1
|
Solution Structures of Bacillus anthracis Protective Antigen Proteins Using Small Angle Neutron Scattering and Protective Antigen 63 Ion Channel Formation Kinetics. Toxins (Basel) 2021; 13:toxins13120888. [PMID: 34941724 PMCID: PMC8708185 DOI: 10.3390/toxins13120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
We are studying the structures of bacterial toxins that form ion channels and enable macromolecule transport across membranes. For example, the crystal structure of the Staphylococcus aureus α-hemolysin (α-HL) channel in its functional state was confirmed using neutron reflectometry (NR) with the protein reconstituted in membranes tethered to a solid support. This method, which provides sub-nanometer structural information, could also test putative structures of the Bacillus anthracis protective antigen 63 (PA63) channel, locate where B. anthracis lethal factor and edema factor toxins (LF and EF, respectively) bind to it, and determine how certain small molecules can inhibit the interaction of LF and EF with the channel. We report here the solution structures of channel-forming PA63 and its precursor PA83 (which does not form channels) obtained with small angle neutron scattering. At near neutral pH, PA83 is a monomer and PA63 a heptamer. The latter is compared to two cryo-electron microscopy structures. We also show that although the α-HL and PA63 channels have similar structural features, unlike α-HL, PA63 channel formation in lipid bilayer membranes ceases within minutes of protein addition, which currently precludes the use of NR for elucidating the interactions between PA63, LF, EF, and potential therapeutic agents.
Collapse
|
2
|
Abstract
Anthrax toxin is a major virulence factor of Bacillus anthracis, a Gram-positive bacterium which can form highly stable spores that are the causative agents of the disease, anthrax. While chiefly a disease of livestock, spores can be "weaponized" as a bio-terrorist agent, and can be deadly if not recognized and treated early with antibiotics. The intracellular pathways affected by the enzymes are broadly understood and are not discussed here. This chapter focuses on what is known about the assembly of secreted toxins on the host cell surface and how the toxin is delivered into the cytosol. The central component is the "Protective Antigen", which self-oligomerizes and forms complexes with its pay-load, either Lethal Factor or Edema Factor. It binds a host receptor, CMG2, or a close relative, triggering receptor-mediated endocytosis, and forms a remarkably elegant yet powerful machine that delivers toxic enzymes into the cytosol, powered only by the pH gradient across the membrane. We now have atomic structures of most of the starting, intermediate and final assemblies in the infectious process. Together with a major body of biophysical, mutational and biochemical work, these studies reveal a remarkable story of both how toxin assembly is choreographed in time and space.
Collapse
|
3
|
Cryo-EM structure of the fully-loaded asymmetric anthrax lethal toxin in its heptameric pre-pore state. PLoS Pathog 2020; 16:e1008530. [PMID: 32810181 PMCID: PMC7462287 DOI: 10.1371/journal.ppat.1008530] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/01/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022] Open
Abstract
Anthrax toxin is the major virulence factor secreted by Bacillus anthracis, causing high mortality in humans and other mammals. It consists of a membrane translocase, known as protective antigen (PA), that catalyzes the unfolding of its cytotoxic substrates lethal factor (LF) and edema factor (EF), followed by translocation into the host cell. Substrate recruitment to the heptameric PA pre-pore and subsequent translocation, however, are not well understood. Here, we report three high-resolution cryo-EM structures of the fully-loaded anthrax lethal toxin in its heptameric pre-pore state, which differ in the position and conformation of LFs. The structures reveal that three LFs interact with the heptameric PA and upon binding change their conformation to form a continuous chain of head-to-tail interactions. As a result of the underlying symmetry mismatch, one LF binding site in PA remains unoccupied. Whereas one LF directly interacts with a part of PA called α-clamp, the others do not interact with this region, indicating an intermediate state between toxin assembly and translocation. Interestingly, the interaction of the N-terminal domain with the α-clamp correlates with a higher flexibility in the C-terminal domain of the protein. Based on our data, we propose a model for toxin assembly, in which the relative position of the N-terminal α-helices in the three LFs determines which factor is translocated first.
Collapse
|
4
|
Fabre L, Santelli E, Mountassif D, Donoghue A, Biswas A, Blunck R, Hanein D, Volkmann N, Liddington R, Rouiller I. Structure of anthrax lethal toxin prepore complex suggests a pathway for efficient cell entry. J Gen Physiol 2017; 148:313-24. [PMID: 27670897 PMCID: PMC5037343 DOI: 10.1085/jgp.201611617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/25/2016] [Indexed: 01/20/2023] Open
Abstract
Anthrax toxin comprises three soluble proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). PA must be cleaved by host proteases before it oligomerizes and forms a prepore, to which LF and EF bind. After endocytosis of this tripartite complex, the prepore transforms into a narrow transmembrane pore that delivers unfolded LF and EF into the host cytosol. Here, we find that translocation of multiple 90-kD LF molecules is rapid and efficient. To probe the molecular basis of this translocation, we calculated a three-dimensional map of the fully loaded (PA63)7-(LF)3 prepore complex by cryo-electron microscopy (cryo-EM). The map shows three LFs bound in a similar way to one another, via their N-terminal domains, to the surface of the PA heptamer. The model also reveals contacts between the N- and C-terminal domains of adjacent LF molecules. We propose that this molecular arrangement plays an important role in the maintenance of translocation efficiency through the narrow PA pore.
Collapse
Affiliation(s)
- Lucien Fabre
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada Groupe de Recherche Axé sur la Structure des Protéines (GRASP), Groupe d'Étude des Protéines Membranaires (GÉPROM), McGill University, Montréal, Québec H3A 0C7, Canada
| | - Eugenio Santelli
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Driss Mountassif
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada Groupe de Recherche Axé sur la Structure des Protéines (GRASP), Groupe d'Étude des Protéines Membranaires (GÉPROM), McGill University, Montréal, Québec H3A 0C7, Canada
| | - Annemarie Donoghue
- Departments of Physics, Université de Montréal, Montréal, Québec H3T 1J4, Canada Department of Physiology, Université de Montréal, Montréal, Québec H3T 1J4, Canada Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Aviroop Biswas
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada Groupe de Recherche Axé sur la Structure des Protéines (GRASP), Groupe d'Étude des Protéines Membranaires (GÉPROM), McGill University, Montréal, Québec H3A 0C7, Canada
| | - Rikard Blunck
- Departments of Physics, Université de Montréal, Montréal, Québec H3T 1J4, Canada Department of Physiology, Université de Montréal, Montréal, Québec H3T 1J4, Canada Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Dorit Hanein
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Niels Volkmann
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Robert Liddington
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Isabelle Rouiller
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada Groupe de Recherche Axé sur la Structure des Protéines (GRASP), Groupe d'Étude des Protéines Membranaires (GÉPROM), McGill University, Montréal, Québec H3A 0C7, Canada
| |
Collapse
|
5
|
Toxin Transport by A-B Type of Toxins in Eukaryotic Target Cells and Its Inhibition by Positively Charged Heterocyclic Molecules. Curr Top Microbiol Immunol 2017; 406:229-256. [DOI: 10.1007/82_2017_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Harris JR, Soliakov A, Watkinson A, Lakey JH. Recombinant anthrax protective antigen: Observation of aggregation phenomena by TEM reveals specific effects of sterols. Micron 2016; 93:1-8. [PMID: 27883989 DOI: 10.1016/j.micron.2016.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
Negatively stained transmission electron microscope images are presented that depict the aggregation of recombinant anthrax protective antigen (rPA83 monomer and the PA63 prepore oligomer) under varying in vitro biochemical conditions. Heat treatment (50°C) of rPA83 produced clumped fibrils, but following heating the PA63 prepore formed disordered aggregates. Freeze-thaw treatment of the PA63 prepore generated linear flexuous aggregates of the heptameric oligomers. Aqueous suspensions of cholesterol microcrystals were shown to bind small rPA83 aggregates at the edges of the planar bilayers. With PA63 a more discrete binding of the prepores to the crystalline cholesterol bilayer edges occurs. Sodium deoxycholate (NaDOC) treatment of rPA83 produced quasi helical fibrillar aggregate, similar but not identical to that produced by heat treatment. Remarkably, NaDOC treatment of the PA63 prepores induced transformation into pores, with a characteristic extended ß-barrel. The PA63 pores aggregated as dimers, that aggregated further as angular chains and closed structures in higher NaDOC concentrations. The significance of the sterol interaction is discussed in relation to its likely importance for PA action in vivo.
Collapse
Affiliation(s)
- J Robin Harris
- Institute of Zoology, University of Mainz, 55099 Mainz, Germany.
| | - Andrei Soliakov
- Fujifilm Diosynth Biotechnologies, Belasis Avenue, Billingham TS23 1LH, UK
| | - Allan Watkinson
- Envigo, Wooley Road, Alcon bury, Huntingdon, Cambridgeshire PE28 4HS, UK
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
7
|
Molecular assembly of lethal factor enzyme and pre-pore heptameric protective antigen in early stage of translocation. J Mol Model 2015; 22:7. [PMID: 26659402 DOI: 10.1007/s00894-015-2878-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
During intoxication, the anthrax toxin lethal (LF) and edema (EF) factors initially assemble with the protective antigen (PA) on the plasma membrane of cells expressing the membrane-bound surface-exposed anthrax toxin receptor (ATR). This takes place at the physiological pH prior to entering the acidic environment of the endosome. We elucidated the molecular dynamics (MD) behaviors of the three-dimensional structure of the (PA63)7LF3 complex in various conformations and analyzed the dynamical properties of the fully loaded pre-pore complex on the plasma membrane at the physiological pH. The analysis points to the interaction networks of amino acids conserved between PA63 octamer and heptamer, which are not affected during the initial stage of the LFs binding. The simulations show an asymmetrical movement of the complex domains that directly affect LFs conformations. The conformational and structural alterations of the 2β2-2β3 loops of PA subunits are associated with pore formation. The early conformational changes of the loops appear as they peel off from the domain 2 toward domain 4 of each PA subunit. The LFs unfold in 1α1 segments of their N-terminal initiating the early stage of the pre-pore formation. The results indicate instable regions within the complex and provide important clues concerning the detail of fluctuating residues of the LF-PA interface regions at the early steps of toxins translocation.
Collapse
|
8
|
Kolesnikov AV, Kozyr AV, Ryabko AK, Shemyakin IG. Ultrasensitive detection of protease activity of anthrax and botulinum toxins by a new PCR-based assay. Pathog Dis 2015; 74:ftv112. [PMID: 26620058 DOI: 10.1093/femspd/ftv112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 11/14/2022] Open
Abstract
Anthrax and botulism are dangerous infectious diseases that can be fatal unless detected and treated quickly. Fatalities from these diseases are primarily due to endopeptidase toxins secreted by the pathogens. Rapid and sensitive detection of the presence of active toxins is the key element for protection from natural outbreaks of anthrax and botulism, as well as from the threat of bioterrorism. We describe an ultrasensitive polymerase chain reaction (PCR)-based assay for detecting proteolytic activity of anthrax and botulinum toxins using composite probes consisting of covalent peptide-DNA conjugate for the detection of anthrax, and noncovalent protein-aptamer assembly to assay botulinum toxin activity. Probes immobilized on the solid-phase support are cleaved by toxins to release DNA, which is detected by real-time PCR. Both assays can detect subpicogram quantities of active toxins isolated from composite matrices. Special procedures were developed to isolate intact toxins from the matrices under mild conditions. The assay is rapid, uses proven technologies, and can be modified to detect other proteolytic and biopolymer-degrading enzymes.
Collapse
Affiliation(s)
- Alexander V Kolesnikov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region 142279, Russia Institute of Immunological Engineering, Lyubuchany, Moscow Region 142380, Russia
| | - Arina V Kozyr
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region 142279, Russia
| | - Alyona K Ryabko
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region 142279, Russia
| | - Igor G Shemyakin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region 142279, Russia
| |
Collapse
|
9
|
Zhang L, Tong H, Garewal M, Ren G. Optimized negative-staining electron microscopy for lipoprotein studies. Biochim Biophys Acta Gen Subj 2012; 1830:2150-9. [PMID: 23032862 DOI: 10.1016/j.bbagen.2012.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Negative-staining (NS), a rapid, simple and conventional technique of electron microscopy (EM), has been commonly used to initially study the morphology and structure of proteins for half a century. Certain NS protocols however can cause artifacts, especially for structurally flexible or lipid-related proteins, such as lipoproteins. Lipoproteins were often observed in the form of rouleau as lipoprotein particles appeared to be stacked together by conventional NS protocols. The flexible components of lipoproteins, i.e. lipids and amphipathic apolipoproteins, resulted in the lipoprotein structure being sensitive to the NS sample preparation parameters, such as operational procedures, salt concentrations, and the staining reagents. SCOPE OF REVIEW The most popular NS protocols that have been used to examine lipoprotein morphology and structure were reviewed. MAJOR CONCLUSIONS The comparisons show that an optimized NS (OpNS) protocol can eliminate the rouleau artifacts of lipoproteins, and that the lipoproteins are similar in size and shape as statistically measured from two EM methods, OpNS and cryo-electron microscopy (cryo-EM). OpNS is a high-throughput, high-contrast and high-resolution (near 1nm, but rarely better than 1nm) method which has been used to discover the mechanics of a small protein, 53kDa cholesterol ester transfer protein (CETP), and the structure of an individual particle of a single protein by individual-particle electron tomography (IPET), i.e. a 14Å-resolution IgG antibody three-dimensional map. GENERAL SIGNIFICANCE It is suggested that OpNS can be used as a general protocol to study the structure of proteins, especially highly dynamic proteins with equilibrium-fluctuating structures.
Collapse
Affiliation(s)
- Lei Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | | |
Collapse
|
10
|
Bann JG. Anthrax toxin protective antigen--insights into molecular switching from prepore to pore. Protein Sci 2012; 21:1-12. [PMID: 22095644 DOI: 10.1002/pro.752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The protective antigen is a key component of the anthrax toxin, as it allows entry of the enzymatic components edema factor and lethal factor into the host cell, through the formation of a membrane spanning pore. This event is absolutely critical for the pathogenesis of anthrax, and although we have yet to understand the mechanism of pore formation, recent developments have provided key insights into how this process may occur. Based on the available data, a model is proposed for the kinetic steps for protective antigen conversion from prepore to pore. In this model, the driving force for pore formation is the formation of the phi (ϕ)-clamp, a region that forms a leak-free seal around the translocating polypeptide. Formation of the ϕ-clamp elicits movements within the prepore that provide steric freedom for the subsequent conformational changes required to form the membrane spanning pore.
Collapse
Affiliation(s)
- James G Bann
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260-0051, USA.
| |
Collapse
|
11
|
The structure of Yersinia pestis Caf1 polymer in free and adjuvant bound states. Vaccine 2010; 28:5746-54. [DOI: 10.1016/j.vaccine.2010.05.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 05/24/2010] [Accepted: 05/28/2010] [Indexed: 12/14/2022]
|
12
|
Anthrax toxin-neutralizing antibody reconfigures the protective antigen heptamer into a supercomplex. Proc Natl Acad Sci U S A 2010; 107:14070-4. [PMID: 20660775 DOI: 10.1073/pnas.1006473107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tripartite protein exotoxin secreted by Bacillus anthracis, a major contributor to its virulence and anthrax pathogenesis, consists of binary complexes of the protective antigen (PA) heptamer (PA63h), produced by proteolytic cleavage of PA, together with either lethal factor or edema factor. The mouse monoclonal anti-PA antibody 1G3 was previously shown to be a potent antidote that shares F(C) domain dependency with the human monoclonal antibody MDX-1303 currently under clinical development. Here we demonstrate that 1G3 instigates severe perturbation of the PA63h structure and creates a PA supercomplex as visualized by electron microscopy. This phenotype, produced by the unconventional mode of antibody action, highlights the feasibility for optimization of vaccines based on analogous structural modification of PA63h as an additional strategy for future remedies against anthrax.
Collapse
|
13
|
Harris JR, Palmer M. Cholesterol specificity of some heptameric beta-barrel pore-forming bacterial toxins: structural and functional aspects. Subcell Biochem 2010; 51:579-596. [PMID: 20213559 DOI: 10.1007/978-90-481-8622-8_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Apart from the thiol-specific/cholesterol-dependent cytolysin family of toxins (see Chapter 20) there are a number of other unrelated bacterial toxins that also have an affinity for plasma membrane cholesterol. Emphasis is given here on the Vibrio cholerae cytolysin (VCC) and the cytolysins from related Vibrio species. The inhibition of the cytolytic activity of these toxins by prior incubation with extracellular cholesterol or low density lipoprotein emerges as a unifying feature, as does plasma membrane cholesterol depletion. Incubation of VCC with cholesterol produces a heptameric oligomer, which is not equivalent to the pre-pore since it is unable to penetrate the plasma membrane. In structural terms, the precise sequence of VCC monomer binding to membrane, oligomer formation and pore insertion through the bilayer has yet to be fully defined. Several other bacterial toxins have a dependency for cholesterol, although the available data is limited in most cases.
Collapse
Affiliation(s)
- J Robin Harris
- Institute of Zoology, University of Mainz, Mainz, D-55099, Germany.
| | | |
Collapse
|
14
|
Maldonado-Arocho FJ, Bradley KA. Anthrax edema toxin induces maturation of dendritic cells and enhances chemotaxis towards macrophage inflammatory protein 3beta. Infect Immun 2009; 77:2036-42. [PMID: 19273556 PMCID: PMC2681763 DOI: 10.1128/iai.01329-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/03/2008] [Accepted: 03/02/2009] [Indexed: 01/25/2023] Open
Abstract
Bacillus anthracis secretes two bipartite toxins, edema toxin (ET) and lethal toxin (LT), which impair immune responses and contribute directly to the pathology associated with the disease anthrax. Edema factor, the catalytic subunit of ET, is an adenylate cyclase that impairs host defenses by raising cellular cyclic AMP (cAMP) levels. Synthetic cAMP analogues and compounds that raise intracellular cAMP levels lead to phenotypic and functional changes in dendritic cells (DCs). Here, we demonstrate that ET induces a maturation state in human monocyte-derived DCs (MDDCs) similar to that induced by lipopolysaccharide (LPS). ET treatment results in downregulation of DC-SIGN, a marker of immature DCs, and upregulation of DC maturation markers CD83 and CD86. Maturation of DCs by ET is accompanied by an increased ability to migrate toward the lymph node-homing chemokine macrophage inflammatory protein 3beta, like LPS-matured DCs. Interestingly, cotreating with LT differentially affects the ET-induced maturation of MDDCs while not inhibiting ET-induced migration. These findings reveal a mechanism by which ET impairs normal innate immune function and may explain the reported adjuvant effect of ET.
Collapse
Affiliation(s)
- Francisco J Maldonado-Arocho
- Department of Microbiology, Immunology, & Molecular Genetics, University of California at Los Angeles, 609 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | | |
Collapse
|
15
|
Abstract
Anthrax toxin consists of three nontoxic proteins that self-assemble at the surface of receptor-bearing mammalian cells or in solution, yielding a series of toxic complexes. Two of the proteins, called Lethal Factor (LF) and Edema Factor (EF), are enzymes that act on cytosolic substrates. The third, termed Protective Antigen (PA), is a multifunctional protein that binds to receptors, orchestrates the assembly and internalization of the complexes, and delivers them to the endosome. There, the PA moiety forms a pore in the endosomal membrane and promotes translocation of LF and EF to the cytosol. Recent advances in understanding the entry process include insights into how PA recognizes its two known receptors and its ligands, LF and EF; how the PA:receptor interaction influences the pH-dependence of pore formation; and how the pore functions in promoting translocation of LF and EF across the endosomal membrane.
Collapse
Affiliation(s)
- John A T Young
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
16
|
Zhou J, Ullal A, Liberato J, Sun J, Keitel W, Reason DC. Paratope diversity in the human antibody response to Bacillus anthracis protective antigen. Mol Immunol 2007; 45:338-47. [PMID: 17707509 PMCID: PMC2063455 DOI: 10.1016/j.molimm.2007.06.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/11/2007] [Accepted: 06/17/2007] [Indexed: 11/15/2022]
Abstract
The active component of the licensed human anthrax vaccine (BioThrax, or AVA) is a Bacillus anthracis toxin known as protective antigen (PA). Second generation anthrax vaccines currently under development are also based on a recombinant form of PA. Since the current and future anthrax vaccines are based on this toxin, it is important that the immunobiology of this protein in vaccinated humans be understood in detail. We have isolated and analyzed the PA-specific antibody repertoire from an AVA-vaccinated individual. When examined at the clonal level, we find an antibody response that is complex in terms of the combinatorial elements and immunoglobulin variable genes employed. All PA-specific antibodies had undergone somatic hypermutation and class switch recombination, both signs of affinity maturation. Although the antigenic epitopes recognized by the response were distributed throughout the PA monomer, the majority of antibodies arising in this individual following vaccination recognize determinants located on the amino-terminal (PA20) sub-domain of the molecule. This latter finding may have implications for the rational design of future PA-based anthrax vaccines.
Collapse
Affiliation(s)
- Jianhui Zhou
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | | | | | | | | | | |
Collapse
|
17
|
Fokine A, Bowman VD, Battisti AJ, Li Q, Chipman PR, Rao VB, Rossmann MG. Cryo-electron microscopy study of bacteriophage T4 displaying anthrax toxin proteins. Virology 2007; 367:422-7. [PMID: 17624389 PMCID: PMC2062529 DOI: 10.1016/j.virol.2007.05.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 11/23/2022]
Abstract
The bacteriophage T4 capsid contains two accessory surface proteins, the small outer capsid protein (Soc, 870 copies) and the highly antigenic outer capsid protein (Hoc, 155 copies). As these are dispensable for capsid formation, they can be used for displaying proteins and macromolecular complexes on the T4 capsid surface. Anthrax toxin components were attached to the T4 capsid as a fusion protein of the N-terminal domain of the anthrax lethal factor (LFn) with Soc. The LFn-Soc fusion protein was complexed in vitro with Hoc(-)Soc(-)T4 phage. Subsequently, cleaved anthrax protective antigen heptamers (PA63)(7) were attached to the exposed LFn domains. A cryo-electron microscopy study of the decorated T4 particles shows the complex of PA63 heptamers with LFn-Soc on the phage surface. Although the cryo-electron microscopy reconstruction is unable to differentiate on its own between different proposed models of the anthrax toxin, the density is consistent with a model that had predicted the orientation and position of three LFn molecules bound to one PA63 heptamer.
Collapse
Affiliation(s)
- Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Tama F, Ren G, Brooks CL, Mitra AK. Model of the toxic complex of anthrax: responsive conformational changes in both the lethal factor and the protective antigen heptamer. Protein Sci 2006; 15:2190-200. [PMID: 16943448 PMCID: PMC2242606 DOI: 10.1110/ps.062293906] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The toxic complex of anthrax is formed when the monomeric protective antigen (PA) (83 kDa), while bound to its cell-surface receptor, is first converted to PA63 heptamers (PA63h) following N-terminal proteolytic cleavage, and then lethal (LF) (90 kDa) or edema factor (EF) binds to the heptamer. We report a "pseudoatomic" model for the complex of PA63h and full-length LF determined by applying the normal-mode flexible fitting procedure to a approximately 18 A cryo-electron microscopy (EM) density map of the complex. The model describes the interacting surface that buries a total area of approximately 10,140 A2 comprising approximately 40% charged, and approximately 30% each of polar and hydrophobic residues. For the heptamer, the buried surface, composed of approximately 110 residues, involves primarily three monomers and includes for two, similar stretches of the polypeptide chain from domain 1. For LF, the interface again involves approximately 110 residues, mostly from the N-terminal domain I (LF(N)), and the structurally homologous C-terminal domain IV. Most interestingly, bound LF displays a marked conformational change resulting from a "collapse" of domains I, III, and IV on domain II, with the largest movement of approximately 9 A noted for domain I. On the other hand, primarily, rigid-body movements, larger than approximately 10 A for three PA63 monomers, cause the hourglass-shaped heptamer lumen to enlarge by as much as approximately 50% near the middle of the molecule. Such concerted structural rearrangements in LF and the heptamer can facilitate ingress of the ligand into the heptamer lumen prior to unfolding and release through the PA63h channel formed in the acidic late endosomal membrane.
Collapse
Affiliation(s)
- Florence Tama
- Department of Molecular Biology, The Scripps Research Institute, CA 92037, USA
| | | | | | | |
Collapse
|
19
|
Neumeyer T, Tonello F, Dal Molin F, Schiffler B, Benz R. Anthrax Edema Factor, Voltage-dependent Binding to the Protective Antigen Ion Channel and Comparison to LF Binding. J Biol Chem 2006; 281:32335-43. [PMID: 16954207 DOI: 10.1074/jbc.m606552200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Anthrax toxin complex consists of three different molecules, the binding component protective antigen (PA, 83 kDa), and the enzymatic components lethal factor (LF, 90 kDa) and edema factor (EF, 89 kDa). The 63-kDa N-terminal part of PA, PA(63), forms a heptameric channel that inserts at low pH in endosomal membranes and that is necessary to translocate EF and LF in the cytosol of the target cells. EF is an intracellular active enzyme, which is a calmodulin-dependent adenylate cyclase (89 kDa) that causes a dramatic increase of intracellular cAMP level. Here, the binding of full-length EF on heptameric PA(63) channels was studied in experiments with artificial lipid bilayer membranes. Full-length EF blocks the PA(63) channels in a dose, temperature, voltage, and ionic strength-dependent way with half-saturation constants in the nanomolar concentration range. EF only blocked the PA(63) channels when PA(63) and EF were added to the same side of the membrane, the cis side. Decreasing ionic strength and increasing transmembrane voltage at the cis side of the membranes resulted in a strong decrease of the half-saturation constant for EF binding. This result suggests that ion-ion interactions are involved in EF binding to the PA heptamer. Increasing temperature resulted in increasing half-saturation constants for EF binding to the PA(63) channels. The binding characteristics of EF to the PA(63) channels are compared with those of LF binding. The comparison exhibits similarities but also remarkable differences between the bindings of both toxins to the PA(63) channel.
Collapse
Affiliation(s)
- Tobias Neumeyer
- Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Salles II, Voth DE, Ward SC, Averette KM, Tweten RK, Bradley KA, Ballard JD. Cytotoxic activity of Bacillus anthracis protective antigen observed in a macrophage cell line overexpressing ANTXR1. Cell Microbiol 2006; 8:1272-81. [PMID: 16882031 DOI: 10.1111/j.1462-5822.2006.00708.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anthrax toxin protective antigen (PA) binds cell surface receptors (e.g. ANTXR1,2), forms heptameric pores, and translocates lethal factor (LF) or oedema factor (OF) into the cytoplasm of mammalian cells. In the current study, we sought to determine how receptor levels influence these events, by examining PA heptamer stability and related processes in macrophages that overexpress ANTXR1 (RAW 264.7ANTXR1). In these experiments, PA-oligomers demonstrated an extended half-life in RAW 264.7ANTXR1 macrophages, with SDS-resistant heptamers detected up to 10 h following treatment, while levels of PA-oligomers declined within 3 h in control cells. RAW 264.7ANTXR1 macrophages were also more sensitive to lethal toxin, a combination of PA and LF. Surprisingly, we found that PA alone was cytotoxic to RAW 264.7ANTXR1 cells. Further analysis found that PA cytotoxicity required direct interaction with ANTXR1, oligomerization, channel formation, endosomal acidification, and was independent of the ANTXR1 cytoplasmic tail. PA intoxication of RAW 264.7ANTXR1 macrophages resulted in caspase-3 activation, with corresponding DNA fragmentation and proteolytic cleavage of poly-ADP-ribose polymerase, as well as activation of Bid, suggesting cell death occurred via apoptosis. Overall, results from the current study suggest that receptor levels dictate the extent of PA oligomer stability, and shifts in this normal process can lead to cell death via apoptosis in the absence of toxin catalytic subunits.
Collapse
Affiliation(s)
- Isabelle I Salles
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Maldonado-Arocho FJ, Fulcher JA, Lee B, Bradley KA. Anthrax oedema toxin induces anthrax toxin receptor expression in monocyte-derived cells. Mol Microbiol 2006; 61:324-37. [PMID: 16856939 DOI: 10.1111/j.1365-2958.2006.05232.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes two bipartite toxins that help the bacterium evade the immune system and contribute directly to pathogenesis. Both toxin catalytic moieties, lethal factor (LF) and oedema factor (OF), are internalized into the host-cell cytosol by a third factor, protective antigen (PA), which binds to cellular anthrax toxin receptors (ANTXRs). Oedema factor is an adenylate cyclase that impairs host defences by raising cellular cAMP levels. Here we demonstrate that oedema toxin (PA + OF) induces an increase in ANTXR expression levels in macrophages and dendritic cells resulting in an increased rate of toxin internalization. Furthermore, we show that increases in ANTXR mRNA levels depends on the ability of OF to increase cAMP levels, is mediated through protein kinase A-directed signalling and is monocyte-lineage-specific. To our knowledge, this is the first report of a bacterial toxin inducing host target cells to increase toxin receptor expression.
Collapse
Affiliation(s)
- Francisco J Maldonado-Arocho
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|