1
|
Giri RP, Mukhopadhyay MK, Sanyal MK, Bose D, Chakrabarti A, Quan P, Bu W, Lin B. Structural Flexibility of Proteins Dramatically Alters Membrane Stability─A Novel Aspect of Lipid-Protein Interaction. J Phys Chem Lett 2022; 13:11430-11437. [PMID: 36468973 DOI: 10.1021/acs.jpclett.2c02971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Protein isoforms are structural variants with changes in the overall flexibility predominantly at the tertiary level. For membrane associated proteins, such structural flexibility or rigidity affects membrane stability by playing modulatory roles in lipid-protein interaction. Herein, we investigate the protein chain flexibility mediated changes in the mechanistic behavior of phospholipid model membranes in the presence of two well-known isoforms, erythroid (ER) and nonerythroid (NER) spectrin. We show dramatic alterations of membrane elasticity and stability induced by spectrin in the Langmuir monolayers of phosphatidylocholine (PC) and phosphatidylethanolamine (PE) by a combination of isobaric relaxation, surface pressure-area isotherm, X-ray scattering, and microscopy measurements. The NER spectrin drives all monolayers to possess an approximately equal stability, and that required 25-fold increase and 5-fold decrease of stability in PC and PE monolayers, respectively. The untilting transition of the PC membrane in the presence of NER spectrin observed in X-ray measurements can explain better membrane packing and stability.
Collapse
Affiliation(s)
- Rajendra P Giri
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
- Institute for Experimental and Applied Physics, Kiel University, 24118Kiel, Germany
| | - Mrinmay K Mukhopadhyay
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
| | - Milan K Sanyal
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
| | - Dipayan Bose
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
| | - Abhijit Chakrabarti
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational & Research Institute, Narendrapur, Kolkata700103, India
| | - Peiyu Quan
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois60637, United States
| | - Wei Bu
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois60637, United States
| | - Binhua Lin
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
2
|
Tan Y, Jin Y, Zhao P, Wu J, Ren Z. Lipid droplets contribute myogenic differentiation in C2C12 by promoting the remodeling of the acstin-filament. Cell Death Dis 2021; 12:1102. [PMID: 34815388 PMCID: PMC8611090 DOI: 10.1038/s41419-021-04273-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
Lipid droplet (LD), a multi-functional organelle, is found in most eukaryotic cells. LDs participate in the regulation of many cellular processes including proliferation, stress, and apoptosis. Previous studies showed the athlete's paradox that trained athletes accumulate LDs in their skeletal muscle. However, the impact of LDs on skeletal muscle and myogenesis is not clear. We discovered that C2C12 myoblast cells containing more LDs formed more multinucleated muscle fibers. We also discovered that LDs promoted cell migration and fusion by promoting actin-filaments remodeling. Mechanistically, two LD-proteins, Acyl-CoA synthetase long chain family member 3 (ACSL3) and lysophosphatidylcholine acyltransferase 1 (LPCAT1), medicated the recruitment of actinin proteins which contributed to actin-filaments formation on the surface of LDs. During remodeling, the actinin proteins on LDs surface translocated to actin-filaments via ARF1/COPI vesicles. Our study demonstrate LDs contribute to cell differentiation, which lead to new insight into the LD function.
Collapse
Affiliation(s)
- Yanjie Tan
- grid.35155.370000 0004 1790 4137Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, 430070 Wuhan, Hubei P. R. China ,grid.410585.d0000 0001 0495 1805Institute of Biomedical Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 250014 Jinan, Shandong China
| | - Yi Jin
- grid.35155.370000 0004 1790 4137Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, 430070 Wuhan, Hubei P. R. China
| | - Pengxiang Zhao
- grid.35155.370000 0004 1790 4137Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, 430070 Wuhan, Hubei P. R. China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, 430070, Wuhan, Hubei, P. R. China.
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, 430070, Wuhan, Hubei, P. R. China. .,Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Miazek A, Zalas M, Skrzymowska J, Bogin BA, Grzymajło K, Goszczynski TM, Levine ZA, Morrow JS, Stankewich MC. Age-dependent ataxia and neurodegeneration caused by an αII spectrin mutation with impaired regulation of its calpain sensitivity. Sci Rep 2021; 11:7312. [PMID: 33790315 PMCID: PMC8012654 DOI: 10.1038/s41598-021-86470-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
The neuronal membrane-associated periodic spectrin skeleton (MPS) contributes to neuronal development, remodeling, and organization. Post-translational modifications impinge on spectrin, the major component of the MPS, but their role remains poorly understood. One modification targeting spectrin is cleavage by calpains, a family of calcium-activated proteases. Spectrin cleavage is regulated by activated calpain, but also by the calcium-dependent binding of calmodulin (CaM) to spectrin. The physiologic significance of this balance between calpain activation and substrate-level regulation of spectrin cleavage is unknown. We report a strain of C57BL/6J mice harboring a single αII spectrin point mutation (Sptan1 c.3293G > A:p.R1098Q) with reduced CaM affinity and intrinsically enhanced sensitivity to calpain proteolysis. Homozygotes are embryonic lethal. Newborn heterozygotes of either gender appear normal, but soon develop a progressive ataxia characterized biochemically by accelerated calpain-mediated spectrin cleavage and morphologically by disruption of axonal and dendritic integrity and global neurodegeneration. Molecular modeling predicts unconstrained exposure of the mutant spectrin's calpain-cleavage site. These results reveal the critical importance of substrate-level regulation of spectrin cleavage for the maintenance of neuronal integrity. Given that excessive activation of calpain proteases is a common feature of neurodegenerative disease and traumatic encephalopathy, we propose that damage to the spectrin MPS may contribute to the neuropathology of many disorders.
Collapse
Affiliation(s)
- Arkadiusz Miazek
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Michał Zalas
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Joanna Skrzymowska
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Bryan A Bogin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Krzysztof Grzymajło
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Tomasz M Goszczynski
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Zachary A Levine
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, LH108, New Haven, CT, 06520, USA
| | - Jon S Morrow
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, LH108, New Haven, CT, 06520, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Michael C Stankewich
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, LH108, New Haven, CT, 06520, USA.
| |
Collapse
|
4
|
Ranade SS, Ramalingam R. Hydrogen bonds in anoplin peptides aid in identification of a structurally stable therapeutic drug scaffold. J Mol Model 2020; 26:155. [PMID: 32451705 DOI: 10.1007/s00894-020-04380-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/07/2020] [Indexed: 12/30/2022]
Abstract
Multi-drug resistance is a major issue faced by the global pharmaceutical industry. Short antimicrobial peptides such as anoplins can be used to replace antibiotics, thus mitigating this issue. Antimicrobial activity, non-toxicity, and structural stability are essential features of a therapeutic drug. Antimicrobial activity and toxicity to human erythrocytes have been previously reported for anoplin and anoplin R5K T8W. This study attempts to identify a therapeutic peptide drug scaffold between these peptides by examining their structural stability, mainly based on the hydrogen bonds (H-bond) found in their structures. The static structure of anoplin R5K T8W displayed lower H-bond distances than anoplin, thereby exhibiting enhanced structural stability. Dynamic stability studies revealed that conformers of anoplin R5K T8W exhibited lower hydrogen bond distances (HBDs), higher H-bond occupancies, and higher radial distribution function (RDF) of H-bonds in comparison with conformers of anoplin. Furthermore, conformers of anoplin R5K T8W generated using 50-ns molecular dynamics simulation displayed lower conformational free energy than anoplin, thus establishing its higher structural stability. Overall, anoplin R5K T8W can be claimed as a promising scaffold that may be used for therapeutic purposes. In conclusion, H-bonds play a major role in structural stability and may aid in identification of a therapeutic peptide scaffold. Graphical abstract.
Collapse
Affiliation(s)
- Shruti Sunil Ranade
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, 632014, India
| | - Rajasekaran Ramalingam
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Mechanical Unfolding of Spectrin Repeats Induces Water-Molecule Ordering. Biophys J 2020; 118:1076-1089. [PMID: 32027822 DOI: 10.1016/j.bpj.2020.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanical processes are involved at many stages of the development of living cells, and often external forces applied to a biomolecule result in its unfolding. Although our knowledge of the unfolding mechanisms and the magnitude of the forces involved has evolved, the role that water molecules play in the mechanical unfolding of biomolecules has not yet been fully elucidated. To this end, we investigated with steered molecular dynamics simulations the mechanical unfolding of dystrophin's spectrin repeat 1 and related the changes in the protein's structure to the ordering of the surrounding water molecules. Our results indicate that upon mechanically induced unfolding of the protein, the solvent molecules become more ordered and increase their average number of hydrogen bonds. In addition, the unfolded structures originating from mechanical pulling expose an increasing amount of the hydrophobic residues to the solvent molecules, and the uncoiled regions adapt a convex surface with a small radius of curvature. As a result, the solvent molecules reorganize around the protein's small protrusions in structurally ordered waters that are characteristic of the so-called "small-molecule regime," which allows water to maintain a high hydrogen bond count at the expense of an increased structural order. We also determined that the response of water to structural changes in the protein is localized to the specific regions of the protein that undergo unfolding. These results indicate that water plays an important role in the mechanically induced unfolding of biomolecules. Our findings may prove relevant to the ever-growing interest in understanding macromolecular crowding in living cells and their effects on protein folding, and suggest that the hydration layer may be exploited as a means for short-range allosteric communication.
Collapse
|
6
|
Backman L. Alpha-actinin of the chlorarchiniophyte Bigelowiella natans. PeerJ 2018; 6:e4288. [PMID: 29372122 PMCID: PMC5775757 DOI: 10.7717/peerj.4288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/03/2018] [Indexed: 12/29/2022] Open
Abstract
The genome of the chlorarchiniophyte Bigelowiella natans codes for a protein annotated as an α-actinin-like protein. Analysis of the primary sequence indicate that this protein has the same domain structure as other α-actinins, a N-terminal actin-binding domain and a C-terminal calmodulin-like domain. These two domains are connected by a short rod domain, albeit long enough to form a single spectrin repeat. To analyse the functional properties of this protein, the full-length protein as well as the separate domains were cloned and isolated. Characerisation showed that the protein is capable of cross-linking actin filaments into dense bundles, probably due to dimer formation. Similar to human α-actinin, calcium-binding occurs to the most N-terminal EF-hand motif in the calmodulin-like C-terminal domain. The results indicate that this Bigelowiella protein is a proper α-actinin, with all common characteristics of a typical α-actinin.
Collapse
Affiliation(s)
- Lars Backman
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Gessner C, Steinchen W, Bédard S, J Skinner J, Woods VL, Walsh TJ, Bange G, Pantazatos DP. Computational method allowing Hydrogen-Deuterium Exchange Mass Spectrometry at single amide Resolution. Sci Rep 2017. [PMID: 28630467 PMCID: PMC5476592 DOI: 10.1038/s41598-017-03922-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hydrogen-deuterium exchange (HDX) coupled with mass spectrometry (HDXMS) is a rapid and effective method for localizing and determining protein stability and dynamics. Localization is routinely limited to a peptide resolution of 5 to 20 amino acid residues. HDXMS data can contain information beyond that needed for defining protein stability at single amide resolution. Here we present a method for extracting this information from an HDX dataset to generate a HDXMS protein stability fingerprint. High resolution (HR)-HDXMS was applied to the analysis of a model protein of a spectrin tandem repeat that exemplified an intuitive stability profile based on the linkage of two triple helical repeats connected by a helical linker. The fingerprint recapitulated expected stability maximums and minimums with interesting structural features that corroborate proposed mechanisms of spectrin flexibility and elasticity. HR-HDXMS provides the unprecedented ability to accurately assess protein stability at the resolution of a single amino acid. The determination of HDX stability fingerprints may be broadly applicable in many applications for understanding protein structure and function as well as protein ligand interactions.
Collapse
Affiliation(s)
- Chris Gessner
- Indiana University, Department of Informatics and Computing, Bloomington, IN, USA
| | - Wieland Steinchen
- Philipps-University Marburg, Faculty of Chemistry & LOEWE Center for Synthetic Microbiology Hans-Meerwein-Strasse, 35043, Marburg, Germany
| | - Sabrina Bédard
- GlaxoSmithKline, Platform Technology & Science, Collegeville Road, Collegeville, Pennsylvania, 19426, United States
| | - John J Skinner
- iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai, China
| | - Virgil L Woods
- Indiana University, Department of Informatics and Computing, Bloomington, IN, USA
| | - Thomas J Walsh
- Weill Cornell Medicine, Transplantation-Oncology Infectious Disease Program, Division of Infectious Diseases, 1300 York Ave, New York, NY, 10065, USA
| | - Gert Bange
- Philipps-University Marburg, Faculty of Chemistry & LOEWE Center for Synthetic Microbiology Hans-Meerwein-Strasse, 35043, Marburg, Germany
| | - Dionysios P Pantazatos
- Weill Cornell Medicine, Transplantation-Oncology Infectious Disease Program, Division of Infectious Diseases, 1300 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Delalande O, Czogalla A, Hubert JF, Sikorski A, Le Rumeur E. Dystrophin and Spectrin, Two Highly Dissimilar Sisters of the Same Family. Subcell Biochem 2017; 82:373-403. [PMID: 28101868 DOI: 10.1007/978-3-319-49674-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dystrophin and Spectrin are two proteins essential for the organization of the cytoskeleton and for the stabilization of membrane cells. The comparison of these two sister proteins, and with the dystrophin homologue utrophin, enables us to emphasise that, despite a similar topology with common subdomains and a common structural basis of a three-helix coiled-coil, they show a large range of dissimilarities in terms of genetics, cell expression and higher level structural organisation. Interactions with cellular partners, including proteins and membrane phospholipids, also show both strikingly similar and very different behaviours. The differences between dystrophin and spectrin are also illustrated by the large variety of pathological anomalies emerging from the dysfunction or the absence of these proteins, showing that they are keystones in their function of providing a scaffold that sustains cell structure.
Collapse
Affiliation(s)
- Olivier Delalande
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes 1, Rennes, France.
| | - Aleksander Czogalla
- Biotechnology Faculty, Department of Cytobiochemistry, University of Wrocław, ul. joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jean-François Hubert
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes 1, Rennes, France
| | - Aleksander Sikorski
- Biotechnology Faculty, Department of Cytobiochemistry, University of Wrocław, ul. joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Elisabeth Le Rumeur
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes 1, Rennes, France
| |
Collapse
|
9
|
Ivanov IT, Paarvanova B. Dielectric relaxations on erythrocyte membrane as revealed by spectrin denaturation. Bioelectrochemistry 2016; 110:59-68. [PMID: 27071054 DOI: 10.1016/j.bioelechem.2016.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 11/30/2022]
Abstract
We studied the effect of spectrin denaturation at 49.5°C (TA) on the dielectric relaxations and related changes in the complex impedance, Z*, complex capacitance, C*, and dielectric loss curve of suspensions containing human erythrocytes, erythrocyte ghost membranes (EMs) and Triton-X-100 residues of EMs. The loss curve prior to, minus the loss curve after TA, resulted in a bell-shaped peak at 1.5MHz. The changes in the real and imaginary components of Z* and C* at TA, i.e., ΔZre, ΔZim, ΔCre and ΔCim, calculated in the same way, strongly varied with frequency. Between 1.0 and 12MHz the -ΔZim vs ΔZre, and ΔCim vs ΔCre plots depicted semicircles with critical frequencies, fcr, at 2.5MHz expressing recently reported relaxation of spectrin dipoles. Between 0.02 and 1.0MHz the -ΔZim vs ΔZre plot exhibited another relaxation whose fcr mirrored that of beta relaxation. This relaxation was absent on Triton-X-shells, while on erythrocytes and EMs it was inhibited by selective dissociation of either attachment sites between spectrin and bilayer. Considering above findings and inaccessibility of cytosole to outside field at such frequencies, the latter relaxation was assumed originating from a piezoelectric effect on the highly deformable spectrin filaments.
Collapse
Affiliation(s)
- I T Ivanov
- Dept. of Physics, Biophysics, Reontgenology and Radiology, Medical Faculty, Thracian University, Stara Zagora 6000, Bulgaria.
| | - B Paarvanova
- Dept. of Physics, Biophysics, Reontgenology and Radiology, Medical Faculty, Thracian University, Stara Zagora 6000, Bulgaria
| |
Collapse
|
10
|
Mücksch C, Urbassek HM. Accelerating Steered Molecular Dynamics: Toward Smaller Velocities in Forced Unfolding Simulations. J Chem Theory Comput 2016; 12:1380-4. [DOI: 10.1021/acs.jctc.5b01024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian Mücksch
- Fachbereich Physik und Forschungszentrum
OPTIMAS, University of Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| | - Herbert M. Urbassek
- Fachbereich Physik und Forschungszentrum
OPTIMAS, University of Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| |
Collapse
|
11
|
Brown JW, Bullitt E, Sriswasdi S, Harper S, Speicher DW, McKnight CJ. The Physiological Molecular Shape of Spectrin: A Compact Supercoil Resembling a Chinese Finger Trap. PLoS Comput Biol 2015; 11:e1004302. [PMID: 26067675 PMCID: PMC4466138 DOI: 10.1371/journal.pcbi.1004302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/27/2015] [Indexed: 01/29/2023] Open
Abstract
The primary, secondary, and tertiary structures of spectrin are reasonably well defined, but the structural basis for the known dramatic molecular shape change, whereby the molecular length can increase three-fold, is not understood. In this study, we combine previously reported biochemical and high-resolution crystallographic data with structural mass spectroscopy and electron microscopic data to derive a detailed, experimentally-supported quaternary structure of the spectrin heterotetramer. In addition to explaining spectrin’s physiological resting length of ~55-65 nm, our model provides a mechanism by which spectrin is able to undergo a seamless three-fold extension while remaining a linear filament, an experimentally observed property. According to the proposed model, spectrin’s quaternary structure and mechanism of extension is similar to a Chinese Finger Trap: at shorter molecular lengths spectrin is a hollow cylinder that extends by increasing the pitch of each spectrin repeat, which decreases the internal diameter. We validated our model with electron microscopy, which demonstrated that, as predicted, spectrin is hollow at its biological resting length of ~55-65 nm. The model is further supported by zero-length chemical crosslink data indicative of an approximately 90 degree bend between adjacent spectrin repeats. The domain-domain interactions in our model are entirely consistent with those present in the prototypical linear antiparallel heterotetramer as well as recently reported inter-strand chemical crosslinks. The model is consistent with all known physical properties of spectrin, and upon full extension our Chinese Finger Trap Model reduces to the ~180-200 nm molecular model currently in common use. Spectrins are cytoskeletal and scaffolding proteins ubiquitously expressed in essentially all cell-types. Despite unequivocal evidence for a short physiological length of ~55–65 nm at rest, spectrin is typically represented as an extended ~200 nm molecule that is implied based on crystallographic structures of a number of tandem repeats. Here, we incorporate previously reported biochemical and crystallographic data with structural mass spectroscopy and electron microscopic data to derive a detailed, experimentally-supported quaternary structure of the physiological compact form of spectrin. In addition to explaining spectrin’s physiological resting length (~55–65 nm), our model provides a mechanism by which spectrin can undergo a seamless three-fold extension, which is an experimentally observed property that is responsible for restoration of cell shape after mechanical deformation.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Internal Medicine Residency Program, University of Pittsburgh Medical Center, UPMC Montefiore Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sira Sriswasdi
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, the Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sandra Harper
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, the Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David W. Speicher
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, the Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - C. James McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Monlezun L, Liebl D, Fenel D, Grandjean T, Berry A, Schoehn G, Dessein R, Faudry E, Attree I. PscI is a type III secretion needle anchoring protein within vitropolymerization capacities. Mol Microbiol 2015; 96:419-36. [DOI: 10.1111/mmi.12947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Laura Monlezun
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - David Liebl
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Daphna Fenel
- Université Grenoble Alpes; Institut de Biologie Structurale (IBS); 71 avenue des Martyrs 38044 Grenoble France
- CNRS; IBS; F-38044 Grenoble France
- CEA; IBS; F-38044 Grenoble France
| | - Teddy Grandjean
- Groupe de Recherche Translationnelle de la Relation Hôte-Pathogène; Faculté de Médecine de l'Université de Lille; 59000 Lille France
| | - Alice Berry
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Guy Schoehn
- Université Grenoble Alpes; Institut de Biologie Structurale (IBS); 71 avenue des Martyrs 38044 Grenoble France
- CNRS; IBS; F-38044 Grenoble France
- CEA; IBS; F-38044 Grenoble France
- Unit for Virus Host Cell Interactions UMI 3265 (UJF-EMBL-CNRS); 38027 Grenoble France
| | - Rodrigue Dessein
- Groupe de Recherche Translationnelle de la Relation Hôte-Pathogène; Faculté de Médecine de l'Université de Lille; 59000 Lille France
| | - Eric Faudry
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Ina Attree
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| |
Collapse
|
13
|
Structure and function of a spectrin-like regulator of bacterial cytokinesis. Nat Commun 2014; 5:5421. [PMID: 25403286 PMCID: PMC4243239 DOI: 10.1038/ncomms6421] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/30/2014] [Indexed: 11/09/2022] Open
Abstract
Bacterial cell division is facilitated by a molecular machine--the divisome--that assembles at mid-cell in dividing cells. The formation of the cytokinetic Z-ring by the tubulin homologue FtsZ is regulated by several factors, including the divisome component EzrA. Here we describe the structure of the 60-kDa cytoplasmic domain of EzrA, which comprises five linear repeats of an unusual triple helical bundle. The EzrA structure is bent into a semicircle, providing the protein with the potential to interact at both N- and C-termini with adjacent membrane-bound divisome components. We also identify at least two binding sites for FtsZ on EzrA and map regions of EzrA that are responsible for regulating FtsZ assembly. The individual repeats, and their linear organization, are homologous to the spectrin proteins that connect actin filaments to the membrane in eukaryotes, and we thus propose that EzrA is the founding member of the bacterial spectrin family.
Collapse
|
14
|
Zhang B, Liu B, Zhang H, Wang J. Erythrocyte stiffness during morphological remodeling induced by carbon ion radiation. PLoS One 2014; 9:e112624. [PMID: 25401336 PMCID: PMC4234377 DOI: 10.1371/journal.pone.0112624] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/03/2014] [Indexed: 12/21/2022] Open
Abstract
The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new strategy for enhancing the assessment of the curative effects and safety of clinical radiotherapy, as well as reducing adverse effects.
Collapse
Affiliation(s)
- Baoping Zhang
- School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou University, 730000, PR China
- Institute of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Bin Liu
- Institute of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou, 730000, PR China
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Jizeng Wang
- School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou University, 730000, PR China
- Institute of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
15
|
Nicolas A, Delalande O, Hubert JF, Le Rumeur E. The spectrin family of proteins: A unique coiled-coil fold for various molecular surface properties. J Struct Biol 2014; 186:392-401. [DOI: 10.1016/j.jsb.2014.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/11/2023]
|
16
|
Probing large conformational rearrangements in wild-type and mutant spectrin using structural mass spectrometry. Proc Natl Acad Sci U S A 2014; 111:1801-6. [PMID: 24453214 DOI: 10.1073/pnas.1317620111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conformational changes of macromolecular complexes play key mechanistic roles in many biological processes, but large, highly flexible proteins and protein complexes usually cannot be analyzed by crystallography or NMR. Here, structures and conformational changes of the highly flexible, dynamic red cell spectrin and effects of a common mutation that disrupts red cell membranes were elucidated using chemical cross-linking coupled with mass spectrometry. Interconversion of spectrin between closed dimers, open dimers, and tetramers plays a key role in maintaining red cell shape and membrane integrity, and spectrins in other cell types serve these as well as more diverse functions. Using a minispectrin construct, experimentally verified structures of closed dimers and tetramers were determined by combining distance constraints from zero-length cross-links with molecular models and biophysical data. Subsequent biophysical and structural mass spectrometry characterization of a common hereditary elliptocytosis-related mutation of α-spectrin, L207P, showed that cell membranes were destabilized by a shift of the dimer-tetramer equilibrium toward closed dimers. The structure of αL207P mutant closed dimers provided previously unidentified mechanistic insight into how this mutation, which is located a large distance from the tetramerization site, destabilizes spectrin tetramers and cell membrane integrity.
Collapse
|
17
|
Harper SL, Sriswasdi S, Tang HY, Gaetani M, Gallagher PG, Speicher DW. The common hereditary elliptocytosis-associated α-spectrin L260P mutation perturbs erythrocyte membranes by stabilizing spectrin in the closed dimer conformation. Blood 2013; 122:3045-53. [PMID: 23974198 PMCID: PMC3811177 DOI: 10.1182/blood-2013-02-487702] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/15/2013] [Indexed: 12/13/2022] Open
Abstract
Hereditary elliptocytosis (HE) and hereditary pyropoikilocytosis (HPP) are common disorders of erythrocyte shape primarily because of mutations in spectrin. The most common HE/HPP mutations are located distant from the critical αβ-spectrin tetramerization site, yet still interfere with formation of spectrin tetramers and destabilize the membrane by unknown mechanisms. To address this question, we studied the common HE-associated mutation, αL260P, in the context of a fully functional mini-spectrin. The mutation exhibited wild-type tetramer binding in univalent binding assays, but reduced binding affinity in bivalent-binding assays. Biophysical analyses demonstrated the mutation-containing domain was only modestly structurally destabilized and helical content was not significantly changed. Gel filtration analysis of the αL260P mini-spectrin indicated more compact structures for dimers and tetramers compared with wild-type. Chemical crosslinking showed structural changes in the mutant mini-spectrin dimer were primarily restricted to the vicinity of the αL260P mutation and indicated large conformational rearrangements of this region. These data indicate the mutation increased the stability of the closed dimer state, thereby reducing tetramer assembly and resulting in membrane destabilization. These results reveal a novel mechanism of erythrocyte membrane destabilization that could contribute to development of therapeutic interventions for mutations in membrane proteins containing spectrin-type domains associated with inherited disease.
Collapse
Affiliation(s)
- Sandra L Harper
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA
| | | | | | | | | | | |
Collapse
|
18
|
Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Bogusławska DM, Grochowalska R, Heger E, Sikorski AF. Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:620-34. [PMID: 23673272 DOI: 10.1016/j.bbamem.2013.05.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
This review focuses on structure and functions of spectrin as a major component of the membrane skeleton. Recent advances on spectrin function as an interface for signal transduction mediation and a number of data concerning interaction of spectrin with membrane channels, adhesion molecules, receptors and transporters draw a picture of multifaceted protein. Here, we attempted to show the current depiction of multitask role of spectrin in cell physiology. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Beata Machnicka
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | | | | | | | | - Elżbieta Heger
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | |
Collapse
|
19
|
Autore F, Pfuhl M, Quan X, Williams A, Roberts RG, Shanahan CM, Fraternali F. Large-scale modelling of the divergent spectrin repeats in nesprins: giant modular proteins. PLoS One 2013; 8:e63633. [PMID: 23671687 PMCID: PMC3646009 DOI: 10.1371/journal.pone.0063633] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 04/09/2013] [Indexed: 11/29/2022] Open
Abstract
Nesprin-1 and nesprin-2 are nuclear envelope (NE) proteins characterized by a common structure of an SR (spectrin repeat) rod domain and a C-terminal transmembrane KASH [Klarsicht-ANC-Syne-homology] domain and display N-terminal actin-binding CH (calponin homology) domains. Mutations in these proteins have been described in Emery-Dreifuss muscular dystrophy and attributed to disruptions of interactions at the NE with nesprins binding partners, lamin A/C and emerin. Evolutionary analysis of the rod domains of the nesprins has shown that they are almost entirely composed of unbroken SR-like structures. We present a bioinformatical approach to accurate definition of the boundaries of each SR by comparison with canonical SR structures, allowing for a large-scale homology modelling of the 74 nesprin-1 and 56 nesprin-2 SRs. The exposed and evolutionary conserved residues identify important pbs for protein-protein interactions that can guide tailored binding experiments. Most importantly, the bioinformatics analyses and the 3D models have been central to the design of selected constructs for protein expression. 1D NMR and CD spectra have been performed of the expressed SRs, showing a folded, stable, high content α-helical structure, typical of SRs. Molecular Dynamics simulations have been performed to study the structural and elastic properties of consecutive SRs, revealing insights in the mechanical properties adopted by these modules in the cell.
Collapse
Affiliation(s)
- Flavia Autore
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Mark Pfuhl
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
| | - Xueping Quan
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
| | - Aisling Williams
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Roland G. Roberts
- Division of Medical and Molecular Genetics, Kings College London, Guy's Hospital, London, United Kingdom
| | - Catherine M. Shanahan
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, London, United Kingdom
| |
Collapse
|
20
|
Abstract
Alpha-actinins (ACTNs) were originally identified as cytoskeletal proteins which cross-link filamentous actin to establish cytoskeletal architect that protects cells from mechanical stress and controls cell movement. Notably, unlike other ACTNs, alpha-actinin 4 (ACTN4) displays unique characteristics in signaling transduction, nuclear translocation, and gene expression regulation. Initial reports indicated that ACTN4 is part of the breast cancer cell motile apparatus and is highly expressed in the nucleus. These results imply that ACTN4 plays a role in breast cancer tumorigenesis. While several observations in breast cancer and other cancers support this hypothesis, little direct evidence links the tumorigenic phenotype with ACTN4-mediated pathological mechanisms. Recently, several studies have demonstrated that in addition to its role in coordinating cytoskeleton, ACTN4 interacts with signaling mediators, chromatin remodeling factors, and transcription factors including nuclear receptors. Thus, ACTN4 functions as a versatile promoter for breast cancer tumorigenesis and appears to be an ideal drug target for future therapeutic development.
Collapse
Affiliation(s)
- Kuo-Sheng Hsu
- Department of Biochemistry, School of Medicine, Case Western Reserve University-CWRU, The Comprehensive Cancer Center of CWRU, Cleveland, Ohio, USA
| | | |
Collapse
|
21
|
Wensley BG, Kwa LG, Shammas SL, Rogers JM, Clarke J. Protein folding: adding a nucleus to guide helix docking reduces landscape roughness. J Mol Biol 2012; 423:273-83. [PMID: 22917971 PMCID: PMC3469821 DOI: 10.1016/j.jmb.2012.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 11/29/2022]
Abstract
The elongated three-helix‐bundle spectrin domains R16 and R17 fold and unfold unusually slowly over a rough energy landscape, in contrast to the homologue R15, which folds fast over a much smoother, more typical landscape. R15 folds via a nucleation–condensation mechanism that guides the docking of the A and C-helices. However, in R16 and R17, the secondary structure forms first and the two helices must then dock in the correct register. Here, we use variants of R16 and R17 to demonstrate that substitution of just five key residues is sufficient to alter the folding mechanism and reduce the landscape roughness. We suggest that, by providing access to an alternative, faster, folding route over their landscape, R16 and R17 can circumvent their slow, frustrated wild-type folding mechanism.
Collapse
Affiliation(s)
- Beth G Wensley
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | | | | | | |
Collapse
|
22
|
Muthu M, Richardson KA, Sutherland-Smith AJ. The crystal structures of dystrophin and utrophin spectrin repeats: implications for domain boundaries. PLoS One 2012; 7:e40066. [PMID: 22911693 PMCID: PMC3401230 DOI: 10.1371/journal.pone.0040066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 05/31/2012] [Indexed: 11/18/2022] Open
Abstract
Dystrophin and utrophin link the F-actin cytoskeleton to the cell membrane via an associated glycoprotein complex. This functionality results from their domain organization having an N-terminal actin-binding domain followed by multiple spectrin-repeat domains and then C-terminal protein-binding motifs. Therapeutic strategies to replace defective dystrophin with utrophin in patients with Duchenne muscular dystrophy require full-characterization of both these proteins to assess their degree of structural and functional equivalence. Here the high resolution structures of the first spectrin repeats (N-terminal repeat 1) from both dystrophin and utrophin have been determined by x-ray crystallography. The repeat structures both display a three-helix bundle fold very similar to one another and to homologous domains from spectrin, α-actinin and plectin. The utrophin and dystrophin repeat structures reveal the relationship between the structural domain and the canonical spectrin repeat domain sequence motif, showing the compact structural domain of spectrin repeat one to be extended at the C-terminus relative to its previously defined sequence repeat. These structures explain previous in vitro biochemical studies in which extending dystrophin spectrin repeat domain length leads to increased protein stability. Furthermore we show that the first dystrophin and utrophin spectrin repeats have no affinity for F-actin in the absence of other domains.
Collapse
Affiliation(s)
- Muralidharan Muthu
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Kylie A. Richardson
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
23
|
Vishwanatha KS, Wang YP, Keutmann HT, Mains RE, Eipper BA. Structural organization of the nine spectrin repeats of Kalirin. Biochemistry 2012; 51:5663-73. [PMID: 22738176 DOI: 10.1021/bi300583s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sequence analysis suggests that KALRN, a Rho GDP/GTP exchange factor genetically linked to schizophrenia, could contain as many as nine tandem spectrin repeats (SRs). We expressed and purified fragments of Kalirin containing from one to five putative SRs to determine whether they formed nested structures that could endow Kalirin with the flexible rodlike properties characteristic of spectrin and dystrophin. Far-UV circular dichroism studies indicated that Kalirin contains nine SRs. On the basis of thermal denaturation, sensitivity to chemical denaturants, and the solubility of pairs of repeats, the nine SRs of Kalirin form nested structures. Modeling studies confirmed this conclusion and identified an exposed loop in SR5; consistent with the modeling, this loop was extremely labile to proteolytic cleavage. Analysis of a direpeat fragment (SR4:5) encompassing the region of Kalirin known to interact with NOS2, DISC-1, PAM, and Arf6 identified this as the least stable region. Analytical ultracentrifugation indicated that SR1:3, SR4:6, and SR7:9 were monomers and adopted an extended conformation. Gel filtration suggested that ΔKal7, a natural isoform that includes SR5:9, was monomeric and was not more extended than SR5:9. Similarly, the nine SRs of Kal7, which was also monomeric, were not more extended than SR5:9. The rigidity and flexibility of the nine SRs of Kal7, which separate its essential N-terminal Sec14p domain from its catalytic domain, play an essential role in its contribution to the formation and function of dendritic spines.
Collapse
Affiliation(s)
- K S Vishwanatha
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
24
|
Brenner AK, Kieffer B, Travé G, Frøystein NA, Raae AJ. Thermal stability of chicken brain α-spectrin repeat 17: a spectroscopic study. JOURNAL OF BIOMOLECULAR NMR 2012; 53:71-83. [PMID: 22569754 DOI: 10.1007/s10858-012-9620-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/12/2012] [Indexed: 05/31/2023]
Abstract
Spectrin is a rod-like multi-modular protein that is mainly composed of triple-helical repeats. These repeats show very similar 3D-structures but variable conformational and thermodynamical stabilities, which may be of great importance for the flexibility and dynamic behaviour of spectrin in the cell. For instance, repeat 17 (R17) of the chicken brain spectrin α-chain is four times less stable than neighbouring repeat 16 (R16) in terms of ∆G. The structure of spectrin repeats has mainly been investigated by X-ray crystallography, but the structures of a few repeats, e.g. R16, have also been determined by NMR spectroscopy. Here, we undertook a detailed characterization of the neighbouring R17 by NMR spectroscopy. We assigned most backbone resonances and observed NOE restraints, relaxation values and coupling constants that all indicated that the fold of R17 is highly similar to that of R16, in agreement with previous X-ray analysis of a tandem repeat of the two domains. However, (15)N heteronuclear NMR spectra measured at different temperatures revealed particular features of the R17 domain that might contribute to its lower stability. Conformational exchange appeared to alter the linker connecting R17 to R16 as well as the BC-loop in close proximity. In addition, heat-induced splitting was observed for backbone resonances of a few spatially related residues including V99 of helix C, which in R16 is replaced by the larger hydrophobic tryptophan residue that is relatively conserved among other spectrin repeats. These data support the view that the substitution of tryptophan by valine at this position may contribute to the lower stability of R17.
Collapse
Affiliation(s)
- Annette K Brenner
- Department of Chemistry, University of Bergen, PObox 7800, 5020 Bergen, Norway
| | | | | | | | | |
Collapse
|
25
|
Legrand B, Giudice E, Nicolas A, Delalande O, Le Rumeur E. Computational study of the human dystrophin repeats: interaction properties and molecular dynamics. PLoS One 2011; 6:e23819. [PMID: 21901138 PMCID: PMC3162007 DOI: 10.1371/journal.pone.0023819] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/26/2011] [Indexed: 01/16/2023] Open
Abstract
Dystrophin is a large protein involved in the rare genetic disease Duchenne muscular dystrophy (DMD). It functions as a mechanical linker between the cytoskeleton and the sarcolemma, and is able to resist shear stresses during muscle activity. In all, 75% of the dystrophin molecule consists of a large central rod domain made up of 24 repeat units that share high structural homology with spectrin-like repeats. However, in the absence of any high-resolution structure of these repeats, the molecular basis of dystrophin central domain's functions has not yet been deciphered. In this context, we have performed a computational study of the whole dystrophin central rod domain based on the rational homology modeling of successive and overlapping tandem repeats and the analysis of their surface properties. Each tandem repeat has very specific surface properties that make it unique. However, the repeats share enough electrostatic-surface similarities to be grouped into four separate clusters. Molecular dynamics simulations of four representative tandem repeats reveal specific flexibility or bending properties depending on the repeat sequence. We thus suggest that the dystrophin central rod domain is constituted of seven biologically relevant sub-domains. Our results provide evidence for the role of the dystrophin central rod domain as a scaffold platform with a wide range of surface features and biophysical properties allowing it to interact with its various known partners such as proteins and membrane lipids. This new integrative view is strongly supported by the previous experimental works that investigated the isolated domains and the observed heterogeneity of the severity of dystrophin related pathologies, especially Becker muscular dystrophy.
Collapse
Affiliation(s)
- Baptiste Legrand
- Université de Rennes 1, Rennes, France
- Equipe RMN-ILP, Faculté de médecine, UMR CNRS 6026, Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | - Emmanuel Giudice
- Université de Rennes 1, Rennes, France
- Equipe SDM, UMR CNRS 6026, Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | - Aurélie Nicolas
- Université de Rennes 1, Rennes, France
- Equipe RMN-ILP, Faculté de médecine, UMR CNRS 6026, Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | - Olivier Delalande
- Université de Rennes 1, Rennes, France
- Equipe RMN-ILP, Faculté de médecine, UMR CNRS 6026, Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | - Elisabeth Le Rumeur
- Université de Rennes 1, Rennes, France
- Equipe RMN-ILP, Faculté de médecine, UMR CNRS 6026, Rennes, France
- Université Européenne de Bretagne, Rennes, France
- * E-mail:
| |
Collapse
|
26
|
Sarkis J, Hubert JF, Legrand B, Robert E, Chéron A, Jardin J, Hitti E, Le Rumeur E, Vié V. Spectrin-like repeats 11-15 of human dystrophin show adaptations to a lipidic environment. J Biol Chem 2011; 286:30481-30491. [PMID: 21712383 DOI: 10.1074/jbc.m111.243881] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dystrophin is essential to skeletal muscle function and confers resistance to the sarcolemma by interacting with cytoskeleton and membrane. In the present work, we characterized the behavior of dystrophin 11-15 (DYS R11-15), five spectrin-like repeats from the central domain of human dystrophin, with lipids. DYS R11-15 displays an amphiphilic character at the liquid/air interface while maintaining its secondary α-helical structure. The interaction of DYS R11-15 with small unilamellar vesicles (SUVs) depends on the lipid nature, which is not the case with large unilamellar vesicles (LUVs). In addition, switching from anionic SUVs to anionic LUVs suggests the lipid packing as a crucial factor for the interaction of protein and lipid. The monolayer model and the modulation of surface pressure aim to mimic the muscle at work (i.e. dynamic changes of muscle membrane during contraction and relaxation) (high and low surface pressure). Strikingly, the lateral pressure modifies the protein organization. Increasing the lateral pressure leads the proteins to be organized in a regular network. Nevertheless, a different protein conformation after its binding to monolayer is revealed by trypsin proteolysis. Label-free quantification by nano-LC/MS/MS allowed identification of the helices in repeats 12 and 13 involved in the interaction with anionic SUVs. These results, combined with our previous studies, indicate that DYS R11-15 constitutes the only part of dystrophin that interacts with anionic as well as zwitterionic lipids and adapts its interaction and organization depending on lipid packing and lipid nature. We provide strong experimental evidence for a physiological role of the central domain of dystrophin in sarcolemma scaffolding through modulation of lipid-protein interactions.
Collapse
Affiliation(s)
- Joe Sarkis
- Université Européenne de Bretagne, 35000 Rennes, France; UMR-CNRS 6026-IFR 140, Equipe RMN-Interactions Lipides Protéines, Faculté de Médecine, CS 34317, 35043 Rennes, France; UMR-CNRS 6251, Institut de Physique de Rennes, Université de Rennes 1, 35042 Rennes, France
| | - Jean-François Hubert
- Université Européenne de Bretagne, 35000 Rennes, France; UMR-CNRS 6026-IFR 140, Equipe RMN-Interactions Lipides Protéines, Faculté de Médecine, CS 34317, 35043 Rennes, France
| | - Baptiste Legrand
- Université Européenne de Bretagne, 35000 Rennes, France; UMR-CNRS 6026-IFR 140, Equipe RMN-Interactions Lipides Protéines, Faculté de Médecine, CS 34317, 35043 Rennes, France
| | - Estelle Robert
- Université Européenne de Bretagne, 35000 Rennes, France; UMR-CNRS 6251, Institut de Physique de Rennes, Université de Rennes 1, 35042 Rennes, France
| | - Angélique Chéron
- Université Européenne de Bretagne, 35000 Rennes, France; UMR-CNRS 6026-IFR 140, Equipe RMN-Interactions Lipides Protéines, Faculté de Médecine, CS 34317, 35043 Rennes, France
| | - Julien Jardin
- Université Européenne de Bretagne, 35000 Rennes, France; Institut National de la Recherche Agronomique (INRA), AGROCAMPUS-OUEST, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 35042 Rennes, France
| | - Eric Hitti
- Université Européenne de Bretagne, 35000 Rennes, France; Laboratoire Traitement du Signal et de l'Image (LTSI), INSERM 642, 35042 Rennes, France
| | - Elisabeth Le Rumeur
- Université Européenne de Bretagne, 35000 Rennes, France; UMR-CNRS 6026-IFR 140, Equipe RMN-Interactions Lipides Protéines, Faculté de Médecine, CS 34317, 35043 Rennes, France
| | - Véronique Vié
- Université Européenne de Bretagne, 35000 Rennes, France; UMR-CNRS 6251, Institut de Physique de Rennes, Université de Rennes 1, 35042 Rennes, France.
| |
Collapse
|
27
|
Cysteine shotgun-mass spectrometry (CS-MS) reveals dynamic sequence of protein structure changes within mutant and stressed cells. Proc Natl Acad Sci U S A 2011; 108:8269-74. [PMID: 21527722 DOI: 10.1073/pnas.1018887108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Questions of if and when protein structures change within cells pervade biology and include questions of how the cytoskeleton sustains stresses on cells--particularly in mutant versus normal cells. Cysteine shotgun labeling with fluorophores is analyzed here with mass spectrometry of the spectrin-actin membrane skeleton in sheared red blood cell ghosts from normal and diseased mice. Sheared samples are compared to static samples at 37 °C in terms of cell membrane intensity in fluorescence microscopy, separated protein fluorescence, and tryptic peptide modification in liquid chromatography-tandem mass spectrometry (LC-MS/MS). Spectrin labeling proves to be the most sensitive to shear, whereas binding partners ankyrin and actin exhibit shear thresholds in labeling and both the ankyrin-binding membrane protein band 3 and the spectrin-actin stabilizer 4.1R show minimal differential labeling. Cells from 4.1R-null mice differ significantly from normal in the shear-dependent labeling of spectrin, ankyrin, and band 3: Decreased labeling of spectrin reveals less stress on the mutant network as spectrin dissociates from actin. Mapping the stress-dependent labeling kinetics of α- and β-spectrin by LC-MS/MS identifies Cys in these antiparallel chains that are either force-enhanced or force-independent in labeling, with structural analyses indicating the force-enhanced sites are sequestered either in spectrin's triple-helical domains or in interactions with actin or ankyrin. Shear-sensitive sites identified comprehensively here in both spectrin and ankyrin appear consistent with stress relief through forced unfolding followed by cytoskeletal disruption.
Collapse
|
28
|
Crystal structure of a rigid four-spectrin-repeat fragment of the human desmoplakin plakin domain. J Mol Biol 2011; 409:800-12. [PMID: 21536047 DOI: 10.1016/j.jmb.2011.04.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/14/2011] [Accepted: 04/16/2011] [Indexed: 12/17/2022]
Abstract
The plakin protein family serves to connect cell-cell and cell-matrix adhesion molecules to the intermediate filament cytoskeleton. Desmoplakin (DP) is an integral part of desmosomes, where it links desmosomal cadherins to the intermediate filaments. The 1056-amino-acid N-terminal region of DP contains a plakin domain common to members of the plakin family. Plakin domains contain multiple copies of spectrin repeats (SRs). We determined the crystal structure of a fragment of DP, residues 175-630, consisting of four SRs and an inserted SH3 domain. The four repeats form an elongated, rigid structure. The SH3 domain is present in a loop between two helices of an SR and interacts extensively with the preceding SR in a manner that appears to limit inter-repeat flexibility. The intimate intramolecular association of the SH3 domain with the preceding SR is also observed in plectin, another plakin protein, but not in α-spectrin, suggesting that the SH3 domain of plakins contributes to the stability and rigidity of this subfamily of SR-containing proteins.
Collapse
|
29
|
Ortega E, Buey RM, Sonnenberg A, de Pereda JM. The structure of the plakin domain of plectin reveals a non-canonical SH3 domain interacting with its fourth spectrin repeat. J Biol Chem 2011; 286:12429-38. [PMID: 21288893 PMCID: PMC3069446 DOI: 10.1074/jbc.m110.197467] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/29/2010] [Indexed: 11/06/2022] Open
Abstract
Plectin belongs to the plakin family of cytoskeletal crosslinkers, which is part of the spectrin superfamily. Plakins contain an N-terminal conserved region, the plakin domain, which is formed by an array of spectrin repeats (SR) and a Src-homology 3 (SH3), and harbors binding sites for junctional proteins. We have combined x-ray crystallography and small angle x-ray scattering (SAXS) to elucidate the structure of the central region of the plakin domain of plectin, which corresponds to the SR3, SR4, SR5, and SH3 domains. The crystal structures of the SR3-SR4 and SR4-SR5-SH3 fragments were determined to 2.2 and 2.95 Å resolution, respectively. The SH3 of plectin presents major alterations as compared with canonical Pro-rich binding SH3 domains, suggesting that plectin does not recognize Pro-rich motifs. In addition, the SH3 binding site is partially occluded by an intramolecular contact with the SR4. Residues of this pseudo-binding site and the SR4/SH3 interface are conserved within the plakin family, suggesting that the structure of this part of the plectin molecule is similar to that of other plakins. We have created a model for the SR3-SR4-SR5-SH3 region, which agrees well with SAXS data in solution. The three SRs form a semi-flexible rod that is not altered by the presence of the SH3 domain, and it is similar to those found in spectrins. The flexibility of the plakin domain, in analogy with spectrins, might contribute to the role of plakins in maintaining the stability of tissues subject to mechanical stress.
Collapse
Affiliation(s)
- Esther Ortega
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
| | - Rubén M. Buey
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
- the Laboratory of Biomolecular Research, the Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland, and
| | - Arnoud Sonnenberg
- the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - José M. de Pereda
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
| |
Collapse
|
30
|
Baines AJ. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. PROTOPLASMA 2010; 244:99-131. [PMID: 20668894 DOI: 10.1007/s00709-010-0181-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/05/2010] [Indexed: 05/29/2023]
Abstract
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins--spectrin, ankyrin, 4.1 and adducin--which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin-ankyrin-4.1-adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin-ankyrin-4.1-adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
Collapse
Affiliation(s)
- Anthony J Baines
- School of Biosciences and Centre for Biomedical Informatics, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
31
|
Dystrophin: more than just the sum of its parts. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1713-22. [PMID: 20472103 DOI: 10.1016/j.bbapap.2010.05.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 01/05/2023]
Abstract
Dystrophin is one of a number of large cytoskeleton associated proteins that connect between various cytoskeletal elements and often are tethered to the membrane through other transmembrane protein complexes. These cytolinker proteins often provide structure and support to the cells where they are expressed, and mutations in genes encoding these proteins frequently gives rise to disease. Dystrophin is no exception in any of these respects, providing connections between a transmembrane complex known as the dystrophin-glycoprotein complex and the underlying cytoskeleton. The most established connection and possibly the most important is that to F-actin, but more recently evidence has been forthcoming of connections to membrane phospholipids, intermediate filaments and microtubules. Moreover it is becoming increasingly clear that the multiple spectrin-like repeats in the centre of the molecule, that had hitherto been thought to be largely redundant, harbour binding activities that have a significant impact on dystrophin functionality. This functionality is particularly apparent when assessed by the ability to rescue the dystrophic phenotype in mdx mice. This review will focus on the relatively neglected but functionally vital coiled-coil region of dystrophin, highlighting the structural relationships and interactions of the coiled-coil region and providing new insights into the functional role of this region.
Collapse
|
32
|
Mehboob S, Song Y, Witek M, Long F, Santarsiero BD, Johnson ME, Fung LWM. Crystal structure of the nonerythroid alpha-spectrin tetramerization site reveals differences between erythroid and nonerythroid spectrin tetramer formation. J Biol Chem 2010; 285:14572-84. [PMID: 20228407 DOI: 10.1074/jbc.m109.080028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have solved the crystal structure of a segment of nonerythroid alpha-spectrin (alphaII) consisting of the first 147 residues to a resolution of 2.3 A. We find that the structure of this segment is generally similar to a corresponding segment from erythroid alpha-spectrin (alphaI) but exhibits unique differences with functional significance. Specific features include the following: (i) an irregular and frayed first helix (Helix C'); (ii) a helical conformation in the junction region connecting Helix C' with the first structural domain (D1); (iii) a long A(1)B(1) loop in D1; and (iv) specific inter-helix hydrogen bonds/salt bridges that stabilize D1. Our findings suggest that the hydrogen bond networks contribute to structural domain stability, and thus rigidity, in alphaII, and the lack of such hydrogen bond networks in alphaI leads to flexibility in alphaI. We have previously shown the junction region connecting Helix C' to D1 to be unstructured in alphaI (Park, S., Caffrey, M. S., Johnson, M. E., and Fung, L. W. (2003) J. Biol. Chem. 278, 21837-21844) and now find it to be helical in alphaII, an important difference for alpha-spectrin association with beta-spectrin in forming tetramers. Homology modeling and molecular dynamics simulation studies of the structure of the tetramerization site, a triple helical bundle of partial domain helices, show that mutations in alpha-spectrin will affect Helix C' structural flexibility and/or the junction region conformation and may alter the equilibrium between spectrin dimers and tetramers in cells. Mutations leading to reduced levels of functional tetramers in cells may potentially lead to abnormal neuronal functions.
Collapse
Affiliation(s)
- Shahila Mehboob
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood 2010; 115:4843-52. [PMID: 20197550 DOI: 10.1182/blood-2010-01-261396] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As the principal component of the membrane skeleton, spectrin confers integrity and flexibility to red cell membranes. Although this network involves many interactions, the most common hemolytic anemia mutations that disrupt erythrocyte morphology affect the spectrin tetramerization domains. Although much is known clinically about the resulting conditions (hereditary elliptocytosis and pyropoikilocytosis), the detailed structural basis for spectrin tetramerization and its disruption by hereditary anemia mutations remains elusive. Thus, to provide further insights into spectrin assembly and tetramer site mutations, a crystal structure of the spectrin tetramerization domain complex has been determined. Architecturally, this complex shows striking resemblance to multirepeat spectrin fragments, with the interacting tetramer site region forming a central, composite repeat. This structure identifies conformational changes in alpha-spectrin that occur upon binding to beta-spectrin, and it reports the first structure of the beta-spectrin tetramerization domain. Analysis of the interaction surfaces indicates an extensive interface dominated by hydrophobic contacts and supplemented by electrostatic complementarity. Analysis of evolutionarily conserved residues suggests additional surfaces that may form important interactions. Finally, mapping of hereditary anemia-related mutations onto the structure demonstrate that most, but not all, local hereditary anemia mutations map to the interacting domains. The potential molecular effects of these mutations are described.
Collapse
|
34
|
Abstract
Maintenance of membrane integrity and organization in the metazoan cell is accomplished through intracellular tethering of membrane proteins to an extensive, flexible protein network. Spectrin, the principal component of this network, is anchored to membrane proteins through the adaptor protein ankyrin. To elucidate the atomic basis for this interaction, we determined a crystal structure of human betaI-spectrin repeats 13 to 15 in complex with the ZU5-ANK domain of human ankyrin R. The structure reveals the role of repeats 14 to 15 in binding, the electrostatic and hydrophobic contributions along the interface, and the necessity for a particular orientation of the spectrin repeats. Using structural and biochemical data as a guide, we characterized the individual proteins and their interactions by binding and thermal stability analyses. In addition to validating the structural model, these data provide insight into the nature of some mutations associated with cell morphology defects, including those found in human diseases such as hereditary spherocytosis and elliptocytosis. Finally, analysis of the ZU5 domain suggests it is a versatile protein-protein interaction module with distinct interaction surfaces. The structure represents not only the first of a spectrin fragment in complex with its binding partner, but also that of an intermolecular complex involving a ZU5 domain.
Collapse
|
35
|
Maciąg M, Płochocka D, Adamowicz-Salach A, Burzyńska B. Novel beta-spectrin mutations in hereditary spherocytosis associated with decreased levels of mRNA. Br J Haematol 2009; 146:326-32. [DOI: 10.1111/j.1365-2141.2009.07759.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Legardinier S, Raguénès-Nicol C, Tascon C, Rocher C, Hardy S, Hubert JF, Le Rumeur E. Mapping of the lipid-binding and stability properties of the central rod domain of human dystrophin. J Mol Biol 2009; 389:546-58. [PMID: 19379759 DOI: 10.1016/j.jmb.2009.04.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/31/2009] [Accepted: 04/11/2009] [Indexed: 11/28/2022]
Abstract
Dystrophin is a cytoskeletal protein that confers resistance to the sarcolemma against the stress of contraction-relaxation cycles by interacting with cytoskeletal and membrane partners. Apart from several proteins, membrane phospholipids are a partner of the central rod domain made up of 24 spectrin-like repeats, separated into sub-domains by four hinges. We previously showed that repeats 1 to 3 bind to membrane anionic phospholipids, while repeats 20 to 24 are not able to do so. We focus here on the phospholipid-binding properties of the major part of the central rod domain, namely, the sub-domain delineated by hinges 2 and 3 comprising 16 repeats ranging from repeat 4 to 19 (R4-19). We designed and produced multirepeat proteins comprising three to five repeats and report their lipid-binding properties as well as their thermal stabilities. When these proteins are mixed with liposomes including the anionic lipid phosphatidylserine, they form stable protein-vesicle complexes as determined by gel-filtration chromatography. The absence of an anionic lipid precludes the formation of such complexes. Spectroscopic analyses by circular dichroism and tryptophan fluorescence show that, while the alpha-helical secondary structures are not modified by the binding, protein trans conformation leads to the movement of tryptophan residues into more hydrophobic environments. In addition, the decrease in the molar ellipticity ratio at 222/208 nm as observed by circular dichroism indicates that lipid binding reduces the inter-helical interactions of multirepeat proteins, thus suggesting partly "opened" coiled-coil structures. Combining these results with data from our previous studies, we propose a new model of the dystrophin molecule lying along the membrane bilayer, in which the two sub-domains R1-3 and R4-19 interact with lipids and F-actin, while the distal sub-domain R20-24 does not exhibit any interaction. These lipid-binding domains should thus maintain a structural link between cytoskeletal actin and sarcolemma via the membrane phospholipids.
Collapse
Affiliation(s)
- Sébastien Legardinier
- Université de Rennes 1, UMR CNRS 6026, Interactions cellulaires et moléculaires, IFR 140, Faculté de Médecine, CS 34317, 35043 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Li Q, Fung LWM. Structural and dynamic study of the tetramerization region of non-erythroid alpha-spectrin: a frayed helix revealed by site-directed spin labeling electron paramagnetic resonance. Biochemistry 2009; 48:206-15. [PMID: 19072330 DOI: 10.1021/bi8013032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The N-terminal region of alpha-spectrin is responsible for its association with beta-spectrin in a heterodimer, forming functional tetramers. Non-erythroid alpha-spectrin (alphaII-spectrin) has a significantly higher association affinity for beta-spectrin than the homologous erythroid alpha-spectrin (alphaI-spectrin). We have previously determined the solution structure of the N-terminal region of alphaI-spectrin by NMR methods, but currently no structural information is available for alphaII-spectrin. We have used cysteine scanning, spin labeling electron paramagnetic resonance (EPR), and isothermal titration calorimetry (ITC) methods to study the tetramerization region of alphaII-spectrin. EPR data clearly show that, in alphaII-spectrin, the first nine N-terminal residues were unstructured, followed by an irregular helix (helix C'), frayed at the N-terminal end, but rigid at the C-terminal end, which merges into the putative triple-helical structural domain. The region corresponding to the important unstructured junction region linking helix C' to the first structural domain in alphaI-spectrin was clearly structured. On the basis of the published model for aligning helices A', B', and C', important interactions among residues in helix C' of alphaI- and alphaII-spectrin and helices A' and B' of betaI- and betaII-spectrin are identified, suggesting similar coiled coil helical bundling for spectrin I and II in forming tetramers. The differences in affinity are likely due to the differences in the conformation of the junction regions. Equilibrium dissociation constants of spin-labeled alphaII and betaI complexes from ITC measurements indicate that residues 15, 19, 37, and 40 are functionally important residues in alphaII-spectrin. Interestingly, all four corresponding homologous residues in alphaI-spectrin (residues 24, 28, 46, and 49) have been reported to be clinically significant residues involved in hematological diseases.
Collapse
Affiliation(s)
- Qufei Li
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607
| | | |
Collapse
|
38
|
The structure of the ankyrin-binding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood 2009; 113:5377-84. [PMID: 19168783 DOI: 10.1182/blood-2008-10-184291] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spectrin and ankyrin participate in membrane organization, stability, signal transduction, and protein targeting; their interaction is critical for erythrocyte stability. Repeats 14 and 15 of betaI-spectrin are crucial for ankyrin recognition, yet the way spectrin binds ankyrin while preserving its repeat structure is unknown. We have solved the crystal structure of the betaI-spectrin 14,15 di-repeat unit to 2.1 A resolution and found 14 residues critical for ankyrin binding that map to the end of the helix C of repeat 14, the linker region, and the B-C loop of repeat 15. The tilt (64 degrees) across the 14,15 linker is greater than in any published di-repeat structure, suggesting that the relative positioning of the two repeats is important for ankyrin binding. We propose that a lack of structural constraints on linker and inter-helix loops allows proteins containing spectrin-like di-repeats to evolve diverse but specific ligand-recognition sites without compromising the structure of the repeat unit. The linker regions between repeats are thus critical determinants of both spectrin's flexibility and polyfunctionality. The putative coupling of flexibility and ligand binding suggests a mechanism by which spectrin might participate in mechanosensory regulation.
Collapse
|
39
|
Legardinier S, Legrand B, Raguénès-Nicol C, Bondon A, Hardy S, Tascon C, Le Rumeur E, Hubert JF. A Two-amino Acid Mutation Encountered in Duchenne Muscular Dystrophy Decreases Stability of the Rod Domain 23 (R23) Spectrin-like Repeat of Dystrophin. J Biol Chem 2009; 284:8822-32. [PMID: 19158079 DOI: 10.1074/jbc.m805846200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lack of functional dystrophin causes severe Duchenne muscular dystrophy. The subsarcolemmal location of dystrophin, as well as its association with both cytoskeleton and membrane, suggests a role in the mechanical regulation of muscular membrane stress. In particular, phenotype rescue in a Duchenne muscular dystrophy mice model has shown that some parts of the central rod domain of dystrophin, constituted by 24 spectrin-like repeats, are essential. In this study, we made use of rare missense pathogenic mutations in the dystrophin gene and analyzed the biochemical properties of the isolated repeat 23 bearing single or double mutations E2910V and N2912D found in muscle dystrophy with severity grading. No dramatic effect on secondary and tertiary structure of the repeat was found in mutants compared with wild type as revealed by circular dichroism and NMR. Thermal and chemical unfolding data from circular dichroism and tryptophan fluorescence show significant decrease of stability for the mutants, and stopped-flow spectroscopy shows decreased refolding rates. The most deleterious single mutation is the N2912D replacement, although we observe additive effects of the two mutations on repeat stability. Based on three-dimensional structures built by homology molecular modeling, we discuss the modifications of the mutation-induced repeat stability. We conclude that the main forces involved in repeat stability are electrostatic inter-helix interactions that are disrupted following mutations. This study represents the first analysis at the protein level of the consequences of missense mutations in the human dystrophin rod domain. Our results suggest that it may participate in mechanical weakening of dystrophin-deficient muscle.
Collapse
Affiliation(s)
- Sébastien Legardinier
- UMR CNRS 6026 Interactions Cellulaires et Moléculaires,Equipe RMN et Interactions Lipides-Protéines and UMR CNRS 6061 Génétique et Développement, Université de Rennes 1, IFR 140, FacultédeMédecine, CS 34317, 35043 Rennes Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
As key components of the erythrocyte membrane skeleton, spectrin and ankyrin specifically interact to tether the spectrin cytoskeleton to the cell membrane. The structure of the spectrin binding domain of ankyrin and the ankyrin binding domain of spectrin have been solved to elucidate the structural basis for ankyrin-spectrin recognition. The structure of repeats 14 and 15 of spectrin shows that these repeats are similar to all other spectrin repeats. One feature that could account for the preference of ankyrin for these repeats is the presence of a conserved, negatively charged patch on one side of repeat 14. The structure of the ankyrin ZU5 domain shows a novel structure containing a beta core. The structure reveals that the canonical ZU5 consensus sequence is likely to be missing an important region that codes for a beta strand that forms part of the core of the domain. In addition, a positively charged region is suggestive of a binding surface for the negatively charged spectrin repeat 14. Previously reported mutants of ankyrin that map to this region lie mostly on the surface of the protein, although at least one is likely to be part of the core.
Collapse
|
41
|
Czogalla A, Grzymajło K, Jezierski A, Sikorski AF. Phospholipid-induced structural changes to an erythroid β spectrin ankyrin-dependent lipid-binding site. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2612-20. [DOI: 10.1016/j.bbamem.2008.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/01/2008] [Accepted: 07/18/2008] [Indexed: 12/01/2022]
|
42
|
Ipsaro JJ, Huang L, Gutierrez L, MacDonald RI. Molecular epitopes of the ankyrin-spectrin interaction. Biochemistry 2008; 47:7452-64. [PMID: 18563915 PMCID: PMC3280509 DOI: 10.1021/bi702525z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isoforms of ankyrin and its binding partner spectrin are responsible for a number of interactions in a variety of human cells. Conflicting evidence, however, had identified two different, non-overlapping human erythroid ankyrin subdomains, Zu5 and 272, as the minimum binding region for beta-spectrin. Complementary studies on the ankyrin-binding domain of spectrin have been somewhat more conclusive yet have not presented binding in terms of well-phased, integral numbers of spectrin repeats. Thus, the objective of this study was to clearly define and characterize the minimal ankyrin-spectrin binding epitopes. Circular dichroism (CD) wavelength spectra of the aforementioned ankyrin subdomains show that these fragments are 30-60% unstructured. In contrast, human erythroid beta-spectrin repeats 13, 14, 15, and 16 (prepared in all combinations of two adjacent repeats) demonstrated proper folding and stability as determined by CD and tryptophan wavelength and heat denaturation scans. Native polyacrylamide gel electrophoresis (PAGE) gel shifts as well as affinity pull-down assays implicated Zu5 and beta-spectrin repeats 14-15 as the minimum binding epitopes. These results were confirmed by analytical ultracentrifugation to sedimentation equilibrium by which a 1:1 complex was obtained if and only if Zu5 was mixed with beta-spectrin constructs containing repeats 14 and 15 in tandem. Surface plasmon resonance yielded a K D of 15.2 nM for binding of beta-spectrin fragments to the ankyrin subdomain Zu5, accounting for all of the binding observed between the intact molecules. Collectively, these results show the 14th and 15th beta-spectrin repeats comprise the minimal, phased region of beta-spectrin, which binds ankyrin at the Zu5 subdomain with high affinity.
Collapse
Affiliation(s)
| | | | | | - Ruby I. MacDonald
- Department of Biochemistry, Molecular Biology and Cell Biology Northwestern University, Evanston, IL 60208
| |
Collapse
|
43
|
Legardinier S, Hubert JF, Bihan OL, Tascon C, Rocher C, Raguénès-Nicol C, Bondon A, Hardy S, Rumeur EL. Sub-domains of the dystrophin rod domain display contrasting lipid-binding and stability properties. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:672-82. [DOI: 10.1016/j.bbapap.2007.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/12/2007] [Accepted: 12/24/2007] [Indexed: 10/22/2022]
|
44
|
Czogalla A, Jaszewski AR, Diakowski W, Bok E, Jezierski A, Sikorski AF. Structural insight into an ankyrin-sensitive lipid-binding site of erythroid beta-spectrin. Mol Membr Biol 2007; 24:215-24. [PMID: 17520478 DOI: 10.1080/09687860601102427] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
It was recently shown that the region within beta-spectrin responsible for interactions with ankyrin includes a lipid-binding site which displayed sensitivity to inhibition by ankyrin. We studied its structure by constructing a series of single and double spin-labeled beta-spectrin-derived peptides and analyzing their spin-spin distances via electron paramagnetic resonance spectroscopy and the Fourier deconvolution method. The results indicate that the whole ankyrin-sensitive lipid-binding site of beta-spectrin exhibits a helical conformation revealing a distinct 3(10)-helix contribution at its N-terminus. The start of the helix was located five residues upstream along the sequence compared to the theoretical predictions. A model based on the obtained data provides direct evidence that the examined lipid-binding site is a highly amphipathic helix, which is correlated with the specific conformation of its N-terminal fragment.
Collapse
|
45
|
Long F, McElheny D, Jiang S, Park S, Caffrey MS, Fung LWM. Conformational change of erythroid alpha-spectrin at the tetramerization site upon binding beta-spectrin. Protein Sci 2007; 16:2519-30. [PMID: 17905835 PMCID: PMC2211704 DOI: 10.1110/ps.073115307] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We previously determined the solution structures of the first 156 residues of human erythroid alpha-spectrin (SpalphaI-1-156, or simply Spalpha). Spalpha consists of the tetramerization site of alpha-spectrin and associates with a model beta-spectrin protein (Spbeta) with an affinity similar to that of native alpha- and beta-spectrin. Upon alphabeta-complex formation, our previous results indicate that there is an increase in helicity in the complex, suggesting conformational change in either Spalpha or Spbeta or in both. We have now used isothermal titration calorimetry, circular dichroism, static and dynamic light scattering, and solution NMR methods to investigate properties of the complex as well as the conformation of Spalpha in the complex. The results reveal a highly asymmetric complex, with a Perrin shape parameter of 1.23, which could correspond to a prolate ellipsoid with a major axis of about five and a minor axis of about one. We identified 12 residues, five prior to and seven following the partial domain helix in Spalpha that moved freely relative to the structural domain in the absence of Spbeta but when in the complex moved with a mobility similar to that of the structural domain. Thus, it appears that the association with Spbeta induced an unstructured-to-helical conformational transition in these residues to produce a rigid and asymmetric complex. Our findings may provide insight toward understanding different association affinities of alphabeta-spectrin at the tetramerization site for erythroid and non-erythroid spectrin and a possible mechanism to understand some of the clinical mutations, such as L49F of alpha-spectrin, which occur outside the functional partial domain region.
Collapse
Affiliation(s)
- Fei Long
- Department of Chemistry, University of Illinois at Chicago 60607, USA
| | | | | | | | | | | |
Collapse
|
46
|
Paramore S, Ayton GS, Voth GA. Transient violations of the second law of thermodynamics in protein unfolding examined using synthetic atomic force microscopy and the fluctuation theorem. J Chem Phys 2007; 127:105105. [PMID: 17867784 DOI: 10.1063/1.2764487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The synthetic atomic force microscopy (AFM) method is developed to simulate a periodically replicated atomistic system subject to force and length fluctuations characteristic of an AFM experiment. This new method is used to examine the forced-extension and subsequent rupture of the alpha-helical linker connecting periodic images of a spectrin protein repeat unit. A two-dimensional potential of mean force (PMF) along the length and a reaction coordinate describing the state of the linker was calculated. This PMF reveals that the basic material properties of the spectrin repeat unit are sensitive to the state of linker, an important feature that cannot be accounted for in a one-dimensional PMF. Furthermore, nonequilibrium simulations were generated to examine the rupture event in the context of the fluctuation theorem. These atomistic simulations demonstrate that trajectories which are in apparent violation of the second law can overcome unfolding barriers at significantly reduced rupture forces.
Collapse
Affiliation(s)
- Sterling Paramore
- Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | | | | |
Collapse
|
47
|
Abstract
To identify cytoskeletal proteins that change conformation or assembly within stressed cells, in situ labeling of sterically shielded cysteines with fluorophores was analyzed by fluorescence imaging, quantitative mass spectrometry, and sequential two-dye labeling. Within red blood cells, shotgun labeling showed that shielded cysteines in the two isoforms of the cytoskeletal protein spectrin were increasingly labeled as a function of shear stress and time, indicative of forced unfolding of specific domains. Within mesenchymal stem cells-as a prototypical adherent cell-nonmuscle myosin IIA and vimentin are just two of the cytoskeletal proteins identified that show differential labeling in tensed versus drug-relaxed cells. Cysteine labeling of proteins within live cells can thus be used to fluorescently map out sites of molecular-scale deformation, and the results also suggest means to colocalize signaling events such as phosphorylation with forced unfolding.
Collapse
Affiliation(s)
- Colin P. Johnson
- Biophysical Engineering Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hsin-Yao Tang
- Systems Biology Division—The Wistar Institute, Philadelphia, PA 19104, USA
| | - Christine Carag
- Biophysical Engineering Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W. Speicher
- Systems Biology Division—The Wistar Institute, Philadelphia, PA 19104, USA
| | - Dennis E. Discher
- Biophysical Engineering Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
- Systems Biology Division—The Wistar Institute, Philadelphia, PA 19104, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Abstract
Single-molecule force experiments in vitro enable the characterization of the mechanical response of biological matter at the nanometer scale. However, they do not reveal the molecular mechanisms underlying mechanical function. These can only be readily studied through molecular dynamics simulations of atomic structural models: "in silico" (by computer analysis) single-molecule experiments. Steered molecular dynamics simulations, in which external forces are used to explore the response and function of macromolecules, have become a powerful tool complementing and guiding in vitro single-molecule experiments. The insights provided by in silico experiments are illustrated here through a review of recent research in three areas of protein mechanics: elasticity of the muscle protein titin and the extracellular matrix protein fibronectin; linker-mediated elasticity of the cytoskeleton protein spectrin; and elasticity of ankyrin repeats, a protein module found ubiquitously in cells but with an as-yet unclear function.
Collapse
Affiliation(s)
- Marcos Sotomayor
- Department of Physics, University of Illinois at Urbana-Champaign, and Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
49
|
Sonnenberg A, Rojas AM, de Pereda JM. The structure of a tandem pair of spectrin repeats of plectin reveals a modular organization of the plakin domain. J Mol Biol 2007; 368:1379-91. [PMID: 17397861 DOI: 10.1016/j.jmb.2007.02.090] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/25/2007] [Accepted: 02/27/2007] [Indexed: 11/25/2022]
Abstract
Plectin is a large and versatile cytoskeletal linker and member of the plakin protein family. Plakins share a conserved region called the plakin domain located near their N terminus. We have determined the crystal structure of an N-terminal fragment of the plakin domain of plectin to 2.05 A resolution. This region is adjacent to the actin-binding domain and is required for efficient binding to the integrin alpha6beta4 in hemidesmosomes. The structure is formed by two spectrin repeats connected by an alpha-helix that spans these two repeats. While the first repeat is very similar to other known structures, the second repeat is structurally different with a hydrophobic core, narrower than that in canonical spectrin repeats. Sequence analysis of the plakin domain revealed the presence of up to nine consecutive spectrin repeats organized in an array of tandem modules, and a Src-homology 3 domain inserted in the central spectrin repeat. The structure of the plakin domain is reminiscent of the modular organization of members of the spectrin family. The architecture of the plakin domain suggests that it forms an elongated and flexible structure, and provides a novel molecular explanation for the contribution of plectin and other plakins to the elasticity and stability of tissues subjected to mechanical stress, such as the skin and striated muscle.
Collapse
Affiliation(s)
- Arnoud Sonnenberg
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
50
|
Randles LG, Rounsevell RWS, Clarke J. Spectrin domains lose cooperativity in forced unfolding. Biophys J 2007; 92:571-7. [PMID: 17085494 PMCID: PMC1751415 DOI: 10.1529/biophysj.106.093690] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/10/2006] [Indexed: 11/18/2022] Open
Abstract
Spectrin is a multidomain cytoskeletal protein, the component three-helix bundle domains are expected to experience mechanical force in vivo. In thermodynamic and kinetic studies, neighboring domains of chicken brain alpha-spectrin R16 and R17 have been shown to behave cooperatively. Is this cooperativity maintained under force? The effect of force on these spectrin domains was investigated using atomic force microscopy. The response of the individual domains to force was compared to that of the tandem repeat R1617. Importantly, nonhelical linkers (all-beta immunoglobulin domains) were used to avoid formation of nonnative helical linkers. We show that, in contrast to previous studies on spectrin repeats, only 3% of R1617 unfolding events gave an increase in contour length consistent with cooperative two-domain unfolding events. Furthermore, the unfolding forces for R1617 were the same as those for the unfolding of R16 or R17 alone. This is a strong indication that the cooperative unfolding behavior observed in the stopped-flow studies is absent between these spectrin domains when force is acting as a denaturant. Our evidence suggests that the rare double unfolding events result from misfolding between adjacent repeats. We suggest that this switch from cooperative to independent behavior allows multidomain proteins to maintain integrity under applied force.
Collapse
Affiliation(s)
- Lucy G Randles
- Department of Chemistry, University of Cambridge, MRC Centre for Protein Engineering, Cambridge, United Kingdom
| | | | | |
Collapse
|