1
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Ghysbrecht S, Keller BG. Thermal isomerization rates in retinal analogues using Ab-Initio molecular dynamics. J Comput Chem 2024; 45:1390-1403. [PMID: 38414274 DOI: 10.1002/jcc.27332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
For a detailed understanding of chemical processes in nature and industry, we need accurate models of chemical reactions in complex environments. While Eyring transition state theory is commonly used for modeling chemical reactions, it is most accurate for small molecules in the gas phase. A wide range of alternative rate theories exist that can better capture reactions involving complex molecules and environmental effects. However, they require that the chemical reaction is sampled by molecular dynamics simulations. This is a formidable challenge since the accessible simulation timescales are many orders of magnitude smaller than typical timescales of chemical reactions. To overcome these limitations, rare event methods involving enhanced molecular dynamics sampling are employed. In this work, thermal isomerization of retinal is studied using tight-binding density functional theory. Results from transition state theory are compared to those obtained from enhanced sampling. Rates obtained from dynamical reweighting using infrequent metadynamics simulations were in close agreement with those from transition state theory. Meanwhile, rates obtained from application of Kramers' rate equation to a sampled free energy profile along a torsional dihedral reaction coordinate were found to be up to three orders of magnitude higher. This discrepancy raises concerns about applying rate methods to one-dimensional reaction coordinates in chemical reactions.
Collapse
Affiliation(s)
- Simon Ghysbrecht
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Bettina G Keller
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Herzfeld J. Art, fact and artifact: reflections on the cross-talk between theory and experiment. Phys Chem Chem Phys 2024; 26:9848-9855. [PMID: 38502180 DOI: 10.1039/d4cp00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
With the increasing sophistication of each, theory and experiment have become highly specialized endeavors conducted by separate research groups. A result has been a weakening of the coupling between them and occasional hostility. Examples are given and suggestions are offered for strengthening the traditional synergy between theory and experiment.
Collapse
|
4
|
Herzfeld J. Adventures in interdisciplinary science: a half century at the nexus between chemistry, physics and biology. Phys Chem Chem Phys 2024; 26:6483-6489. [PMID: 38345336 DOI: 10.1039/d4cp90021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
A look back over five decades of research.
Collapse
Affiliation(s)
- Judith Herzfeld
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA.
| |
Collapse
|
5
|
Bertalan É, Bondar AN. Graphs of protein-water hydrogen bond networks to dissect structural movies of ion-transfer microbial rhodopsins. Front Chem 2023; 10:1075648. [PMID: 36712989 PMCID: PMC9880326 DOI: 10.3389/fchem.2022.1075648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Microbial rhodopsins are membrane proteins that use the energy absorbed by the covalently bound retinal chromophore to initiate reaction cycles resulting in ion transport or signal transduction. Thousands of distinct microbial rhodopsins are known and, for many rhodopsins, three-dimensional structures have been solved with structural biology, including as entire sets of structures solved with serial femtosecond crystallography. This sets the stage for comprehensive studies of large datasets of static protein structures to dissect structural elements that provide functional specificity to the various microbial rhodopsins. A challenge, however, is how to analyze efficiently intra-molecular interactions based on large datasets of static protein structures. Our perspective discusses the usefulness of graph-based approaches to dissect structural movies of microbial rhodopsins solved with time-resolved crystallography.
Collapse
Affiliation(s)
- Éva Bertalan
- Physikzentrum, RWTH Aachen University, Aachen, Germany
| | - Ana-Nicoleta Bondar
- Forschungszentrum Jülich, Institute of Computational Biomedicine, Jülich, Germany,Faculty of Physics, University of Bucharest, Măgurele, Romania,*Correspondence: Ana-Nicoleta Bondar, ,
| |
Collapse
|
6
|
Wu M, Lin F, Song Y. Engineered Bacteriorhodopsin Film with Oriented Patterns for the Improvement of the Photoelectric Response. Int J Mol Sci 2022; 23:ijms232416079. [PMID: 36555719 PMCID: PMC9785767 DOI: 10.3390/ijms232416079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The use of photosensitive proteins has become a competitive solar energy solution, owing to its pollution-free nature, high conversion efficiency, and good biocompatibility. Bacteriorhodopsin (bR) is an important light-sensitive protein that is widely used in the fabrication of photoelectronic devices. However, research on the optimization and comparison of the immobilization techniques is lacking. In this study, in order to obtain bR films with a high energy conversion efficiency, three immobilization techniques, namely dropcasting, electrophoretic sedimentation, and Langmuir-Blodgett deposition, were used to fabricate films, and their topographical and photoelectrical characteristics were compared. All three immobilization techniques can transfer bR molecules to substrates, forming functional photosensitive bR films. The absorption of the bR films at 568 nm reached the highest value of 0.3 under the EPS technique. The peak photocurrent for the EPS technique reached 5.03 nA. In addition, the EPS technique has the highest efficiency factor of 13.46, indicating that it can generate the highest value of photocurrent under the same light conditions, owing to the improved orientation, and no significant decrease in the peak photocurrent was observed after three weeks, which indicates the stability of the photoelectric response. These results indicate that the EPS technique has a great potential for the photoelectrical device fabrication and solar-energy conversion.
Collapse
Affiliation(s)
- Mian Wu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Key Laboratory of Advanced Materials Processing Technology of Ministry of Education, Beijing 100084, China
| | - Feng Lin
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Key Laboratory of Advanced Materials Processing Technology of Ministry of Education, Beijing 100084, China
| | - Yu Song
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Key Laboratory of Advanced Materials Processing Technology of Ministry of Education, Beijing 100084, China
- Correspondence:
| |
Collapse
|
7
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
8
|
Bondar AN. Mechanisms of long-distance allosteric couplings in proton-binding membrane transporters. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:199-239. [PMID: 35034719 DOI: 10.1016/bs.apcsb.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Membrane transporters that use proton binding and proton transfer for function couple local protonation change with changes in protein conformation and water dynamics. Changes of protein conformation might be required to allow transient formation of hydrogen-bond networks that bridge proton donor and acceptor pairs separated by long distances. Inter-helical hydrogen-bond networks adjust rapidly to protonation change, and ensure rapid response of the protein structure and dynamics. Membrane transporters with known three-dimensional structures and proton-binding groups inform on general principles of protonation-coupled protein conformational dynamics. Inter-helical hydrogen bond motifs between proton-binding carboxylate groups and a polar sidechain are observed in unrelated membrane transporters, suggesting common principles of coupling protonation change with protein conformational dynamics.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Măgurele, Romania; Forschungszentrum Jülich, Institute of Computational Biomedicine, Jülich, Germany.
| |
Collapse
|
9
|
Abstract
Microbial rhodopsins represent the most abundant phototrophic systems known today. A similar molecular architecture with seven transmembrane helices and a retinal cofactor linked to a lysine in helix 7 enables a wide range of functions including ion pumping, light-controlled ion channel gating, or sensing. Deciphering their molecular mechanisms therefore requires a combined consideration of structural, functional, and spectroscopic data in order to identify key factors determining their function. Important insight can be gained by solid-state NMR spectroscopy by which the large homo-oligomeric rhodopsin complexes can be studied directly within lipid bilayers. This chapter describes the methodological background and the necessary sample preparation requirements for the study of photointermediates, for the analysis of protonation states, H-bonding and chromophore conformations, for 3D structure determination, and for probing oligomer interfaces of microbial rhodopsins. The use of data extracted from these NMR experiments is discussed in the context of complementary biophysical methods.
Collapse
Affiliation(s)
- Clara Nassrin Kriebel
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Berselli G, Gimenez A, O’Connor A, Keyes TE. Robust Photoelectric Biomolecular Switch at a Microcavity-Supported Lipid Bilayer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29158-29169. [PMID: 34121400 PMCID: PMC8289237 DOI: 10.1021/acsami.1c06798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/01/2021] [Indexed: 05/08/2023]
Abstract
Biomolecular devices based on photo-responsive proteins have been widely proposed for medical, electrical, and energy storage and production applications. Also, bacteriorhodopsin (bR) has been extensively applied in such prospective devices as a robust photo addressable proton pump. As it is a membrane protein, in principle, it should function most efficiently when reconstituted into a fully fluid lipid bilayer, but in many model membranes, lateral fluidity of the membrane and protein is sacrificed for electrochemical addressability because of the need for an electroactive surface. Here, we reported a biomolecular photoactive device based on light-activated proton pump, bR, reconstituted into highly fluidic microcavity-supported lipid bilayers (MSLBs) on functionalized gold and polydimethylsiloxane cavity array substrates. The integrity of reconstituted bR at the MSLBs along with the lipid bilayer formation was evaluated by fluorescence lifetime correlation spectroscopy, yielding a protein lateral diffusion coefficient that was dependent on the bR concentration and consistent with the Saffman-Delbrück model. The photoelectrical properties of bR-MSLBs were evaluated from the photocurrent signal generated by bR under continuous and transient light illumination. The optimal conditions for a self-sustaining photoelectrical switch were determined in terms of protein concentration, pH, and light switch frequency of activation. Overall, a significant increase in the transient current was observed for lipid bilayers containing approximately 0.3 mol % bR with a measured photo-current of 250 nA/cm2. These results demonstrate that the platforms provide an appropriate lipid environment to support the proton pump, enabling its efficient operation. The bR-reconstituted MSLB model serves both as a platform to study the protein in a highly addressable biomimetic environment and as a demonstration of reconstitution of seven-helix receptors into MSLBs, opening the prospect of reconstitution of related membrane proteins including G-protein-coupled receptors on these versatile biomimetic substrates.
Collapse
Affiliation(s)
- Guilherme
B. Berselli
- School of Chemical Sciences, National
Centre for Sensor Research, Dublin City
University, Dublin D09 FW22, Ireland
| | - Aurélien
V. Gimenez
- School of Chemical Sciences, National
Centre for Sensor Research, Dublin City
University, Dublin D09 FW22, Ireland
| | - Alexandra O’Connor
- School of Chemical Sciences, National
Centre for Sensor Research, Dublin City
University, Dublin D09 FW22, Ireland
| | - Tia E. Keyes
- School of Chemical Sciences, National
Centre for Sensor Research, Dublin City
University, Dublin D09 FW22, Ireland
| |
Collapse
|
11
|
Bondar AN. Proton-Binding Motifs of Membrane-Bound Proteins: From Bacteriorhodopsin to Spike Protein S. Front Chem 2021; 9:685761. [PMID: 34136464 PMCID: PMC8203321 DOI: 10.3389/fchem.2021.685761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Membrane-bound proteins that change protonation during function use specific protein groups to bind and transfer protons. Knowledge of the identity of the proton-binding groups is of paramount importance to decipher the reaction mechanism of the protein, and protonation states of prominent are studied extensively using experimental and computational approaches. Analyses of model transporters and receptors from different organisms, and with widely different biological functions, indicate common structure-sequence motifs at internal proton-binding sites. Proton-binding dynamic hydrogen-bond networks that are exposed to the bulk might provide alternative proton-binding sites and proton-binding pathways. In this perspective article I discuss protonation coupling and proton binding at internal and external carboxylate sites of proteins that use proton transfer for function. An inter-helical carboxylate-hydroxyl hydrogen-bond motif is present at functionally important sites of membrane proteins from archaea to the brain. External carboxylate-containing H-bond clusters are observed at putative proton-binding sites of protonation-coupled model proteins, raising the question of similar functionality in spike protein S.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| |
Collapse
|
12
|
Ono J, Imai M, Nishimura Y, Nakai H. Hydroxide Ion Carrier for Proton Pumps in Bacteriorhodopsin: Primary Proton Transfer. J Phys Chem B 2020; 124:8524-8539. [DOI: 10.1021/acs.jpcb.0c05507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junichi Ono
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Minori Imai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
13
|
Harris A, Lazaratos M, Siemers M, Watt E, Hoang A, Tomida S, Schubert L, Saita M, Heberle J, Furutani Y, Kandori H, Bondar AN, Brown LS. Mechanism of Inward Proton Transport in an Antarctic Microbial Rhodopsin. J Phys Chem B 2020; 124:4851-4872. [DOI: 10.1021/acs.jpcb.0c02767] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Andrew Harris
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Michalis Lazaratos
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Malte Siemers
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Ethan Watt
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Anh Hoang
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Luiz Schubert
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Mattia Saita
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Leonid S. Brown
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
14
|
Todde G, Friedman R. Activation and Inactivation of the FLT3 Kinase: Pathway Intermediates and the Free Energy of Transition. J Phys Chem B 2019; 123:5385-5394. [PMID: 31244095 DOI: 10.1021/acs.jpcb.9b01567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aberrant expression of kinases is often associated with pathologies such as cancer and autoimmune diseases. Like other types of enzymes, kinases can adopt active and inactive states, where a shift toward more stable active state often leads to disease. Dozens of kinase inhibitors are, therefore, used as drugs. Most of these bind to either the inactive or active state. In this work, we study the transitions between these two states in FLT3, an important drug target in leukemias. Kinases are composed of two lobes (N- and C-terminal lobes) with the catalytic site in-between. Through projection of the largest motions obtained through molecular dynamics (MD) simulations, we show that each of the end-states (active or inactive) already possess the ability for transition as the two lobes rotate which initiates the transition. A targeted simulation approach known as essential dynamics sampling (EDS) was used to speed up the transition between the two protein states. Coupling the EDS to implicit-solvent MD was performed to estimate the free energy barriers of the transitions. The activation energies were found in good agreement with previous estimates obtained for other kinases. Finally, we identified FLT3 intermediates that assumed configurations that resemble that of the c-Src nonreceptor tyrosine kinase. The intermediates show better binding to the drug ponatinib than c-Src and the inactive state of FLT3. This suggests that targeting intermediate states can be used to explain the drug-binding patterns of kinases and for rational drug design.
Collapse
Affiliation(s)
- Guido Todde
- Department of Chemistry ad Biomedical Sciences, Faculty of Health and Life Sciences , Linnæus University , 391 82 Kalmar , Sweden.,Linnæus University Centre of Exellence "Biomaterials Chemistry" , 391 82 Kalmar , Sweden
| | - Ran Friedman
- Department of Chemistry ad Biomedical Sciences, Faculty of Health and Life Sciences , Linnæus University , 391 82 Kalmar , Sweden.,Linnæus University Centre of Exellence "Biomaterials Chemistry" , 391 82 Kalmar , Sweden
| |
Collapse
|
15
|
Abstract
Membranes surrounding the biological cell and its internal compartments host proteins that catalyze chemical reactions essential for the functioning of the cell. Rather than being a passive structural matrix that holds membrane-embedded proteins in place, the membrane can largely shape the conformational energy landscape of membrane proteins and impact the energetics of their chemical reaction. Here, we highlight the challenges in understanding how lipids impact the conformational energy landscape of macromolecular membrane complexes whose functioning involves chemical reactions including proton transfer. We review here advances in our understanding of how chemical reactions occur at membrane interfaces gleaned with both theoretical and experimental advances using simple protein systems as guides. Our perspective is that of bridging experiments with theory to understand general physicochemical principles of membrane reactions, with a long term goal of furthering our understanding of the role of the lipids on the functioning of complex macromolecular assemblies at the membrane interface.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - M Joanne Lemieux
- University of Alberta , Department of Biochemistry, Membrane Protein Disease Research Group , Edmonton , Alberta T6G 2H7 , Canada
| |
Collapse
|
16
|
Adam S, Bondar AN. Mechanism by which water and protein electrostatic interactions control proton transfer at the active site of channelrhodopsin. PLoS One 2018; 13:e0201298. [PMID: 30086158 PMCID: PMC6080761 DOI: 10.1371/journal.pone.0201298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/12/2018] [Indexed: 12/31/2022] Open
Abstract
Channelrhodopsins are light-sensitive ion channels whose reaction cycles involve conformation-coupled transfer of protons. Understanding how channelrhodopsins work is important for applications in optogenetics, where light activation of these proteins triggers changes in the transmembrane potential across excitable membranes. A fundamental open question is how the protein environment ensures that unproductive proton transfer from the retinal Schiff base to the nearby carboxylate counterion is avoided in the resting state of the channel. To address this question, we performed combined quantum mechanical/molecular mechanical proton transfer calculations with explicit treatment of the surrounding lipid membrane. The free energy profiles computed for proton transfer to the counterion, either via a direct jump or mediated by a water molecule, demonstrate that, when retinal is all-trans, water and protein electrostatic interactions largely favour the protonated retinal Schiff base state. We identified a conserved lysine group as an essential structural element for the proton transfer energetics in channelrhodopsins.
Collapse
Affiliation(s)
- Suliman Adam
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| |
Collapse
|
17
|
Ni QZ, Can TV, Daviso E, Belenky M, Griffin RG, Herzfeld J. Primary Transfer Step in the Light-Driven Ion Pump Bacteriorhodopsin: An Irreversible U-Turn Revealed by Dynamic Nuclear Polarization-Enhanced Magic Angle Spinning NMR. J Am Chem Soc 2018; 140:4085-4091. [PMID: 29489362 DOI: 10.1021/jacs.8b00022] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite much attention, the path of the highly consequential primary proton transfer in the light-driven ion pump bacteriorhodopsin (bR) remains mysterious. Here we use DNP-enhanced magic angle spinning (MAS) NMR to study critical elements of the active site just before the Schiff base (SB) deprotonates (in the L intermediate), immediately after the SB has deprotonated and Asp85 has become protonated (in the Mo intermediate), and just after the SB has reprotonated and Asp96 has deprotonated (in the N intermediate). An essential feature that made these experiments possible is the 75-fold signal enhancement through DNP. 15N(SB)-1H correlations reveal that the newly deprotonated SB is accepting a hydrogen bond from an alcohol and 13C-13C correlations show that Asp85 draws close to Thr89 before the primary proton transfer. Concurrently, 15N-13C correlations between the SB and Asp85 show that helices C and G draw closer together just prior to the proton transfer and relax thereafter. Together, these results indicate that Thr89 serves to relay the SB proton to Asp85 and that creating this pathway involves rapprochement between the C and G helices as well as chromophore torsion.
Collapse
Affiliation(s)
- Qing Zhe Ni
- Department of Chemistry and Francis Bitter Magnet Laboratory , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Thach V Can
- Department of Chemistry and Francis Bitter Magnet Laboratory , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Eugenio Daviso
- Department of Chemistry and Francis Bitter Magnet Laboratory , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States.,Department of Chemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Marina Belenky
- Department of Chemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Judith Herzfeld
- Department of Chemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| |
Collapse
|
18
|
Elghobashi-Meinhardt N, Phatak P, Bondar AN, Elstner M, Smith JC. Catalysis of Ground State cis[Formula: see text] trans Isomerization of Bacteriorhodopsin's Retinal Chromophore by a Hydrogen-Bond Network. J Membr Biol 2018. [PMID: 29516110 DOI: 10.1007/s00232-018-0027-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the photocycle of the membrane protein bacteriorhodopsin to proceed efficiently, the thermal 13-cis to all-trans back-isomerization of the retinal chromophore must return the protein to its resting state on a time-scale of milliseconds. Here, we report on quantum mechanical/molecular mechanical energy calculations examining the structural and energetic determinants of the retinal cis-trans isomerization in the protein environment. The results suggest that a hydrogen-bonded network consisting of the retinal Schiff base, active site amino acid residues, and water molecules can stabilize the twisted retinal, thus reducing the intrinsic energy cost of the cis-trans thermal isomerization barrier.
Collapse
Affiliation(s)
- Nadia Elghobashi-Meinhardt
- Department of Physical and Theoretical Chemistry, Theoretical Molecular Biophysics, Institute for Chemistry und Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, Berlin, 14169, Germany.
| | - Prasad Phatak
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, 38106, Braunschweig, Germany.,BASF SE, Carl-Bosch Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Ana-Nicoleta Bondar
- Department of Physics, Theoretical Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Marcus Elstner
- Department of Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institut of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Jeremy C Smith
- Oak Ridge National Laboratory, Center for Molecular Biophysics, P.O. Box 2008 MS6309, Oak Ridge, TN, 37831-6309, USA.,Department of Biochemistry and Molecular and Cellular Biology, University of Tennessee, Knoxville, USA
| |
Collapse
|
19
|
Kiani FA, Fischer S. Comparing the catalytic strategy of ATP hydrolysis in biomolecular motors. Phys Chem Chem Phys 2018; 18:20219-33. [PMID: 27296627 DOI: 10.1039/c6cp01364c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ATP-driven biomolecular motors utilize the chemical energy obtained from the ATP hydrolysis to perform vital tasks in living cells. Understanding the mechanism of enzyme-catalyzed ATP hydrolysis reaction has substantially progressed lately thanks to combined quantum/classical molecular mechanics (QM/MM) simulations. Here, we present a comparative summary of the most recent QM/MM results for myosin, kinesin and F1-ATPase motors. These completely different motors achieve the acceleration of ATP hydrolysis through a very similar catalytic mechanism. ATP hydrolysis has high activation energy because it involves the breaking of two strong bonds, namely the Pγ-Oβγ bond of ATP and the H-O bond of lytic water. The key to the four-fold decrease in the activation barrier by the three enzymes is that the breaking of the Pγ-Oβγ bond precedes the deprotonation of the lytic water molecule, generating a metaphosphate hydrate complex. The resulting singly charged trigonal planar PγO3(-) metaphosphate is a better electrophilic target for attack by an OaH(-) hydroxyl group. The formation of this OaH(-) is promoted by a strong polarization of the lytic water: in all three proteins, this water is forming a hydrogen-bond with a backbone carbonyl group and interacts with the carboxylate group of glutamate (either directly or via an intercalated water molecule). This favors the shedding of one proton by the attacking water. The abstracted proton is transferred to the γ-phosphate via various proton wires, resulting in a H2PγO4(-)/ADP(3-) product state. This catalytic strategy is so effective that most other nucleotide hydrolyzing enzymes adopt a similar approach, as suggested by their very similar triphosphate binding sites.
Collapse
Affiliation(s)
- Farooq Ahmad Kiani
- Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany. and Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, 44000, Islamabad, Pakistan.
| | - Stefan Fischer
- Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
21
|
Nonequilibrium fluctuations of lipid membranes by the rotating motor protein F 1F 0-ATP synthase. Proc Natl Acad Sci U S A 2017; 114:11291-11296. [PMID: 29073046 PMCID: PMC5664490 DOI: 10.1073/pnas.1701207114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The shape of biological membranes is constantly remodeled and maintained out of equilibrium by active proteins. The functional capacity of membrane deformation is mainly determined by the mechanical interplay between protein activity and bending elasticity. In our experiments, we find that ATP synthase, a rotating membrane protein that synthesizes the biochemical energy in cells through proton-pumping activity across the membrane, promotes localized nonequilibrium membrane fluctuations when reconstituted in giant lipid vesicles. The large membrane deformations emerge from the pumping action of rotating proteins clustered at specific emplacements in the membrane. Our results pave the way to new experimental realizations to explore the collective effects of rotating ATP synthases and their possible biological implications for biomembrane organization and protein functionality. ATP synthase is a rotating membrane protein that synthesizes ATP through proton-pumping activity across the membrane. To unveil the mechanical impact of this molecular active pump on the bending properties of its lipid environment, we have functionally reconstituted the ATP synthase in giant unilamellar vesicles and tracked the membrane fluctuations by means of flickering spectroscopy. We find that ATP synthase rotates at a frequency of about 20 Hz, promoting large nonequilibrium deformations at discrete hot spots in lipid vesicles and thus inducing an overall membrane softening. The enhanced nonequilibrium fluctuations are compatible with an accumulation of active proteins at highly curved membrane sites through a curvature−protein coupling mechanism that supports the emergence of collective effects of rotating ATP synthases in lipid membranes.
Collapse
|
22
|
Bondar AN, Smith JC. Protonation-state-Coupled Conformational Dynamics in Reaction Mechanisms of Channel and Pump Rhodopsins. Photochem Photobiol 2017; 93:1336-1344. [DOI: 10.1111/php.12790] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/20/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics Group; Department of Physics; Freie Universität Berlin; Berlin Germany
| | - Jeremy C. Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics; Oak Ridge TN
- Department of Biochemistry and Cellular and Molecular Biology; University of Tennessee; Knoxville TN
| |
Collapse
|
23
|
Shah R, Maize KM, Zhou X, Finzel BC, Wagner CR. Caught before Released: Structural Mapping of the Reaction Trajectory for the Sofosbuvir Activating Enzyme, Human Histidine Triad Nucleotide Binding Protein 1 (hHint1). Biochemistry 2017; 56:3559-3570. [PMID: 28691797 DOI: 10.1021/acs.biochem.7b00148] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human histidine triad nucleotide binding protein 1 (hHint1) is classified as an efficient nucleoside phosphoramidase and acyl-adenosine monophosphate hydrolase. Human Hint1 has been shown to be essential for the metabolic activation of nucleotide antiviral pronucleotides (i.e., proTides), such as the FDA approved hepatitis C drug, sofosbuvir. The active site of hHint1 comprises an ensemble of strictly conserved histidines, including nucleophilic His112. To structurally investigate the mechanism of hHint1 catalysis, we have designed and prepared nucleoside thiophosphoramidate substrates that are able to capture the transiently formed nucleotidylated-His112 intermediate (E*) using time-dependent crystallography. Utilizing a catalytically inactive hHint1 His112Asn enzyme variant and wild-type enzyme, the enzyme-substrate (ES1) and product (EP2) complexes were also cocrystallized, respectively, thus providing a structural map of the reaction trajectory. On the basis of these observations and the mechanistic necessity of proton transfers, proton inventory studies were carried out. Although we cannot completely exclude the possibility of more than one proton in flight, the results of these studies were consistent with the transfer of a single proton during the formation of the intermediate. Interestingly, structural analysis revealed that the critical proton transfers required for intermediate formation and hydrolysis may be mediated by a conserved active site water channel. Taken together, our results provide mechanistic insights underpinning histidine nucleophilic catalysis in general and hHint1 catalysis, in particular, thus aiding the design of future proTides and the elucidation of the natural function of the Hint family of enzymes.
Collapse
Affiliation(s)
- Rachit Shah
- Department of Medicinal Chemistry University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Kimberly M Maize
- Department of Medicinal Chemistry University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Xin Zhou
- Department of Medicinal Chemistry University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Barry C Finzel
- Department of Medicinal Chemistry University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Medicinal Chemistry University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Köhler T, Weber I, Glaubitz C, Wachtveitl J. Proteorhodopsin Photocycle Kinetics Between pH 5 and pH 9. Photochem Photobiol 2017; 93:762-771. [DOI: 10.1111/php.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Köhler
- Institute of Physical and Theoretical Chemistry; Goethe Universität Frankfurt am Main; Frankfurt Germany
| | - Ingrid Weber
- Institut für Biophysikalische Chemie; Goethe Universität Frankfurt am Main; Frankfurt Germany
| | - Clemens Glaubitz
- Institut für Biophysikalische Chemie; Goethe Universität Frankfurt am Main; Frankfurt Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry; Goethe Universität Frankfurt am Main; Frankfurt Germany
| |
Collapse
|
25
|
Matute RA, Yoon H, Warshel A. Exploring the mechanism of DNA polymerases by analyzing the effect of mutations of active site acidic groups in Polymerase β. Proteins 2016; 84:1644-1657. [PMID: 27488241 DOI: 10.1002/prot.25106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/22/2016] [Indexed: 12/18/2022]
Abstract
Elucidating the catalytic mechanism of DNA polymerase is crucial for a progress in the understanding of the control of replication fidelity. This work tries to advance the mechanistic understanding by analyzing the observed effect of mutations of the acidic groups in the active site of Polymerase β as well as the pH effect on the rate constant. The analysis involves both empirical valence bond (EVB) free energy calculations and considerations of the observed pH dependence of the reaction. The combined analysis indicates that the proton transfer (PT) from the nucleophilic O3' has two possible pathways, one to D256 and the second to the bulk. We concluded based on calculations and the experimental pH profile that the most likely path for the wild-type (WT) and the D256E and D256A mutants is a PT to the bulk, although the WT may also use a PT to Asp 256. Our analysis highlights the need for very extensive sampling in the calculations of the activation barrier and also clearly shows that ab initio QM/MM calculations that do not involve extensive sampling are unlikely to give a clear quantitative picture of the reaction mechanism. Proteins 2016; 84:1644-1657. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ricardo A Matute
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, California, 90089-1062
| | - Hanwool Yoon
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, California, 90089-1062
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, California, 90089-1062.
| |
Collapse
|
26
|
Roy P, Kantor-Uriel N, Mishra D, Dutta S, Friedman N, Sheves M, Naaman R. Spin-Controlled Photoluminescence in Hybrid Nanoparticles Purple Membrane System. ACS NANO 2016; 10:4525-4531. [PMID: 27018195 PMCID: PMC4850504 DOI: 10.1021/acsnano.6b00333] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/27/2016] [Indexed: 05/29/2023]
Abstract
Spin-dependent photoluminescence (PL) quenching of CdSe nanoparticles (NPs) has been explored in the hybrid system of CdSe NP purple membrane, wild-type bacteriorhodopsin (bR) thin film on a ferromagnetic (Ni-alloy) substrate. A significant change in the PL intensity from the CdSe NPs has been observed when spin-specific charge transfer occurs between the retinal and the magnetic substrate. This feature completely disappears in a bR apo membrane (wild-type bacteriorhodopsin in which the retinal protein covalent bond was cleaved), a bacteriorhodopsin mutant (D96N), and a bacteriorhodopsin bearing a locked retinal chromophore (isomerization of the crucial C13═C14 retinal double bond was prevented by inserting a ring spanning this bond). The extent of spin-dependent PL quenching of the CdSe NPs depends on the absorption of the retinal, embedded in wild-type bacteriorhodopsin. Our result suggests that spin-dependent charge transfer between the retinal and the substrate controls the PL intensity from the NPs.
Collapse
Affiliation(s)
- Partha Roy
- Department
of Chemical Physics and Department of Organic Chemistry, Weizmann Institute, Rehovot 76100, Israel
| | - Nirit Kantor-Uriel
- Department
of Chemical Physics and Department of Organic Chemistry, Weizmann Institute, Rehovot 76100, Israel
| | - Debabrata Mishra
- Department
of Chemical Physics and Department of Organic Chemistry, Weizmann Institute, Rehovot 76100, Israel
| | - Sansa Dutta
- Department
of Chemical Physics and Department of Organic Chemistry, Weizmann Institute, Rehovot 76100, Israel
| | - Noga Friedman
- Department
of Chemical Physics and Department of Organic Chemistry, Weizmann Institute, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department
of Chemical Physics and Department of Organic Chemistry, Weizmann Institute, Rehovot 76100, Israel
| | - Ron Naaman
- Department
of Chemical Physics and Department of Organic Chemistry, Weizmann Institute, Rehovot 76100, Israel
| |
Collapse
|
27
|
Ge X, Gunner MR. Unraveling the mechanism of proton translocation in the extracellular half-channel of bacteriorhodopsin. Proteins 2016; 84:639-54. [DOI: 10.1002/prot.25013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/24/2016] [Accepted: 02/04/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoxia Ge
- Physics Department; City College of New York; New York NY 10031
| | - M. R. Gunner
- Physics Department; City College of New York; New York NY 10031
| |
Collapse
|
28
|
Watanabe HC, Banno M, Sakurai M. An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: incorporation of the quantum effect between solute and solvent. Phys Chem Chem Phys 2016; 18:7318-33. [DOI: 10.1039/c5cp07136d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum effects in solute–solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase.
Collapse
Affiliation(s)
- Hiroshi C. Watanabe
- Research Center for Advanced Science and Technology
- The University of Tokyo
- Meguro-ku
- Japan
| | - Misa Banno
- Center for Biological Resources and Informatics
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics
- Tokyo Institute of Technology
- Midori-ku
- Japan
| |
Collapse
|
29
|
Noé F, Krachtus D, Smith JC, Fischer S. Transition Networks for the Comprehensive Characterization of Complex Conformational Change in Proteins. J Chem Theory Comput 2015; 2:840-57. [PMID: 26626691 DOI: 10.1021/ct050162r] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functionally relevant transitions between native conformations of a protein can be complex, involving, for example, the reorganization of parts of the backbone fold, and may occur via a multitude of pathways. Such transitions can be characterized by a transition network (TN), in which the experimentally determined end state structures are connected by a dense network of subtransitions via low-energy intermediates. We show here how the computation of a TN can be achieved for a complex protein transition. First, an efficient hierarchical procedure is used to uniformly sample the conformational subspace relevant to the transition. Then, the best path which connects the end states is determined as well as the rate-limiting ridge on the energy surface which separates them. Graph-theoretical algorithms permit this to be achived by computing the barriers of only a small number out of the many subtransitions in the TN. These barriers are computed using the Conjugate Peak Refinement method. The approach is illustrated on the conformational switch of Ras p21. The best and the 12 next-best transition pathways, having rate-limiting barriers within a range of 10 kcal/mol, were identified. Two main energy ridges, which respectively involve rearrangements of the switch I and switch II loops, show that switch I must rearrange by threading Tyr32 underneath the protein backbone before the rate-limiting switch II rearrangement can occur, while the details of the switch II rearrangement differ significantly among the low-energy pathways.
Collapse
Affiliation(s)
- Frank Noé
- Computational Molecular Biophysics, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany, and Computational Biochemistry, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| | - Dieter Krachtus
- Computational Molecular Biophysics, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany, and Computational Biochemistry, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| | - Jeremy C Smith
- Computational Molecular Biophysics, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany, and Computational Biochemistry, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| | - Stefan Fischer
- Computational Molecular Biophysics, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany, and Computational Biochemistry, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
Milenkovic S, Bondar AN. Mechanism of conformational coupling in SecA: Key role of hydrogen-bonding networks and water interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:374-85. [PMID: 26607006 DOI: 10.1016/j.bbamem.2015.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 11/16/2022]
Abstract
SecA uses the energy yielded by the binding and hydrolysis of adenosine triphosphate (ATP) to push secretory pre-proteins across the plasma membrane in bacteria. Hydrolysis of ATP occurs at the nucleotide-binding site, which contains the conserved carboxylate groups of the DEAD-box helicases. Although crystal structures provide valuable snapshots of SecA along its reaction cycle, the mechanism that ensures conformational coupling between the nucleotide-binding site and the other domains of SecA remains unclear. The observation that SecA contains numerous hydrogen-bonding groups raises important questions about the role of hydrogen-bonding networks and hydrogen-bond dynamics in long-distance conformational couplings. To address these questions, we explored the molecular dynamics of SecA from three different organisms, with and without bound nucleotide, in water. By computing two-dimensional hydrogen-bonding maps we identify networks of hydrogen bonds that connect the nucleotide-binding site to remote regions of the protein, and sites in the protein that respond to specific perturbations. We find that the nucleotide-binding site of ADP-bound SecA has a preferred geometry whereby the first two carboxylates of the DEAD motif bridge via hydrogen-bonding water. Simulations of a mutant with perturbed ATP hydrolysis highlight the water-bridged geometry as a key structural element of the reaction path.
Collapse
Affiliation(s)
- Stefan Milenkovic
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| |
Collapse
|
31
|
Conversion of a light-driven proton pump into a light-gated ion channel. Sci Rep 2015; 5:16450. [PMID: 26597707 PMCID: PMC4657025 DOI: 10.1038/srep16450] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/14/2015] [Indexed: 12/19/2022] Open
Abstract
Interest in microbial rhodopsins with ion pumping activity has been revitalized in the context of optogenetics, where light-driven ion pumps are used for cell hyperpolarization and voltage sensing. We identified an opsin-encoding gene (CsR) in the genome of the arctic alga Coccomyxa subellipsoidea C-169 that can produce large photocurrents in Xenopus oocytes. We used this property to analyze the function of individual residues in proton pumping. Modification of the highly conserved proton shuttling residue R83 or its interaction partner Y57 strongly reduced pumping power. Moreover, this mutation converted CsR at moderate electrochemical load into an operational proton channel with inward or outward rectification depending on the amino acid substitution. Together with molecular dynamics simulations, these data demonstrate that CsR-R83 and its interacting partner Y57 in conjunction with water molecules forms a proton shuttle that blocks passive proton flux during the dark-state but promotes proton movement uphill upon illumination.
Collapse
|
32
|
Wolter T, Elstner M, Fischer S, Smith JC, Bondar AN. Mechanism by which Untwisting of Retinal Leads to Productive Bacteriorhodopsin Photocycle States. J Phys Chem B 2014; 119:2229-40. [DOI: 10.1021/jp505818r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Tino Wolter
- Institute of Physical
Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical
Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Stefan Fischer
- IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
| | - Jeremy C. Smith
- Center for
Molecular
Biophysics, University of Tenessee, Oak Ridge National Laboratory, PO BOX 2008 MS6164, Oak Ridge, Tennessee 37831-6164, United States
| | - Ana-Nicoleta Bondar
- Theoretical
Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
33
|
Cui Q, Elstner M. Density functional tight binding: values of semi-empirical methods in an ab initio era. Phys Chem Chem Phys 2014; 16:14368-77. [PMID: 24850383 PMCID: PMC4836871 DOI: 10.1039/c4cp00908h] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Semi-empirical (SE) methods are derived from Hartree-Fock (HF) or Density Functional Theory (DFT) by neglect and approximation of electronic integrals. Thereby, parameters are introduced which have to be determined from reference calculations and/or by fitting to available experimental data. This leads to computational methods that are about 2-3 orders of magnitude faster than the standard HF/DFT methods using medium sized basis sets while being about 3 orders of magnitude slower than empirical force field methods (Molecular Mechanics: MM). Therefore, SE methods are most appropriate for a specific range of applications. These include the study of systems that contain a large number of atoms and therefore being too large for ab initio or DFT methods and also problems where dynamic or entropic effects are particularly important. In the latter case, the errors made by considering a very limited number of molecular structures or neglecting entropic contributions can be much larger than the accuracy lost due to the use of SE methods. Another area where SE methods are attractive concerns the analysis of systems for which reliable MM models are not readily available. Therefore, even in an era when rapid progress is being made in ab initio methods, there is considerable interest in further developing SE methods. We illustrate this point by focusing on the discussion of recent development and application of the Density Functional Tight Binding method.
Collapse
|
34
|
Catalytic strategy used by the myosin motor to hydrolyze ATP. Proc Natl Acad Sci U S A 2014; 111:E2947-56. [PMID: 25006262 DOI: 10.1073/pnas.1401862111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin is a molecular motor responsible for biological motions such as muscle contraction and intracellular cargo transport, for which it hydrolyzes adenosine 5'-triphosphate (ATP). Early steps of the mechanism by which myosin catalyzes ATP hydrolysis have been investigated, but still missing are the structure of the final ADP·inorganic phosphate (Pi) product and the complete pathway leading to it. Here, a comprehensive description of the catalytic strategy of myosin is formulated, based on combined quantum-classical molecular mechanics calculations. A full exploration of catalytic pathways was performed and a final product structure was found that is consistent with all experiments. Molecular movies of the relevant pathways show the different reorganizations of the H-bond network that lead to the final product, whose γ-phosphate is not in the previously reported HPγO4(2-) state, but in the H2PγO4(-) state. The simulations reveal that the catalytic strategy of myosin employs a three-pronged tactic: (i) Stabilization of the γ-phosphate of ATP in a dissociated metaphosphate (PγO3(-)) state. (ii) Polarization of the attacking water molecule, to abstract a proton from that water. (iii) Formation of multiple proton wires in the active site, for efficient transfer of the abstracted proton to various product precursors. The specific role played in this strategy by each of the three loops enclosing ATP is identified unambiguously. It explains how the precise timing of the ATPase activation during the force generating cycle is achieved in myosin. The catalytic strategy described here for myosin is likely to be very similar in most nucleotide hydrolyzing enzymes.
Collapse
|
35
|
Coupling between inter-helical hydrogen bonding and water dynamics in a proton transporter. J Struct Biol 2014; 186:95-111. [DOI: 10.1016/j.jsb.2014.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 12/20/2022]
|
36
|
Del Val C, Royuela-Flor J, Milenkovic S, Bondar AN. Channelrhodopsins: a bioinformatics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:643-55. [PMID: 24252597 DOI: 10.1016/j.bbabio.2013.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 12/28/2022]
Abstract
Channelrhodopsins are microbial-type rhodopsins that function as light-gated cation channels. Understanding how the detailed architecture of the protein governs its dynamics and specificity for ions is important, because it has the potential to assist in designing site-directed channelrhodopsin mutants for specific neurobiology applications. Here we use bioinformatics methods to derive accurate alignments of channelrhodopsin sequences, assess the sequence conservation patterns and find conserved motifs in channelrhodopsins, and use homology modeling to construct three-dimensional structural models of channelrhodopsins. The analyses reveal that helices C and D of channelrhodopsins contain Cys, Ser, and Thr groups that can engage in both intra- and inter-helical hydrogen bonds. We propose that these polar groups participate in inter-helical hydrogen-bonding clusters important for the protein conformational dynamics and for the local water interactions. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Coral Del Val
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain.
| | - José Royuela-Flor
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Stefan Milenkovic
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, 14195 Berlin, Germany.
| |
Collapse
|
37
|
Gunner MR, Amin M, Zhu X, Lu J. Molecular mechanisms for generating transmembrane proton gradients. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:892-913. [PMID: 23507617 PMCID: PMC3714358 DOI: 10.1016/j.bbabio.2013.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 01/02/2023]
Abstract
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.
Collapse
Affiliation(s)
- M R Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Phosphoryl transfer plays key roles in signaling, energy transduction, protein synthesis, and maintaining the integrity of the genetic material. On the surface, it would appear to be a simple nucleophile displacement reaction. However, this simplicity is deceptive, as, even in aqueous solution, the low-lying d-orbitals on the phosphorus atom allow for eight distinct mechanistic possibilities, before even introducing the complexities of the enzyme catalyzed reactions. To further complicate matters, while powerful, traditional experimental techniques such as the use of linear free-energy relationships (LFER) or measuring isotope effects cannot make unique distinctions between different potential mechanisms. A quarter of a century has passed since Westheimer wrote his seminal review, 'Why Nature Chose Phosphate' (Science 235 (1987), 1173), and a lot has changed in the field since then. The present review revisits this biologically crucial issue, exploring both relevant enzymatic systems as well as the corresponding chemistry in aqueous solution, and demonstrating that the only way key questions in this field are likely to be resolved is through careful theoretical studies (which of course should be able to reproduce all relevant experimental data). Finally, we demonstrate that the reason that nature really chose phosphate is due to interplay between two counteracting effects: on the one hand, phosphates are negatively charged and the resulting charge-charge repulsion with the attacking nucleophile contributes to the very high barrier for hydrolysis, making phosphate esters among the most inert compounds known. However, biology is not only about reducing the barrier to unfavorable chemical reactions. That is, the same charge-charge repulsion that makes phosphate ester hydrolysis so unfavorable also makes it possible to regulate, by exploiting the electrostatics. This means that phosphate ester hydrolysis can not only be turned on, but also be turned off, by fine tuning the electrostatic environment and the present review demonstrates numerous examples where this is the case. Without this capacity for regulation, it would be impossible to have for instance a signaling or metabolic cascade, where the action of each participant is determined by the fine-tuned activity of the previous piece in the production line. This makes phosphate esters the ideal compounds to facilitate life as we know it.
Collapse
|
39
|
Wolter T, Welke K, Phatak P, Bondar AN, Elstner M. Excitation energies of a water-bridged twisted retinal structure in the bacteriorhodopsin proton pump: a theoretical investigation. Phys Chem Chem Phys 2013; 15:12582-90. [DOI: 10.1039/c3cp44280b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Welke K, Watanabe HC, Wolter T, Gaus M, Elstner M. QM/MM simulations of vibrational spectra of bacteriorhodopsin and channelrhodopsin-2. Phys Chem Chem Phys 2013; 15:6651-9. [DOI: 10.1039/c3cp44181d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Tamogami J, Kikukawa T, Nara T, Shimono K, Demura M, Kamo N. Photoinduced proton release in proteorhodopsin at low pH: the possibility of a decrease in the pK(a) of Asp227. Biochemistry 2012; 51:9290-301. [PMID: 23095117 DOI: 10.1021/bi300940p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteorhodopsin (PR) is one of the microbial rhodopsins that are found in marine eubacteria and likely functions as an outward light-driven proton pump. Previously, we [Tamogami, J., et al. (2009) Photochem. Photobiol.85, 578-589] reported the occurrence of a photoinduced proton transfer in PR between pH 5 and 10 using a transparent ITO (indium-tin oxide) or SnO(2) electrode that works as a time-resolving pH electrode. In the study presented here, the proton transfer at low pH (<4) was investigated. Under these conditions, Asp97, the primary counterion to the protonated Schiff base, is protonated. We observed a first proton release that was followed by an uptake; during this process, however, the M intermediate did not form. Through the use of experiments with several PR mutants, we found that Asp227 played an essential role in proton release. This residue corresponds to the Asp212 residue of bacteriorhodopsin, the so-called secondary Schiff base counterion. We estimated the pK(a) of this residue in both the dark and the proton-releasing photoproduct to be ~3.0 and ~2.3, respectively. The pK(a) value of Asp227 in the dark was also estimated spectroscopically and was approximately equal to that determined with the ITO experiments, which may imply the possibility of the release of a proton from Asp227. In the absence of Cl(-), we observed the proton release in D227N and found that Asp97, the primary counterion, played a key role. It is inferred that the negative charge is required to stabilize the photoproducts through the deprotonation of Asp227 (first choice), the binding of Cl(-) (second choice), or the deprotonation of Asp97. The photoinduced proton release (possibly by the decrease in the pK(a) of the secondary counterion) in acidic media was also observed in other microbial rhodopsins with the exception of the Anabaena sensory rhodopsin, which lacks the dissociable residue at the position of Asp212 of BR or Asp227 of PR and halorhodopsin. The implication of this pK(a) decrease is discussed.
Collapse
Affiliation(s)
- Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Sun Q, Li Z, Lan Z, Pfisterer C, Doerr M, Fischer S, Smith SC, Thiel W. Isomerization mechanism of the HcRed fluorescent protein chromophore. Phys Chem Chem Phys 2012; 14:11413-24. [PMID: 22801745 DOI: 10.1039/c2cp41217a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To understand how the protein achieves fluorescence, the isomerization mechanism of the HcRed chromophore is studied both under vacuum and in the solvated red fluorescent protein. Quantum mechanical (QM) and quantum mechanical/molecular mechanical (QM/MM) methods are applied both for the ground and the first excited state. The photoinduced processes in the chromophore mainly involve torsions around the imidazolinone-bridge bond (τ) and the phenoxy-bridge bond (φ). Under vacuum, the isomerization of the cis-trans chromophore essentially proceeds by τ twisting, while the radiationless decay requires φ torsion. By contrast, the isomerization of the cis-trans chromophore in HcRed occurs via simultaneous τ and φ twisting. The protein environment significantly reduces the barrier of this hula twist motion compared with vacuum. The excited-state isomerization barrier via the φ rotation of the cis-coplanar conformer in HcRed is computed to be significantly higher than that of the trans-non-coplanar conformer. This is consistent with the experimental observation that the cis-coplanar-conformation of the chromophore is related to the fluorescent properties of HcRed, while the trans-non-planar conformation is weakly fluorescent or non-fluorescent. Our study shows how the protein modifies the isomerization mechanism, notably by interactions involving the nearby residue Ile197, which keeps the chromophore coplanar and blocks the twisting motion that leads to photoinduced radiationless decay.
Collapse
Affiliation(s)
- Qiao Sun
- Centre for Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Qld 4072, Brisbane, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ram Prasad B, Warshel A. Prechemistry versus preorganization in DNA replication fidelity. Proteins 2011; 79:2900-19. [PMID: 21905114 DOI: 10.1002/prot.23128] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/30/2011] [Accepted: 07/05/2011] [Indexed: 01/30/2023]
Abstract
The molecular origin of nucleotide insertion catalysis and fidelity of DNA polymerases is explored by means of computational simulations. Special attention is paid to the examination of the validity of proposals that invoke prechemistry effects, checkpoints concepts, and dynamical effects. The simulations reproduce the observed fidelity in Pol β, starting with the relevant observed X-ray structures of the complex with the right (R) and wrong (W) nucleotides. The generation of free energy surfaces for the R and W systems also allowed us to analyze different proposals about the origin of the fidelity and to reach several important conclusions. It is found that the potential of mean force (PMF) obtained by proper sampling does not support QM/MM-based proposals of a large barrier before the prechemistry state. Furthermore, examination of dynamical proposals by the renormalization approach indicates that the motions from open to close configurations do not contribute to catalysis or fidelity. Finally we discuss and analyze the induced fit concept and show that, despite its importance, it does not explain fidelity. That is, the fidelity is apparently due to the change in the preorganization of the chemical site, as a result of the relaxation of the binding site upon binding of the incorrect nucleotide. Finally and importantly, since the issue is the barrier associated with the enzyme-substrate (ES)/DNA complex at the chemical transition state and not the path to this complex formation (unless this path involves rate determining steps), it is also not useful to invoke checkpoints while discussing fidelity.
Collapse
Affiliation(s)
- B Ram Prasad
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|
44
|
Clemens M, Phatak P, Cui Q, Bondar AN, Elstner M. Role of Arg82 in the early steps of the bacteriorhodopsin proton-pumping cycle. J Phys Chem B 2011; 115:7129-35. [PMID: 21561116 DOI: 10.1021/jp201865k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton-transfer reactions in the bacteriorhodopsin light-driven proton pump are coupled with structural rearrangements of protein amino acids and internal water molecules. It is generally thought that the first proton-transfer step from retinal Schiff base to the nearby Asp85 is coupled with movement of the Arg82 side chain away from Asp85 and toward the extracellular proton release group. This movement of Arg82 likely triggers the release of the proton from the proton release group to the extracellular bulk. The exact timing of the movement of Arg82 and how this movement is coupled with proton transfer are still not understood in molecular detail. Here, we address these questions by computing the free energy for the movement of the Arg82 side chain. The calculations indicate that protonation of Asp85 leads to a fast reorientation of the Arg82 side chain toward the extracellular proton release group.
Collapse
Affiliation(s)
- Maike Clemens
- Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | |
Collapse
|
45
|
Baumann RP, Eussner J, Hampp N. pH-dependent bending in and out of purple membranes comprising BR-D85T. Phys Chem Chem Phys 2011; 13:21375-82. [DOI: 10.1039/c1cp22098e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Bondar AN, Fischer S, Smith JC. Water Pathways in the Bacteriorhodopsin Proton Pump. J Membr Biol 2010; 239:73-84. [DOI: 10.1007/s00232-010-9329-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/05/2010] [Indexed: 01/18/2023]
|
47
|
Saharay M, Guo H, Smith JC. Catalytic mechanism of cellulose degradation by a cellobiohydrolase, CelS. PLoS One 2010; 5:e12947. [PMID: 20967294 PMCID: PMC2953488 DOI: 10.1371/journal.pone.0012947] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 08/20/2010] [Indexed: 12/02/2022] Open
Abstract
The hydrolysis of cellulose is the bottleneck in cellulosic ethanol production. The cellobiohydrolase CelS from Clostridium thermocellum catalyzes the hydrolysis of cello-oligosaccharides via inversion of the anomeric carbon. Here, to examine key features of the CelS-catalyzed reaction, QM/MM (SCCDFTB/MM) simulations are performed. The calculated free energy profile for the reaction possesses a 19 kcal/mol barrier. The results confirm the role of active site residue Glu87 as the general acid catalyst in the cleavage reaction and show that Asp255 may act as the general base. A feasible position in the reactant state of the water molecule responsible for nucleophilic attack is identified. Sugar ring distortion as the reaction progresses is quantified. The results provide a computational approach that may complement the experimental design of more efficient enzymes for biofuel production.
Collapse
Affiliation(s)
- Moumita Saharay
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Hong Guo
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jeremy C. Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
48
|
Baumann RP, Schranz M, Hampp N. Bending of purple membranes in dependence on the pH analyzed by AFM and single molecule force spectroscopy. Phys Chem Chem Phys 2010; 12:4329-35. [DOI: 10.1039/b919729j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Sun Q, Wang S, Zhang H, Li Z, Pifisterer C, Fischer S, Nanbu S, Smith SC. Structural and Relaxation Effects in Proton Wire Energetics: Model Studies of the Green Fluorescent Protein Photocycle. Aust J Chem 2010. [DOI: 10.1071/ch09509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We present the results of a systematic series of constrained minimum energy pathway calculations on ground state potential energy surfaces, for a cluster model of the proton chain transfer that mediates the photocycle of the green fluorescent protein, as well as for a model including the solvated protein environment. The calculations vary in terms of the types of modes that are assumed to be capable of relaxing in concert with the movement of the protons and the results demonstrate that the nature and extent of dynamical relaxation has a substantive impact on the activation energy for the proton transfer. We discuss the implications of this in terms of currently available dynamical models and chemical rate theories that might be brought to bear on the kinetics of this important example of proton chain transfer in a biological system.
Collapse
|
50
|
McVol - a program for calculating protein volumes and identifying cavities by a Monte Carlo algorithm. J Mol Model 2009; 16:419-29. [PMID: 19626353 DOI: 10.1007/s00894-009-0541-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/23/2009] [Indexed: 10/20/2022]
Abstract
In this paper, we describe a Monte Carlo method for determining the volume of a molecule. A molecule is considered to consist of hard, overlapping spheres. The surface of the molecule is defined by rolling a probe sphere over the surface of the spheres. To determine the volume of the molecule, random points are placed in a three-dimensional box, which encloses the whole molecule. The volume of the molecule in relation to the volume of the box is estimated by calculating the ratio of the random points placed inside the molecule and the total number of random points that were placed. For computational efficiency, we use a grid-cell based neighbor list to determine whether a random point is placed inside the molecule or not. This method in combination with a graph-theoretical algorithm is used to detect internal cavities and surface clefts of molecules. Since cavities and clefts are potential water binding sites, we place water molecules in the cavities. The potential water positions can be used in molecular dynamics calculations as well as in other molecular calculations. We apply this method to several proteins and demonstrate the usefulness of the program. The described methods are all implemented in the program McVol, which is available free of charge from our website at http://www.bisb.uni-bayreuth.de/software.html .
Collapse
|