017; 8:mBio.00605-17. [PMID: 28611247 PMCID: PMC5472185 DOI: 10.1128/mbio.00605-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs), and these protein kinase complexes are viable drug targets. The regulatory control of the Plasmodium falciparum cell division cycle remains poorly understood, and the roles of the various CDKs and cyclins remain unclear. The P. falciparum genome contains multiple CDKs, but surprisingly, it does not contain any sequence-identifiable G1-, S-, or M-phase cyclins. We demonstrate that P. falciparum Cyc1 (PfCyc1) complements a G1 cyclin-depleted Saccharomyces cerevisiae strain and confirm that other identified malaria parasite cyclins do not complement this strain. PfCyc1, which has the highest sequence similarity to the conserved cyclin H, cannot complement a temperature-sensitive yeast cyclin H mutant. Coimmunoprecipitation of PfCyc1 from P. falciparum parasites identifies PfMAT1 and PfMRK as specific interaction partners and does not identify PfPK5 or other CDKs. We then generate an endogenous conditional allele of PfCyc1 in blood-stage P. falciparum using a destabilization domain (DD) approach and find that PfCyc1 is essential for blood-stage proliferation. PfCyc1 knockdown does not impede nuclear division, but it prevents proper cytokinesis. Thus, we demonstrate that PfCyc1 has a functional divergence from bioinformatic predictions, suggesting that the malaria parasite cell division cycle has evolved to use evolutionarily conserved proteins in functionally novel ways. Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We demonstrate that P. falciparum Cyc1 (PfCyc1), a transcriptional cyclin homolog, complements a cell cycle cyclin-deficient yeast strain but not a transcriptional cyclin-deficient strain. We show that PfCyc1 forms a complex in the parasite with PfMRK and the P. falciparum MAT1 homolog. PfCyc1 is essential and nonredundant in blood-stage P. falciparum. PfCyc1 knockdown causes a stage-specific arrest after nuclear division, demonstrating morphologically aberrant cytokinesis. This work demonstrates a conserved PfCyc1/PfMAT1/PfMRK complex in malaria and suggests that it functions as a schizont stage-specific regulator of the P. falciparum life cycle.
Collapse
|
16
|
Ogungbe IV, Setzer WN. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Molecules 2016; 21:E1389. [PMID: 27775577 PMCID: PMC6274513 DOI: 10.3390/molecules21101389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Malaria, leishmaniasis, Chagas disease, and human African trypanosomiasis continue to cause considerable suffering and death in developing countries. Current treatment options for these parasitic protozoal diseases generally have severe side effects, may be ineffective or unavailable, and resistance is emerging. There is a constant need to discover new chemotherapeutic agents for these parasitic infections, and natural products continue to serve as a potential source. This review presents molecular docking studies of potential phytochemicals that target key protein targets in Leishmania spp., Trypanosoma spp., and Plasmodium spp.
Collapse
Affiliation(s)
- Ifedayo Victor Ogungbe
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
17
|
Carrasco MP, Machado M, Gonçalves L, Sharma M, Gut J, Lukens AK, Wirth DF, André V, Duarte MT, Guedes RC, Dos Santos DJVA, Rosenthal PJ, Mazitschek R, Prudêncio M, Moreira R. Probing the Azaaurone Scaffold against the Hepatic and Erythrocytic Stages of Malaria Parasites. ChemMedChem 2016; 11:2194-2204. [PMID: 27538856 DOI: 10.1002/cmdc.201600327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Indexed: 11/09/2022]
Abstract
The potential of azaaurones as dual-stage antimalarial agents was investigated by assessing the effect of a small library of azaaurones on the inhibition of liver and intraerythrocytic lifecycle stages of the malaria parasite. The whole series was screened against the blood stage of a chloroquine-resistant Plasmodium falciparum strain and the liver stage of P. berghei, yielding compounds with dual-stage activity and sub-micromolar potency against erythrocytic parasites. Studies with genetically modified parasites, using a phenotypic assay based on the P. falciparum Dd2-ScDHODH line, which expresses yeast dihydroorotate dehydrogenase (DHODH), showed that one of the azaaurone derivatives has the potential to inhibit the parasite mitochondrial electron-transport chain. The global urgency in finding new therapies for malaria, especially against the underexplored liver stage, associated with chemical tractability of azaaurones, warrants further development of this chemotype. Overall, these results emphasize the azaaurone chemotype as a promising scaffold for dual-stage antimalarials.
Collapse
Affiliation(s)
- Marta P Carrasco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal. .,Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Göteborg, Sweden.
| | - Marta Machado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Moni Sharma
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Jiri Gut
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, 1001 Potrero Avenue, San Francisco, CA, 94110, USA
| | - Amanda K Lukens
- The Broad Institute, Infectious Diseases Program, Cambridge, MA, 02142, USA.,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Dyann F Wirth
- The Broad Institute, Infectious Diseases Program, Cambridge, MA, 02142, USA.,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Maria Teresa Duarte
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Rita C Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Daniel J V A Dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.,LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Philip J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, 1001 Potrero Avenue, San Francisco, CA, 94110, USA
| | - Ralph Mazitschek
- The Broad Institute, Infectious Diseases Program, Cambridge, MA, 02142, USA.,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.,Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
18
|
Chakraborty A. Emerging drug resistance in Plasmodium falciparum: A review of well-characterized drug targets for novel antimalarial chemotherapy. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61090-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Deshmukh AS, Agarwal M, Dhar SK. Regulation of DNA replication proteins in parasitic protozoans: possible role of CDK-like kinases. Curr Genet 2016; 62:481-6. [PMID: 26780367 DOI: 10.1007/s00294-015-0562-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/26/2015] [Accepted: 12/28/2015] [Indexed: 12/30/2022]
Abstract
Regulatory roles of CDKs in fundamental processes including cell cycle progression and transcription are well conserved in metazoans. This family of proteins has undergone significant evolutionary divergence and specialization. Several CDK-like kinases have been identified and characterized in parasitic protozoans. However, clear functional role and physiological relevance of these proteins in protozoans still remain elusive. In continuation with the recent finding that CDK-like protein PfPK5 regulates important DNA replication protein like origin recognition complex subunit 1 in Plasmodium falciparum, here we have discussed the emerging significance of CDK1/2 homologs in DNA replication of parasitic protozoans. In fact, involvement of these proteins in crucial cellular processes projects them as potential drug targets. The possibilities that CDKs offer as potential therapeutic targets in controlling parasite progression have also been explored.
Collapse
Affiliation(s)
| | - Meetu Agarwal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
20
|
Begum J, Skamnaki VT, Moffatt C, Bischler N, Sarrou J, Skaltsounis AL, Leonidas DD, Oikonomakos NG, Hayes JM. An evaluation of indirubin analogues as phosphorylase kinase inhibitors. J Mol Graph Model 2015; 61:231-42. [PMID: 26364215 DOI: 10.1016/j.jmgm.2015.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 11/24/2022]
Abstract
Phosphorylase kinase (PhK) has been linked with a number of conditions such as glycogen storage diseases, psoriasis, type 2 diabetes and more recently, cancer (Camus et al., 2012 [6]). However, with few reported structural studies on PhK inhibitors, this hinders a structure based drug design approach. In this study, the inhibitory potential of 38 indirubin analogues have been investigated. 11 of these ligands had IC50 values in the range 0.170-0.360μM, with indirubin-3'-acetoxime (1c) the most potent. 7-Bromoindirubin-3'-oxime (13b), an antitumor compound which induces caspase-independent cell-death (Ribas et al., 2006 [20]) is revealed as a specific inhibitor of PhK (IC50=1.8μM). Binding assay experiments performed using both PhK-holo and PhK-γtrnc confirmed the inhibitory effects to arise from binding at the kinase domain (γ subunit). High level computations using QM/MM-PBSA binding free energy calculations were in good agreement with experimental binding data, as determined using statistical analysis, and support binding at the ATP-binding site. The value of a QM description for the binding of halogenated ligands exhibiting σ-hole effects is highlighted. A new statistical metric, the 'sum of the modified logarithm of ranks' (SMLR), has been defined which measures performance of a model for both the "early recognition" (ranking earlier/higher) of active compounds and their relative ordering by potency. Through a detailed structure activity relationship analysis considering other kinases (CDK2, CDK5 and GSK-3α/β), 6'(Z) and 7(L) indirubin substitutions have been identified to achieve selective PhK inhibition. The key PhK binding site residues involved can also be targeted using other ligand scaffolds in future work.
Collapse
Affiliation(s)
- Jaida Begum
- School of Physical Sciences & Computing, Division of Chemistry, University of Central Lancashire, Preston PR1 2HE, United Kingdom; School of Forensic & Investigative Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Vassiliki T Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Colin Moffatt
- School of Forensic & Investigative Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Nicolas Bischler
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Josephine Sarrou
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy, Department of Pharmacy, University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Nikos G Oikonomakos
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Joseph M Hayes
- School of Physical Sciences & Computing, Division of Chemistry, University of Central Lancashire, Preston PR1 2HE, United Kingdom; School of Forensic & Investigative Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom.
| |
Collapse
|
21
|
Bullard KM, Broccardo C, Keenan SM. Effects of cyclin-dependent kinase inhibitor Purvalanol B application on protein expression and developmental progression in intra-erythrocytic Plasmodium falciparum parasites. Malar J 2015; 14:147. [PMID: 25879664 PMCID: PMC4403934 DOI: 10.1186/s12936-015-0655-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/17/2015] [Indexed: 11/10/2022] Open
Abstract
Background The 2013 Malaria World Report indicated that in 2012 there were approximately 207 million cases of malaria, which resulted in an estimated 627,000 malaria-related deaths. Due to the alarming resistance of these parasites to traditional anti-malarial treatments there is a pressing need to not only identify new anti-malarial compounds, but also to characterize the effect of compounds known to have an effect on the parasite life cycle. This study reports on effects of kinase inhibitor Purvalanol B administration on the growth and protein expression of Plasmodium falciparum late-stage trophozoites. Methods A SYBR® Green I parasite growth assay was used to measure the IC50 of Purvalanol B with P. falciparum (strain W2). Purvalanol B or DMSO control were applied to synchronized parasites 36 hours post invasion and parasites were incubated for 12 hours. Giemsa-stained blood smears were used to determine the effect of Purvalanol B on parasite growth, global quantitative proteomic analysis was used to examine differences in protein expression between Purvalanol B-treated and control parasites and results were confirmed by qPCR. Results There were no differences in parasitaemia between inhibitor-treated and control parasites. However, the ability of Purvalanol B-treated parasites to form schizonts was significantly reduced. Proteomic analysis detected 76 human proteins and 518 P. falciparum proteins (63 in control cultures only, 56 proteins in Purvalanol B cultures only, and 399 proteins in both cultures). Quantitative analysis of protein extracts revealed eight proteins that were up-regulated in the inhibitor-treated cultures, including several components of the parasite’s proteasome complex and thioredoxin reductase. Two proteins appeared to be down-regulated, including a helicase and an RNA-binding protein. Conclusion Purvalanol B application decreases the ability of late-stage P. falciparum trophozoites to form multinucleated schizonts and up-regulates proteasome subunits and proteins that contribute to redox homeostasis, which may indicate an increase in oxidative stress as a result of inhibitor application. While the efficacy of Purvalanol B is relatively low for use as an anti-malarial therapy, quantitative proteomic analysis may serve as a method of examining the action of drugs on the parasite and indicate the likelihood of future resistance development. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0655-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristen M Bullard
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639, USA.
| | - Carolyn Broccardo
- Proteomics and Metabolomics Facility, Colorado State University, Fort ColliHns, CO, 80523, USA.
| | - Susan M Keenan
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639, USA.
| |
Collapse
|
22
|
Tajedin L, Anwar M, Gupta D, Tuteja R. Comparative insight into nucleotide excision repair components of Plasmodium falciparum. DNA Repair (Amst) 2015; 28:60-72. [PMID: 25757193 DOI: 10.1016/j.dnarep.2015.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 01/27/2015] [Accepted: 02/10/2015] [Indexed: 12/19/2022]
Abstract
Nucleotide excision repair (NER) is one of the DNA repair pathways crucial for maintenance of genome integrity and deals with repair of DNA damages arising due to exogenous and endogenous factors. The multi-protein transcription initiation factor TFIIH plays a critical role in NER and transcription and is highly conserved throughout evolution. The malaria parasite Plasmodium falciparum has been a challenge for the researchers for a long time because of emergence of drug resistance. The availability of its genome sequence has opened new avenues for research. Antimalarial drugs like chloroquine and mefloquine have been reported to inhibit NER pathway mediated repair reactions and thus promote mutagenesis. Previous studies have validated existence and implied possible association of defective or altered DNA repair pathways with development of drug resistant phenotype in certain P. falciparum strains. We conjecture that a compromised NER pathway in combination with other DNA repair pathways might be conducive for the emergence and sustenance of drug resistance in P. falciparum. Therefore we decided to unravel the components of NER pathway in P. falciparum and using bioinformatics based approaches here we report a genome wide in silico analysis of NER components from P. falciparum and their comparison with the human host. Our results reveal that P. falciparum genome contains almost all the components of NER but we were unable to find clear homologue for p62 and XPC in its genome. The structure modeling of all the components further suggests that their structures are significantly conserved. Furthermore this study lays a foundation to perform similar comparative studies between drug resistant and drug sensitive strains of parasite in order to understand DNA repair-related mechanisms of drug resistance.
Collapse
Affiliation(s)
- Leila Tajedin
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Masroor Anwar
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dinesh Gupta
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
23
|
Antimalarial activity of kinase inhibitor, nilotinib, in vitro and in vivo. J Antibiot (Tokyo) 2015; 68:469-72. [PMID: 25690362 DOI: 10.1038/ja.2015.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 11/08/2022]
|
24
|
Houzé S, Hoang NT, Lozach O, Le Bras J, Meijer L, Galons H, Demange L. Several human cyclin-dependent kinase inhibitors, structurally related to roscovitine, are new anti-malarial agents. Molecules 2014; 19:15237-57. [PMID: 25251193 PMCID: PMC6271241 DOI: 10.3390/molecules190915237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 11/16/2022] Open
Abstract
In Africa, malaria kills one child each minute. It is also responsible for about one million deaths worldwide each year. Plasmodium falciparum, is the protozoan responsible for the most lethal form of the disease, with resistance developing against the available anti-malarial drugs. Among newly proposed anti-malaria targets, are the P. falciparum cyclin-dependent kinases (PfCDKs). There are involved in different stages of the protozoan growth and development but share high sequence homology with human cyclin-dependent kinases (CDKs). We previously reported the synthesis of CDKs inhibitors that are structurally-related to (R)-roscovitine, a 2,6,9-trisubstituted purine, and they showed activity against neuronal diseases and cancers. In this report, we describe the synthesis and the characterization of new CDK inhibitors, active in reducing the in vitro growth of P. falciparum (3D7 and 7G8 strains). Six compounds are more potent inhibitors than roscovitine, and three exhibited IC50 values close to 1 µM for both 3D7 and 7G8 strains. Although, such molecules do inhibit P. falciparum growth, they require further studies to improve their selectivity for PfCDKs.
Collapse
Affiliation(s)
- Sandrine Houzé
- Laboratoire de Parasitologie, CNR du Paludisme, AP-HP, Hôpital Bichat & UMR 216 IRD, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire, Paris 75006, France.
| | - Nha-Thu Hoang
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 rue des Saints-Pères, Paris 75270, France.
| | - Olivier Lozach
- Protein Phosphorylation and Human Diseases Group, CNRS, USR 3151, Station biologique, Roscoff 29680, France.
| | - Jacques Le Bras
- Laboratoire de Parasitologie, CNR du Paludisme, AP-HP, Hôpital Bichat & UMR 216 IRD, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire, Paris 75006, France.
| | - Laurent Meijer
- Protein Phosphorylation and Human Diseases Group, CNRS, USR 3151, Station biologique, Roscoff 29680, France.
| | - Hervé Galons
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, Roscoff 29680, France.
| | - Luc Demange
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 rue des Saints-Pères, Paris 75270, France.
| |
Collapse
|
25
|
Derbyshire ER, Zuzarte-Luís V, Magalhães AD, Kato N, Sanschagrin PC, Wang J, Zhou W, Miduturu CV, Mazitschek R, Sliz P, Mota MM, Gray NS, Clardy J. Chemical interrogation of the malaria kinome. Chembiochem 2014; 15:1920-30. [PMID: 25111632 DOI: 10.1002/cbic.201400025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Indexed: 01/10/2023]
Abstract
Malaria, an infectious disease caused by eukaryotic parasites of the genus Plasmodium, afflicts hundreds of millions of people every year. Both the parasite and its host utilize protein kinases to regulate essential cellular processes. Bioinformatic analyses of parasite genomes predict at least 65 protein kinases, but their biological functions and therapeutic potential are largely unknown. We profiled 1358 small-molecule kinase inhibitors to evaluate the role of both the human and the malaria kinomes in Plasmodium infection of liver cells, the parasites' obligatory but transient developmental stage that precedes the symptomatic blood stage. The screen identified several small molecules that inhibit parasite load in liver cells, some with nanomolar efficacy, and each compound was subsequently assessed for activity against blood-stage malaria. Most of the screening hits inhibited both liver- and blood-stage malaria parasites, which have dissimilar gene expression profiles and infect different host cells. Evaluation of existing kinase activity profiling data for the library members suggests that several kinases are essential to malaria parasites, including cyclin-dependent kinases (CDKs), glycogen synthase kinases, and phosphoinositide-3-kinases. CDK inhibitors were found to bind to Plasmodium protein kinase 5, but it is likely that these compounds target multiple parasite kinases. The dual-stage inhibition of the identified kinase inhibitors makes them useful chemical probes and promising starting points for antimalarial development.
Collapse
Affiliation(s)
- Emily R Derbyshire
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (USA).
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
There is an urgent need for the development of new antimalarial drugs with novel modes of actions. The malarial parasite, Plasmodium falciparum, has a relatively small kinome of <100 kinases, with many members exhibiting a high degree of structural divergence from their host counterparts. A number of Plasmodium kinases have recently been shown by reverse genetics to be essential for various parts of the complex parasitic life cycle, and are thus genetically validated as potential targets. Implementation of mass spectrometry-based phosphoproteomics approaches has informed on key phospho-signalling pathways in the parasite. In addition, global phenotypic screens have revealed a large number of putative protein kinase inhibitors with antimalarial potency. Taken together, these investigations point to the Plasmodium kinome as a rich source of potential new targets. In this review, we highlight recent progress made towards this goal.
Collapse
|
27
|
Abstract
Malaria, the disease caused by infection with protozoan parasites from the genus Plasmodium, claims the lives of nearly 1 million people annually. Developing nations, particularly in the African Region, bear the brunt of this malaria burden. Alarmingly, the most dangerous etiologic agent of malaria, Plasmodium falciparum, is becoming increasingly resistant to current first-line antimalarials. In light of the widespread devastation caused by malaria, the emergence of drug-resistant P. falciparum strains, and the projected decrease in funding for malaria eradication that may occur over the next decade, the identification of promising new targets for antimalarial drug design is imperative. P. falciparum kinases have been proposed as ideal drug targets for antimalarial drug design because they mediate critical cellular processes within the parasite and are, in many cases, structurally and mechanistically divergent when compared with kinases from humans. Identifying a molecule capable of inhibiting the activity of a target enzyme is generally an arduous and expensive process that can be greatly aided by utilizing in silico drug design techniques. Such methods have been extensively applied to human kinases, but as yet have not been fully exploited for the exploration and characterization of antimalarial kinase targets. This review focuses on in silico methods that have been used for the evaluation of potential antimalarials and the Plasmodium kinases that could be explored using these techniques.
Collapse
|
28
|
Talevich E, Tobin AB, Kannan N, Doerig C. An evolutionary perspective on the kinome of malaria parasites. Philos Trans R Soc Lond B Biol Sci 2012; 367:2607-18. [PMID: 22889911 DOI: 10.1098/rstb.2012.0014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Malaria parasites belong to an ancient lineage that diverged very early from the main branch of eukaryotes. The approximately 90-member plasmodial kinome includes a majority of eukaryotic protein kinases that clearly cluster within the AGC, CMGC, TKL, CaMK and CK1 groups found in yeast, plants and mammals, testifying to the ancient ancestry of these families. However, several hundred millions years of independent evolution, and the specific pressures brought about by first a photosynthetic and then a parasitic lifestyle, led to the emergence of unique features in the plasmodial kinome. These include taxon-restricted kinase families, and unique peculiarities of individual enzymes even when they have homologues in other eukaryotes. Here, we merge essential aspects of all three malaria-related communications that were presented at the Evolution of Protein Phosphorylation meeting, and propose an integrated discussion of the specific features of the parasite's kinome and phosphoproteome.
Collapse
Affiliation(s)
- Eric Talevich
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, 120 Green Street, Athens, GA 30602-7229, USA
| | | | | | | |
Collapse
|
29
|
The kinomes of apicomplexan parasites. Microbes Infect 2012; 14:796-810. [DOI: 10.1016/j.micinf.2012.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 11/21/2022]
|
30
|
Artz JD, Wernimont AK, Allali-Hassani A, Zhao Y, Amani M, Lin YH, Senisterra G, Wasney GA, Fedorov O, King O, Roos A, Lunin VV, Qiu W, Finerty P, Hutchinson A, Chau I, von Delft F, MacKenzie F, Lew J, Kozieradzki I, Vedadi M, Schapira M, Zhang C, Shokat K, Heightman T, Hui R. The Cryptosporidium parvum kinome. BMC Genomics 2011; 12:478. [PMID: 21962082 PMCID: PMC3227725 DOI: 10.1186/1471-2164-12-478] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 09/30/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hundreds of millions of people are infected with cryptosporidiosis annually, with immunocompromised individuals suffering debilitating symptoms and children in socioeconomically challenged regions at risk of repeated infections. There is currently no effective drug available. In order to facilitate the pursuit of anti-cryptosporidiosis targets and compounds, our study spans the classification of the Cryptosporidium parvum kinome and the structural and biochemical characterization of representatives from the CDPK family and a MAP kinase. RESULTS The C. parvum kinome comprises over 70 members, some of which may be promising drug targets. These C. parvum protein kinases include members in the AGC, Atypical, CaMK, CK1, CMGC, and TKL groups; however, almost 35% could only be classified as OPK (other protein kinases). In addition, about 25% of the kinases identified did not have any known orthologues outside of Cryptosporidium spp. Comparison of specific kinases with their Plasmodium falciparum and Toxoplasma gondii orthologues revealed some distinct characteristics within the C. parvum kinome, including potential targets and opportunities for drug design. Structural and biochemical analysis of 4 representatives of the CaMK group and a MAP kinase confirms features that may be exploited in inhibitor design. Indeed, screening CpCDPK1 against a library of kinase inhibitors yielded a set of the pyrazolopyrimidine derivatives (PP1-derivatives) with IC₅₀ values of < 10 nM. The binding of a PP1-derivative is further described by an inhibitor-bound crystal structure of CpCDPK1. In addition, structural analysis of CpCDPK4 identified an unprecedented Zn-finger within the CDPK kinase domain that may have implications for its regulation. CONCLUSIONS Identification and comparison of the C. parvum protein kinases against other parasitic kinases shows how orthologue- and family-based research can be used to facilitate characterization of promising drug targets and the search for new drugs.
Collapse
Affiliation(s)
- Jennifer D Artz
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, Floor 7, 101 College St, Toronto, Ontario M5G 1L7, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pannu NS, Waterreus WJ, Skubák P, Sikharulidze I, Abrahams JP, de Graaff RAG. Recent advances in the CRANK software suite for experimental phasing. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:331-7. [PMID: 21460451 PMCID: PMC3069748 DOI: 10.1107/s0907444910052224] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/13/2010] [Indexed: 11/23/2022]
Abstract
For its first release in 2004, CRANK was shown to effectively detect and phase anomalous scatterers from single-wavelength anomalous diffraction data. Since then, CRANK has been significantly improved and many more structures can be built automatically with single- or multiple-wavelength anomalous diffraction or single isomorphous replacement with anomalous scattering data. Here, the new algorithms that have been developed that have led to these substantial improvements are discussed and CRANK's performance on over 100 real data sets is shown. The latest version of CRANK is freely available for download at http://www.bfsc.leidenuniv.nl/software/crank/ and from CCP4 (http://www.ccp4.ac.uk/).
Collapse
Affiliation(s)
- Navraj S Pannu
- Biophysical Structural Chemistry, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Tewari R, Straschil U, Bateman A, Böhme U, Cherevach I, Gong P, Pain A, Billker O. The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host Microbe 2011; 8:377-87. [PMID: 20951971 PMCID: PMC2977076 DOI: 10.1016/j.chom.2010.09.006] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/02/2010] [Accepted: 09/13/2010] [Indexed: 12/23/2022]
Abstract
Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified.
Collapse
Affiliation(s)
- Rita Tewari
- Institute of Genetics, QMC, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hayes JM, Skamnaki VT, Archontis G, Lamprakis C, Sarrou J, Bischler N, Skaltsounis AL, Zographos SE, Oikonomakos NG. Kinetics, in silico docking, molecular dynamics, and MM-GBSA binding studies on prototype indirubins, KT5720, and staurosporine as phosphorylase kinase ATP-binding site inhibitors: the role of water molecules examined. Proteins 2010; 79:703-19. [PMID: 21287607 DOI: 10.1002/prot.22890] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022]
Abstract
With an aim toward glycogenolysis control in Type 2 diabetes, we have investigated via kinetic experiments and computation the potential of indirubin (IC₅₀ > 50 μM), indirubin-3'-oxime (IC₅₀ = 144 nM), KT5720 (K(i) = 18.4 nM) and staurosporine (K(i) = 0.37 nM) as phosphorylase kinase (PhKγtrnc) ATP-binding site inhibitors, with the latter two revealed as potent inhibitors in the low nM range. Because of lack of structural information, we have exploited information from homologous kinase complexes to direct in silico calculations (docking, molecular dynamics, and MMGBSA) to predict the binding characteristics of the four ligands. All inhibitors are predicted to bind in the same active site area as the ATP adenine ring, with binding dominated by hinge region hydrogen bonds to Asp104:O and Met106:O (all four ligands) and also Met106:NH (for the indirubins). The PhKγtrnc-staurosporine complex has the greatest number of receptor-ligand hydrogen bonds, while for the indirubin-3'-oxime and KT5720 complexes there is an important network of interchanging water molecules bridging inhibitor-enzyme contacts. The MM-GBSA results revealed the source of staurosporine's low nM potency to be favorable electrostatic interactions, while KT5720 has strong van der Waals contributions. KT5720 interacts with the greatest number of protein residues either by direct or 1-water bridged hydrogen bond interactions, and the potential for more selective PhK inhibition based on a KT5720 analogue has been established. Including receptor flexibility in Schrödinger induced-fit docking calculations in most cases correctly predicted the binding modes as compared with the molecular dynamics structures; the algorithm was less effective when there were key structural waters bridging receptor-ligand contacts.
Collapse
Affiliation(s)
- Joseph M Hayes
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Engels K, Beyer C, Suárez Fernández ML, Bender F, Gassel M, Unden G, Marhöfer RJ, Mottram JC, Selzer PM. Inhibition of Eimeria tenella CDK-related kinase 2: From target identification to lead compounds. ChemMedChem 2010; 5:1259-71. [PMID: 20575139 DOI: 10.1002/cmdc.201000157] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Apicomplexan parasites encompass several human- and animal-pathogenic protozoans such as Plasmodium falciparum, Toxoplasma gondii, and Eimeria tenella. E. tenella causes coccidiosis, a disease that afflicts chickens, leading to tremendous economic losses to the global poultry industry. The considerable increase in drug resistance makes it necessary to develop new therapeutic strategies against this parasite. Cyclin-dependent kinases (CDKs) are key molecules in cell-cycle regulation and are therefore prominent target proteins in parasitic diseases. Bioinformatics analysis revealed four potential CDK-like proteins, of which one-E. tenella CDK-related kinase 2 (EtCRK2)-has already been characterized by gene cloning and expression.1 By using the CDK-specific inhibitor flavopiridol in EtCRK2 enzyme assays and schizont maturation assays (SMA), we could chemically validate CDK-like proteins as potential drug targets. An X-ray crystal structure of human CDK2 (HsCDK2) served as a template to build protein models of EtCRK2 by comparative homology modeling. Structural differences in the ATP binding site between EtCRK2 and HsCDK2, as well as chicken CDK3, were addressed for the optimization of selective ATP-competitive inhibitors. Virtual screening and "wet-bench" high-throughput screening campaigns on large compound libraries resulted in an initial set of hit compounds. These compounds were further analyzed and characterized, leading to a set of four promising lead compounds for development as EtCRK2 inhibitors.
Collapse
Affiliation(s)
- Kristin Engels
- Intervet Innovation GmbH, Drug Discovery, Zur Propstei, Schwabenheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Reilly Ayala HB, Wacker MA, Siwo G, Ferdig MT. Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum. BMC Genomics 2010; 11:577. [PMID: 20955606 PMCID: PMC3091725 DOI: 10.1186/1471-2164-11-577] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 10/18/2010] [Indexed: 11/24/2022] Open
Abstract
Background Elevated parasite biomass in the human red blood cells can lead to increased malaria morbidity. The genes and mechanisms regulating growth and development of Plasmodium falciparum through its erythrocytic cycle are not well understood. We previously showed that strains HB3 and Dd2 diverge in their proliferation rates, and here use quantitative trait loci mapping in 34 progeny from a cross between these parent clones along with integrative bioinformatics to identify genetic loci and candidate genes that control divergences in cell cycle duration. Results Genetic mapping of cell cycle duration revealed a four-locus genetic model, including a major genetic effect on chromosome 12, which accounts for 75% of the inherited phenotype variation. These QTL span 165 genes, the majority of which have no predicted function based on homology. We present a method to systematically prioritize candidate genes using the extensive sequence and transcriptional information available for the parent lines. Putative functions were assigned to the prioritized genes based on protein interaction networks and expression eQTL from our earlier study. DNA metabolism or antigenic variation functional categories were enriched among our prioritized candidate genes. Genes were then analyzed to determine if they interact with cyclins or other proteins known to be involved in the regulation of cell cycle. Conclusions We show that the divergent proliferation rate between a drug resistant and drug sensitive parent clone is under genetic regulation and is segregating as a complex trait in 34 progeny. We map a major locus along with additional secondary effects, and use the wealth of genome data to identify key candidate genes. Of particular interest are a nucleosome assembly protein (PFL0185c), a Zinc finger transcription factor (PFL0465c) both on chromosome 12 and a ribosomal protein L7Ae-related on chromosome 4 (PFD0960c).
Collapse
|
36
|
Abstract
One of the most important public health problems in the world today is the emergence and dissemination of drug-resistant malaria parasites. Plasmodium falciparum is the causative agent of the most lethal form of human malaria. New anti-malarial strategies are urgently required, and their design and development require the identification of potential therapeutic targets. However, the molecular mechanisms controlling the life cycle of the malaria parasite are still poorly understood. The published genome sequence of P. falciparum and previous studies have revealed that several homologues of eukaryotic signalling proteins, such as protein kinases, are relatively conserved. Protein kinases are now widely recognized as important drug targets in protozoan parasites. Cyclic AMP-dependent protein kinase (PKA) is implicated in numerous processes in mammalian cells, and the regulatory mechanisms of the cAMP pathway have been characterized. P. falciparum cAMP-dependent protein kinase plays an important role in the parasite's life cycle and thus represents an attractive target for the development of anti-malarial drugs. In this review, we focus on the P. falciparum cAMP/PKA pathway to provide new insights and an improved understanding of this signalling cascade.
Collapse
|
37
|
Caridha D, Kathcart AK, Jirage D, Waters NC. Activity of substituted thiophene sulfonamides against malarial and mammalian cyclin dependent protein kinases. Bioorg Med Chem Lett 2010; 20:3863-7. [DOI: 10.1016/j.bmcl.2010.05.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 05/10/2010] [Accepted: 05/12/2010] [Indexed: 01/05/2023]
|
38
|
Skubák P, Waterreus WJ, Pannu NS. Multivariate phase combination improves automated crystallographic model building. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:783-8. [PMID: 20606258 DOI: 10.1107/s0907444910014642] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/21/2010] [Indexed: 11/10/2022]
Abstract
Density modification is a standard technique in macromolecular crystallography that can significantly improve an initial electron-density map. To obtain optimal results, the initial and density-modified map are combined. Current methods assume that these two maps are independent and propagate the initial map information and its accuracy indirectly through previously determined coefficients. A multivariate equation has been derived that no longer assumes independence between the initial and density-modified map, considers the observed diffraction data directly and refines the errors that can occur in a single-wavelength anomalous diffraction experiment. The equation has been implemented and tested on over 100 real data sets. The results are dramatic: the method provides significantly improved maps over the current state of the art and leads to many more structures being built automatically.
Collapse
Affiliation(s)
- Pavol Skubák
- Biophysical Structural Chemistry, Leiden University, Leiden, The Netherlands.
| | | | | |
Collapse
|
39
|
A Plasmodium falciparum transcriptional cyclin-dependent kinase-related kinase with a crucial role in parasite proliferation associates with histone deacetylase activity. EUKARYOTIC CELL 2010; 9:952-9. [PMID: 20305001 DOI: 10.1128/ec.00005-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent protein kinases (CDKs) are key regulators of the eukaryotic cell cycle and of the eukaryotic transcription machinery. Here we report the characterization of Pfcrk-3 (Plasmodium falciparum CDK-related kinase 3; PlasmoDB identifier PFD0740w), an unusually large CDK-related protein whose kinase domain displays maximal homology to those CDKs which, in other eukaryotes, are involved in the control of transcription. The closest enzyme in Saccharomyces cerevisiae is BUR1 (bypass upstream activating sequence requirement 1), known to control gene expression through interaction with chromatin modification enzymes. Consistent with this, immunofluorescence data show that Pfcrk-3 colocalizes with histones. We show that recombinant Pfcrk-3 associates with histone H1 kinase activity in parasite extracts and that this association is detectable even if the catalytic domain of Pfcrk-3 is rendered inactive by site-directed mutagenesis, indicating that Pfcrk-3 is part of a complex that includes other protein kinases. Immunoprecipitates obtained from extracts of transgenic parasites expressing hemagglutinin (HA)-tagged Pfcrk-3 by using an anti-HA antibody displayed both protein kinase and histone deacetylase activities. Reverse genetics data show that the pfcrk-3 locus can be targeted only if the genetic modification does not cause a loss of function. Taken together, our data strongly suggest that Pfcrk-3 fulfils a crucial role in the intraerythrocytic development of P. falciparum, presumably through chromatin modification-dependent regulation of gene expression.
Collapse
|
40
|
Doerig C, Abdi A, Bland N, Eschenlauer S, Dorin-Semblat D, Fennell C, Halbert J, Holland Z, Nivez MP, Semblat JP, Sicard A, Reininger L. Malaria: targeting parasite and host cell kinomes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:604-12. [PMID: 19840874 DOI: 10.1016/j.bbapap.2009.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/05/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
Malaria still remains one of the deadliest infectious diseases, and has a tremendous morbidity and mortality impact in the developing world. The propensity of the parasites to develop drug resistance, and the relative reluctance of the pharmaceutical industry to invest massively in the developments of drugs that would offer only limited marketing prospects, are major issues in antimalarial drug discovery. Protein kinases (PKs) have become a major family of targets for drug discovery research in a number of disease contexts, which has generated considerable resources such as kinase-directed libraries and high throughput kinase inhibition assays. The phylogenetic distance between malaria parasites and their human host translates into important divergences in their respective kinomes, and most Plasmodium kinases display atypical properties (as compared to mammalian PKs) that can be exploited towards selective inhibition. Here, we discuss the taxon-specific kinases possessed by malaria parasites, and give an overview of target PKs that have been validated by reverse genetics, either in the human malaria parasite Plasmodium falciparum or in the rodent model Plasmodium berghei. We also briefly allude to the possibility of attacking Plasmodium through the inhibition of human PKs that are required for survival of this obligatory intracellular parasite, and which are targets for other human diseases.
Collapse
Affiliation(s)
- Christian Doerig
- Inserm U609/Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chung DWD, Ponts N, Cervantes S, Le Roch KG. Post-translational modifications in Plasmodium: more than you think! Mol Biochem Parasitol 2009; 168:123-34. [PMID: 19666057 DOI: 10.1016/j.molbiopara.2009.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/10/2009] [Accepted: 08/03/2009] [Indexed: 12/21/2022]
Abstract
Recent evidences indicate that transcription in Plasmodium may be hard-wired and rigid, deviating from the classical model of transcriptional gene regulation. Thus, it is important that other regulatory pathways be investigated as a comprehensive effort to curb the deadly malarial parasite. Research in post-translational modifications in Plasmodium is an emerging field that may provide new venues for drug discovery and potential new insights into how parasitic protozoans regulate their life cycle. Here, we discuss the recent findings of post-translational modifications in Plasmodium.
Collapse
Affiliation(s)
- Duk-Won Doug Chung
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
42
|
Geyer JA, Keenan SM, Woodard CL, Thompson PA, Gerena L, Nichols DA, Gutteridge CE, Waters NC. Selective inhibition of Pfmrk, a Plasmodium falciparum CDK, by antimalarial 1,3-diaryl-2-propenones. Bioorg Med Chem Lett 2009; 19:1982-5. [PMID: 19250824 DOI: 10.1016/j.bmcl.2009.02.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 11/24/2022]
Abstract
The cyclin dependent protein kinases, Pfmrk and PfPK5, most likely play an essential role in cell cycle control and differentiation in Plasmodium falciparum and are thus an attractive target for antimalarial drug development. Various 1,3-diaryl-2-propenones (chalcone derivatives) which selectivity inhibit Pfmrk in the low micromolar range (over PfPK5) are identified. Molecular modeling shows a pair of amino acid residues within the Pfmrk active site which appear to confer this selectivity. Predicted interactions between the chalcones and Pfmrk correlate well with observed potency. Pfmrk inhibition and activity against the parasite in vitro correlate weakly. Several mechanisms of action have been suggested for chalcone derivatives and our study suggests that kinase inhibition may be an additional mechanism of antimalarial activity for this class of compounds.
Collapse
Affiliation(s)
- Jeanne A Geyer
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Molecular machinery of signal transduction and cell cycle regulation in Plasmodium. Mol Biochem Parasitol 2009; 165:1-7. [PMID: 19393157 DOI: 10.1016/j.molbiopara.2009.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/27/2008] [Accepted: 01/07/2009] [Indexed: 11/24/2022]
Abstract
The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is controlled and how the cell cycle is managed in all phases of their complex life cycle. Cell cycle synchrony of the parasite population within the host, as well as the circadian rhythm of proliferation, are striking features of some Plasmodium species, the molecular basis of which remains to be elucidated. In this review we discuss the role of indole-related molecules as signals that modulate the cell cycle in Plasmodium and other eukaryotes, and we also consider the possible role of kinases in the signal transduction and in the responses it triggers.
Collapse
|
44
|
Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine. J Antibiot (Tokyo) 2009; 62:17-26. [PMID: 19132059 DOI: 10.1038/ja.2008.4] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Staurosporine was discovered at the Kitasato Institute in 1977 while screening for microbial alkaloids using chemical detection methods. It was during the same era that protein kinase C was discovered and oncogene v-src was shown to have protein kinase activity. Staurosporine was first isolated from a culture of Actinomyces that originated in a soil sample collected in Mizusawa City, Japan. Thereafter, indolocarbazole compounds have been isolated from a variety of organisms. The biosynthesis of staurosporine and related indolocarbazoles was finally elucidated during the past decade through genetic and biochemical studies. Subsequently, several novel indolocarbazoles have been produced using combinatorial biosynthesis. In 1986, 9 years since its discovery, staurosporine and related indolocarbazoles were shown to be nanomolar inhibitors of protein kinases. They can thus be viewed as forerunners of today's crop of novel anticancer drugs. The finding led many pharmaceutical companies to search for selective protein kinase inhibitors by screening natural products and through chemical synthesis. In the 1990s, imatinib, a Bcr-Abl tyrosine kinase inhibitor, was synthesized and, following human clinical trials for chronic myelogenous leukemia, it was approved for use in the USA in 2001. In 1992, mammalian topoisomerases were shown to be targets for indolocarbazoles. This opened up new possibilities in that indolocarbazole compounds could selectively interact with ATP-binding sites of not only protein kinases but also other proteins that had slight differences in ATP-binding sites. ABCG2, an ATP-binding cassette transporter, was recently identified as an important new target for indolocarbazoles.
Collapse
|
45
|
Protein kinases of malaria parasites: an update. Trends Parasitol 2008; 24:570-7. [PMID: 18845480 DOI: 10.1016/j.pt.2008.08.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/04/2008] [Accepted: 08/11/2008] [Indexed: 11/24/2022]
Abstract
Protein kinases (PKs) play crucial roles in the control of proliferation and differentiation in eukaryotic cells. Research on protein phosphorylation has expanded tremendously in the past few years, in part as a consequence of the realization that PKs represent attractive drug targets in a variety of diseases. Activity in Plasmodium PK research has followed this trend, and several reports on various aspects of this subject were delivered at the Molecular Approaches to Malaria 2008 meeting (MAM2008), a sharp increase from the previous meeting. Here, the authors of most of these communications join to propose an integrated update of the development of the rapidly expanding field of Plasmodium kinomics.
Collapse
|
46
|
Heterologous expression of plasmodial proteins for structural studies and functional annotation. Malar J 2008; 7:197. [PMID: 18828893 PMCID: PMC2567985 DOI: 10.1186/1475-2875-7-197] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/01/2008] [Indexed: 11/10/2022] Open
Abstract
Malaria remains the world's most devastating tropical infectious disease with as many as 40% of the world population living in risk areas. The widespread resistance of Plasmodium parasites to the cost-effective chloroquine and antifolates has forced the introduction of more costly drug combinations, such as Coartem®. In the absence of a vaccine in the foreseeable future, one strategy to address the growing malaria problem is to identify and characterize new and durable antimalarial drug targets, the majority of which are parasite proteins. Biochemical and structure-activity analysis of these proteins is ultimately essential in the characterization of such targets but requires large amounts of functional protein. Even though heterologous protein production has now become a relatively routine endeavour for most proteins of diverse origins, the functional expression of soluble plasmodial proteins is highly problematic and slows the progress of antimalarial drug target discovery. Here the status quo of heterologous production of plasmodial proteins is presented, constraints are highlighted and alternative strategies and hosts for functional expression and annotation of plasmodial proteins are reviewed.
Collapse
|
47
|
Vougogiannopoulou K, Ferandin Y, Bettayeb K, Myrianthopoulos V, Lozach O, Fan Y, Johnson CH, Magiatis P, Skaltsounis AL, Mikros E, Meijer L. Soluble 3',6-substituted indirubins with enhanced selectivity toward glycogen synthase kinase -3 alter circadian period. J Med Chem 2008; 51:6421-31. [PMID: 18816110 DOI: 10.1021/jm800648y] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycogen synthase kinase -3 (GSK-3) is a key enzyme involved in numerous physiological events and in major diseases, such as Alzheimer's disease, diabetes, and cardiac hypertrophy. Indirubins are bis-indoles that can be generated from various natural sources or chemically synthesized. While rather potent and selective as GSK-3 inhibitors, most indirubins exhibit low water solubility. To address the issue of solubility, we have designed novel analogues of 6-bromo-indirubin-3'-oxime with increased hydrophilicity based on the GSK-3/indirubins cocrystal structures. The new derivatives with an extended amino side chain attached at position 3' showed potent GSK-3 inhibitory activity, enhanced selectivity, and dramatically increased water solubility. Furthermore, some of them displayed little or no cytotoxicity. The new indirubins inhibit GSK-3 in a cellular reporter model. They alter the circadian period measured in rhythmically expressing cell cultures, suggesting that they might constitute tools to investigate circadian rhythm regulation.
Collapse
Affiliation(s)
- Konstantina Vougogiannopoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Leroy D, Doerig C. Drugging the Plasmodium kinome: the benefits of academia-industry synergy. Trends Pharmacol Sci 2008; 29:241-9. [PMID: 18394721 DOI: 10.1016/j.tips.2008.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/25/2008] [Accepted: 02/25/2008] [Indexed: 01/21/2023]
Abstract
Malaria remains a major killer in many parts of the world. Recently, the development of nonprofit organisations aimed at fighting this deadly scourge incited academic and industrial scientists to merge their expertise in drug-target validation and lead discovery. Expectations are clear: identification and characterisation of new molecules showing high efficacy, low toxicity and little propensity to induce resistance in the parasite. In this context, protein kinase inhibitors represent an attractive possibility. Here, we compare traditional target-based drug-discovery approaches with innovative exploratory paths (parallel screening, cell-based assays, integrated systems biology and allosteric inhibition) and discuss the benefits of acadaemia-industry cooperation. Early characterisation of distribution, metabolism, pharmacokinetic (DMPK) and toxicology parameters are considered as well.
Collapse
Affiliation(s)
- Didier Leroy
- Merck-Serono International S.A., Geneva Research Center, 9, Chemin des Mines, Case postale 54, CH-1211 Genève 20, Switzerland.
| | | |
Collapse
|
49
|
Peng Y, Keenan SM, Welsh WJ. Structural model of the Plasmodium CDK, Pfmrk, a novel target for malaria therapeutics. J Mol Graph Model 2008; 24:72-80. [PMID: 16046158 DOI: 10.1016/j.jmgm.2005.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/07/2005] [Accepted: 06/07/2005] [Indexed: 12/28/2022]
Abstract
Malaria, with 300-500 million clinical cases resulting in 1-3 million fatalities a year, is one of the most deadly tropical diseases. As current antimalarial therapeutics become increasingly ineffective due to parasitic resistance, there exists an urgent need to develop and pursue new therapeutic strategies. Recent genome sequencing and molecular cloning projects have identified several enzymes from Plasmodium (P.) falciparum that may represent novel drug targets, including a family of proteins that are homologous to the mammalian cyclin-dependent kinases (CDKs). CDKs are essential for the control of the mammalian cell cycle and, based on the conservation of the CDKs across species, the plasmodial CDKs are expected to play a crucial role in parasitic growth. Here we present a 3D structural model of Pfmrk, a putative human CDK activating kinase (CAK) homolog in P. falciparum. Notable features of the present structural model include: (1) parameterization of the Mg2+ hexacoordination system using ab initio quantum chemical calculations to accurately represent the ATP-kinase interaction; and (2) comparison between the docking scores and measured binding affinities for a series of oxindole-based Pfmrk inhibitors of known activity. Detailed analysis of inhibitor-Pfmrk binding interactions enabled us to identify specific residues (viz. Met66, Met75, Met91, Met94 and Phe143) within the Pfmrk binding pocket that may play an important role in inhibitor binding affinity and selectivity. The availability of this Pfmrk structural model, together with insights gained from analysis of ligand-receptor interactions, should promote the rational design of potent and selective Pfmrk inhibitors as antimalarial therapeutics.
Collapse
Affiliation(s)
- Youyi Peng
- Department of Pharmacology, University of Medicine & Dentistry of New Jersey-Robert Wood Johnson Medical School (UMDNJ-RWJMS) and the Informatics Institute of UMDNJ, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
50
|
Diversity of the intracellular mechanisms underlying the anti-tumor properties of indirubins. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.07.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|