1
|
Metabolomics and In Silico Docking-Directed Discovery of Small-Molecule Enzyme Targets. Anal Chem 2021; 93:3072-3081. [DOI: 10.1021/acs.analchem.0c03684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
2
|
Martinez SE, Bauman JD, Das K, Arnold E. Structure of HIV-1 reverse transcriptase/d4TTP complex: Novel DNA cross-linking site and pH-dependent conformational changes. Protein Sci 2018; 28:587-597. [PMID: 30499174 DOI: 10.1002/pro.3559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
Stavudine (d4T, 2',3'-didehydro-2',3'-dideoxythymidine) was one of the first chain-terminating nucleoside analogs used to treat HIV infection. We present the first structure of the active, triphosphate form of d4T (d4TTP) bound to a catalytic complex of HIV-1 RT/dsDNA template-primer. We also present a new strategy for disulfide (S-S) chemical cross-linking between N6 of a modified adenine at the second overhang base to I63C in the fingers subdomain of RT. The cross-link site is upstream of the duplex-binding region of RT, however, the structure is very similar to published RT structures with cross-linking to Q258C in the thumb, which suggests that cross-linking at either site does not appreciably perturb the RT/DNA structures. RT has a catalytic maximum at pH 7.5. We determined the X-ray structures of the I63C-RT/dsDNA/d4TTP cross-linked complexes at pH 7, 7.5, 8, 8.5, 9, and 9.5. We found small (~0.5 Å), pH-dependent motions of the fingers subdomain that folds in to form the dNTP-binding pocket. We propose that the pH-activity profile of RT relates to this motion of the fingers. Due to side effects of neuropathy and lipodystrophy, use of d4T has been stopped in most countries, however, chemical modification of d4T might lead to the development of a new class of nucleoside analogs targeting RNA and DNA polymerases.
Collapse
Affiliation(s)
- Sergio E Martinez
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Rega Institute for Medical Research and Department of Microbiology and Immunology, KU Leuven, Leuven, 3000, Belgium
| | - Joseph D Bauman
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - Kalyan Das
- Rega Institute for Medical Research and Department of Microbiology and Immunology, KU Leuven, Leuven, 3000, Belgium
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
3
|
Structural basis of the substrate preference towards CMP for a thymidylate synthase MilA involved in mildiomycin biosynthesis. Sci Rep 2016; 6:39675. [PMID: 28000775 PMCID: PMC5175136 DOI: 10.1038/srep39675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/25/2016] [Indexed: 11/08/2022] Open
Abstract
Modified pyrimidine monophosphates such as methyl dCMP (mdCMP), hydroxymethyl dUMP (hmdUMP) and hmdCMP in some phages are synthesized by a large group of enzymes termed as thymidylate synthases (TS). Thymidylate is a nucleotide required for DNA synthesis and thus TS is an important drug target. In the biosynthetic pathway of the nucleoside fungicide mildiomycin isolated from Streptomyces rimofaciens ZJU5119, a cytidylate (CMP) hydroxymethylase, MilA, catalyzes the conversion of CMP into 5′-hydroxymethyl CMP (hmCMP) with an efficiency (kcat/KM) of 5-fold faster than for deoxycytidylate (dCMP). MilA is thus the first enzyme of the TS superfamily preferring CMP to dCMP. Here, we determined the crystal structures of MilA and its complexes with various substrates including CMP, dCMP and hmCMP. Comparing these structures to those of dCMP hydroxymethylase (CH) from T4 phage and TS from Escherichia coli revealed that two residues in the active site of CH and TS, a serine and an arginine, are respectively replaced by an alanine and a lysine, Ala176 and Lys133, in MilA. Mutation of A176S/K133R of MilA resulted in a reversal of substrate preference from CMP to dCMP. This is the first study reporting the evolution of the conserved TS in substrate selection from DNA metabolism to secondary nucleoside biosynthesis.
Collapse
|
4
|
Monecke T, Buschmann J, Neumann P, Wahle E, Ficner R. Crystal structures of the novel cytosolic 5'-nucleotidase IIIB explain its preference for m7GMP. PLoS One 2014; 9:e90915. [PMID: 24603684 PMCID: PMC3946280 DOI: 10.1371/journal.pone.0090915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/04/2014] [Indexed: 12/13/2022] Open
Abstract
5′-nucleotidases catalyze the hydrolytic dephosphorylation of nucleoside monophosphates. As catabolic enzymes they contribute significantly to the regulation of cellular nucleotide levels; misregulation of nucleotide metabolism and nucleotidase deficiencies are associated with a number of diseases. The seven human 5′-nucleotidases differ with respect to substrate specificity and cellular localization. Recently, the novel cytosolic 5′-nucleotidase III-like protein, or cN-IIIB, has been characterized in human and Drosophila. cN-IIIB exhibits a strong substrate preference for the modified nucleotide 7-methylguanosine monophosphate but the structural reason for this preference was unknown. Here, we present crystal structures of cN-IIIB from Drosophila melanogaster bound to the reaction products 7-methylguanosine or cytidine. The structural data reveal that the cytosine- and 7-methylguanine moieties of the products are stacked between two aromatic residues in a coplanar but off-centered position. 7-methylguanosine is specifically bound through π-π interactions and distinguished from unmodified guanosine by additional cation-π coulomb interactions between the aromatic side chains and the positively charged 7-methylguanine. Notably, the base is further stabilized by T-shaped edge-to-face stacking of an additional tryptophan packing perpendicularly against the purine ring and forming, together with the other aromates, an aromatic slot. The structural data in combination with site-directed mutagenesis experiments reveal the molecular basis for the broad substrate specificity of cN-IIIB but also explain the substrate preference for 7-methylguanosine monophosphate. Analyzing the substrate specificities of cN-IIIB and the main pyrimidine 5′-nucleotidase cN-IIIA by mutagenesis studies, we show that cN-IIIA dephosphorylates the purine m7GMP as well, hence redefining its substrate spectrum. Docking calculations with cN-IIIA and m7GMP as well as biochemical data reveal that Asn69 does not generally exclude the turnover of purine substrates thus correcting previous suggestions.
Collapse
Affiliation(s)
- Thomas Monecke
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
- * E-mail:
| | - Juliane Buschmann
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Piotr Neumann
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Elmar Wahle
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Pachl P, Fábry M, Veverka V, Brynda J, Řezáčová P. Kinetic and structural characterization of an alternatively spliced variant of human mitochondrial 5'(3')-deoxyribonucleotidase. J Enzyme Inhib Med Chem 2014; 30:63-8. [PMID: 24506201 DOI: 10.3109/14756366.2013.879577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human mitochondrial 5'(3')-deoxyribonucleotidase (mdN) catalyzes dephosphorylation of nucleoside monophosphates, and thus helps maintain homeostasis of deoxynucleosides required for mitochondrial DNA synthesis. Mature mdN is a 23-kDa dimeric protein with highest expression levels in the heart, brain and skeletal muscle. We have identified an alternative splice variant of the mdN gene containing an 18-nucleotide insertion encoding 6 amino acids (GKWPAT) at the 3'-end of the penultimate exon 4. We recombinantly expressed this enzyme variant and characterized its biochemical and kinetic properties as well as its three-dimensional structure. Our high-resolution (1.27 Å) crystal structure revealed that the insertion forms a loop located in the vicinity of the active site pocket and affects enzyme kinetic parameters as well as protein thermal stability.
Collapse
Affiliation(s)
- Petr Pachl
- Institute of Organic Chemistry and Biochemistry and
| | | | | | | | | |
Collapse
|
6
|
Pachl P, Fábry M, Rosenberg I, Simák O, Rezáčová P, Brynda J. Structures of human cytosolic and mitochondrial nucleotidases: implications for structure-based design of selective inhibitors. ACTA ACUST UNITED AC 2014; 70:461-70. [PMID: 24531480 DOI: 10.1107/s1399004713030502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/06/2013] [Indexed: 11/10/2022]
Abstract
The human 5'(3')-deoxyribonucleotidases catalyze the dephosphorylation of deoxyribonucleoside monophosphates to the corresponding deoxyribonucleosides and thus help to maintain the balance between pools of nucleosides and nucleotides. Here, the structures of human cytosolic deoxyribonucleotidase (cdN) at atomic resolution (1.08 Å) and mitochondrial deoxyribonucleotidase (mdN) at near-atomic resolution (1.4 Å) are reported. The attainment of an atomic resolution structure allowed interatomic distances to be used to assess the probable protonation state of the phosphate anion and the side chains in the enzyme active site. A detailed comparison of the cdN and mdN active sites allowed the design of a cdN-specific inhibitor.
Collapse
Affiliation(s)
- Petr Pachl
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 37 Prague 6, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 37 Prague 6, Czech Republic
| | - Ivan Rosenberg
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 37 Prague 6, Czech Republic
| | - Ondřej Simák
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 37 Prague 6, Czech Republic
| | - Pavlína Rezáčová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 37 Prague 6, Czech Republic
| | - Jiří Brynda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 37 Prague 6, Czech Republic
| |
Collapse
|
7
|
Šimák O, Pachl P, Fábry M, Buděšínský M, Jandušík T, Hnízda A, Skleničková R, Petrová M, Veverka V, Řezáčová P, Brynda J, Rosenberg I. Conformationally constrained nucleoside phosphonic acids – potent inhibitors of human mitochondrial and cytosolic 5′(3′)-nucleotidases. Org Biomol Chem 2014; 12:7971-82. [DOI: 10.1039/c4ob01332h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conformationally constrained nucleoside phosphonic acids – potent inhibitors of human mitochondrial and cytosolic 5′(3′)-deoxynucleotidases.
Collapse
Affiliation(s)
- Ondřej Šimák
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6, Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6, Czech Republic
- Institute of Molecular Genetics
- of Sciences of the Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics
- of Sciences of the Czech Republic
- 14220 Prague 4, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6, Czech Republic
| | - Tomáš Jandušík
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6, Czech Republic
- Department of Chemistry of Natural Compounds
- Institute of Chemical Technology
| | - Aleš Hnízda
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6, Czech Republic
| | - Radka Skleničková
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6, Czech Republic
| | - Magdalena Petrová
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6, Czech Republic
- Institute of Molecular Genetics
- of Sciences of the Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6, Czech Republic
- Institute of Molecular Genetics
- of Sciences of the Czech Republic
| | - Ivan Rosenberg
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6, Czech Republic
| |
Collapse
|
8
|
Structural basis of substrate specificity and selectivity of murine cytosolic 5'-nucleotidase III. J Mol Biol 2012; 423:540-54. [PMID: 22925580 DOI: 10.1016/j.jmb.2012.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/14/2012] [Accepted: 08/19/2012] [Indexed: 11/24/2022]
Abstract
Cytosolic 5'-nucleotidase III (cN-III) is responsible for selective degradation of pyrimidine 5'-monoribonucleotides during maturation of reticulocytes to erythrocytes. The lack of this enzymatic activity due to genetic aberrations or lead poisoning results in a mild to moderate nonspherocytic hemolytic anemia. In affected individuals, pyrimidine nucleotides as well as their precursor polymers and their off-path metabolites accumulate in erythrocytes, interfering with their proper function in ways that are not yet fully understood. This report describes the first X-ray structure of a catalytically inactivated variant of murine cN-III with a natural substrate, uridine 5'-monophosphate, in the active site at 1.74Å resolution. The structure captures in an atomic detail the closed conformation that cN-III adopts upon substrate binding. Structure and sequence analysis coupled with enzymatic characterization of several mutants confirmed that the aromatic ring of a nitrogenous base of substrate nucleotide is stabilized by parallel π-stacking interactions with conserved aromatic rings of Trp113 and His68. The nitrogenous base is further stabilized by T-shaped stacking with the conserved aromatic ring of Tyr114, as well as by polar contacts with side chains of Thr66 and Ser117. Two water molecules help to stabilize the nucleotide binding by bridging it to protein residues Asp72 and His68 via hydrogen bonds. Finally, fully conserved Glu96 is responsible for recognition of ribose ring via two hydrogen bonds. The presented substrate complex structure elucidates how cN-III achieves specificity for pyrimidine 5'-nucleotides and how it selects against purine 5'-nucleotides.
Collapse
|
9
|
Singh H, Reilly TJ, Tanner JJ. Structural basis of the inhibition of class C acid phosphatases by adenosine 5'-phosphorothioate. FEBS J 2011; 278:4374-81. [PMID: 21933344 PMCID: PMC3203990 DOI: 10.1111/j.1742-4658.2011.08360.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The inhibition of phosphatases by adenosine 5'-phosphorothioate (AMPS) was first reported in the late 1960s; however, the structural basis for the inhibition has remained unknown. Here, it is shown that AMPS is a submicromolar inhibitor of class C acid phosphatases, a group of bacterial outer membrane enzymes belonging to the haloacid dehalogenase structural superfamily. Furthermore, the 1.35-Å resolution crystal structure of the inhibited recombinant Haemophilus influenzae class C acid phosphatase was determined; this is the first structure of a phosphatase complexed with AMPS. The conformation of AMPS is identical to that of the substrate 5'-AMP, except that steric factors force a rotation of the thiophosphoryl out of the normal phosphoryl-binding pocket. This conformation is catalytically nonproductive, because the P atom is not positioned optimally for nucleophilic attack by Asp64, and the O atom of the scissile O-P bond is too far from the Asp (Asp66) that protonates the leaving group. The structure of 5'-AMP complexed with the Asp64→Asn mutant enzyme was also determined at 1.35-Å resolution. This mutation induces the substrate to adopt the same nonproductive binding mode that is observed in the AMPS complex. In this case, electrostatic considerations, rather than steric factors, underlie the movement of the phosphoryl. The structures not only provide an explanation for the inhibition by AMPS, but also highlight the precise steric and electrostatic requirements of phosphoryl recognition by class C acid phosphatases. Moreover, the structure of the Asp64→Asn mutant illustrates how a seemingly innocuous mutation can cause an unexpected structural change.
Collapse
Affiliation(s)
- Harkewal Singh
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Thomas J. Reilly
- Department of Veterinary Pathobiology and Veterinary Medical Diagnostic Laboratory, University of Missouri-Columbia, Columbia, MO, USA
| | - John J. Tanner
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO, USA
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
10
|
Walldén K, Nordlund P. Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5'-nucleotidase II. J Mol Biol 2011; 408:684-96. [PMID: 21396942 DOI: 10.1016/j.jmb.2011.02.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/18/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
Cytosolic 5'-nucleotidase II (cN-II) catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates and participates in the regulation of purine nucleotide pools within the cell. It interferes with the phosphorylation-dependent activation of nucleoside analogues used in the treatment of cancer and viral diseases. It is allosterically activated by a number of phosphate-containing cellular metabolites such as ATP, diadenosine polyphosphates, and 2,3-bisphosphoglycerate, which couple its activity with the metabolic state of the cell. We present seven high-resolution structures of human cN-II, including a ligand-free form and complexes with various substrates and effectors. These structures reveal the structural basis for the allosteric activation of cN-II, uncovering a mechanism where an effector-induced disorder-to-order transition generates rearrangements within the catalytic site and the subsequent coordination of the catalytically essential magnesium. Central to the activation is the large transition of the catalytically essential Asp356. This study also provides the structural basis for the substrate specificity of cN-II, where Arg202, Asp206, and Phe157 seem to be important residues for purine/pyrimidine selectivity. These structures provide a comprehensive structural basis for the design of cN-II inhibitors. They also contribute to the understanding of how the nucleotide salvage pathway is regulated at a molecular level.
Collapse
Affiliation(s)
- Karin Walldén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | | |
Collapse
|
11
|
Shi N, Zhang YJ, Chen HK, Gao Y, Teng M, Niu L. Crystal structure of the pyrimidine 5'-nucleotidase SDT1 from Saccharomyces cerevisiae complexed with uridine 5'-monophosphate provides further insight into ligand binding. Proteins 2011; 79:1358-62. [PMID: 21268116 DOI: 10.1002/prot.22969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/25/2010] [Accepted: 11/30/2010] [Indexed: 11/08/2022]
Affiliation(s)
- Nuo Shi
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | | | | | | | |
Collapse
|
12
|
Welin M, Nordlund P. Understanding specificity in metabolic pathways--structural biology of human nucleotide metabolism. Biochem Biophys Res Commun 2010; 396:157-63. [PMID: 20494131 DOI: 10.1016/j.bbrc.2010.04.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
Abstract
Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.
Collapse
Affiliation(s)
- Martin Welin
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | | |
Collapse
|
13
|
Zimmerman MD, Proudfoot M, Yakunin A, Minor W. Structural insight into the mechanism of substrate specificity and catalytic activity of an HD-domain phosphohydrolase: the 5'-deoxyribonucleotidase YfbR from Escherichia coli. J Mol Biol 2008; 378:215-26. [PMID: 18353368 DOI: 10.1016/j.jmb.2008.02.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/13/2008] [Accepted: 02/16/2008] [Indexed: 11/19/2022]
Abstract
HD-domain phosphohydrolases have nucleotidase and phosphodiesterase activities and play important roles in the metabolism of nucleotides and in signaling. We present three 2.1-A-resolution crystal structures (one in the free state and two complexed with natural substrates) of an HD-domain phosphohydrolase, the Escherichia coli 5'-nucleotidase YfbR. The free-state structure of YfbR contains a large cavity accommodating the metal-coordinating HD motif (H33, H68, D69, and D137) and other conserved residues (R18, E72, and D77). Alanine scanning mutagenesis confirms that these residues are important for activity. Two structures of the catalytically inactive mutant E72A complexed with Co(2+) and either thymidine-5'-monophosphate or 2'-deoxyriboadenosine-5'-monophosphate disclose the novel binding mode of deoxyribonucleotides in the active site. Residue R18 stabilizes the phosphate on the Co(2+), and residue D77 forms a strong hydrogen bond critical for binding the ribose. The indole side chain of W19 is located close to the 2'-carbon atom of the deoxyribose moiety and is proposed to act as the selectivity switch for deoxyribonucleotide, which is supported by comparison to YfdR, another 5'-nucleotidase in E. coli. The nucleotide bases of both deoxyriboadenosine-5'-monophosphate and thymidine-5'-monophosphate make no specific hydrogen bonds with the protein, explaining the lack of nucleotide base selectivity. The YfbR E72A substrate complex structures also suggest a plausible single-step nucleophilic substitution mechanism. This is the first proposed molecular mechanism for an HD-domain phosphohydrolase based directly on substrate-bound crystal structures.
Collapse
Affiliation(s)
- Matthew D Zimmerman
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
14
|
Walldén K, Stenmark P, Nyman T, Flodin S, Gräslund S, Loppnau P, Bianchi V, Nordlund P. Crystal structure of human cytosolic 5'-nucleotidase II: insights into allosteric regulation and substrate recognition. J Biol Chem 2007; 282:17828-36. [PMID: 17405878 DOI: 10.1074/jbc.m700917200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic 5'-nucleotidase II catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates and regulates the IMP and GMP pools within the cell. It possesses phosphotransferase activity and thereby also catalyzes the reverse reaction. Both reactions are allosterically activated by adenine-based nucleotides and 2,3-bisphosphoglycerate. We have solved structures of cytosolic 5'-nucleotidase II as native protein (2.2 Angstrom) and in complex with adenosine (1.5 Angstrom) and beryllium trifluoride (2.15 Angstrom) The tetrameric enzyme is structurally similar to enzymes of the haloacid dehalogenase (HAD) superfamily, including mitochondrial 5'(3')-deoxyribonucleotidase and cytosolic 5'-nucleotidase III but possesses additional regulatory regions that contain two allosteric effector sites. At effector site 1 located near a subunit interface we modeled diadenosine tetraphosphate with one adenosine moiety in each subunit. This efficiently glues the tetramer subunits together in pairs. The model shows why diadenosine tetraphosphate but not diadenosine triphosphate activates the enzyme and supports a role for cN-II during apoptosis when the level of diadenosine tetraphosphate increases. We have also modeled 2,3-bisphosphoglycerate in effector site 1 using one phosphate site from each subunit. By comparing the structure of cytosolic 5'-nucleotidase II with that of mitochondrial 5'(3')-deoxyribonucleotidase in complex with dGMP, we identified residues involved in substrate recognition.
Collapse
Affiliation(s)
- Karin Walldén
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|