1
|
Georgiou K, Kolocouris A. Conformational heterogeneity and structural features for function of the prototype viroporin influenza AM2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1867:184387. [PMID: 39424094 DOI: 10.1016/j.bbamem.2024.184387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The 97-residue influenza A matrix 2 (ΑM2) protein, a prototype for viroporins, transports protons through water molecules and His37. We discuss structural biology and molecular biophysics experiments and some functional assays that have transformed over 40 years our understanding of the structure and function of AM2. The structural studies on ΑM2 have been performed with different conditions (pH, temperature, lipid, constructs) and using various protein constructs, e.g., AM2 transmembrane (AM2TM) domain, AM2 conductance domain (AM2CD), ectodomain-containing or ectodomain-truncated, AM2 full length (AM2FL) and aimed to describe the different conformations and structural details that are necessary for the stability and function of AM2. However, the conclusions from these experiments appeared sometimes ambiguous and caused exciting debates. This was not due to inaccurate measurements, but instead because of the different membrane mimetic environment used, e.g., detergent, micelles or phospholipid bilayer, the method (e.g., X-ray crystallography, solid state NMR, solution NMR, native mass spectrometry), the used protein construct (e.g., AM2TM or AM2CD), or the amino acids residues to follow observables (e.g., NMR chemical shifts). We present these results according to the different used biophysical methods, the research groups and often by keeping a chronological order for presenting the progress in the research. We discuss ideas for additional research on structural details of AM2 and how the present findings can be useful to explore new routes of influenza A inhibition. The AM2 research can provide inspiration to study other viroporins as drug targets.
Collapse
Affiliation(s)
- Kyriakos Georgiou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 157 71, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 157 71, Greece.
| |
Collapse
|
2
|
Carter T, Iqbal M. The Influenza A Virus Replication Cycle: A Comprehensive Review. Viruses 2024; 16:316. [PMID: 38400091 PMCID: PMC10892522 DOI: 10.3390/v16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza A virus (IAV) is the primary causative agent of influenza, colloquially called the flu. Each year, it infects up to a billion people, resulting in hundreds of thousands of human deaths, and causes devastating avian outbreaks with worldwide losses worth billions of dollars. Always present is the possibility that a highly pathogenic novel subtype capable of direct human-to-human transmission will spill over into humans, causing a pandemic as devastating if not more so than the 1918 influenza pandemic. While antiviral drugs for influenza do exist, they target very few aspects of IAV replication and risk becoming obsolete due to antiviral resistance. Antivirals targeting other areas of IAV replication are needed to overcome this resistance and combat the yearly epidemics, which exact a serious toll worldwide. This review aims to summarise the key steps in the IAV replication cycle, along with highlighting areas of research that need more focus.
Collapse
Affiliation(s)
- Toby Carter
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK;
| | | |
Collapse
|
3
|
Chowdhury UD, Bhargava BL. Understanding the conformational changes in the influenza B M2 ion channel at various protonation states. Biophys Chem 2022; 289:106859. [PMID: 35905599 DOI: 10.1016/j.bpc.2022.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
The characterization of influenza (A/B M2) ion channels is very important as they are potential binding sites for the drugs. We report the all-atom molecular dynamics study of the influenza B M2 ion channel in the presence of explicit solvent and lipid bilayers using the high resolution solid-state NMR structures. The importance of the various protonation states of histidine in the activation of the ion channel is discussed. The conformational changes at the closed and the open structures clearly show that the increase in tilt angle is necessary for the activation of the ion channel. Additionally, the free energy surfaces of the eight systems show the importance of the protonation state of the histidine residues in the activation of the influenza B M2 ion channel. The protonation of the histidine residues increases the tilt angle and the intra-helix distance which is evident from the superimposition of the structures corresponding to the maxima and the minima in the free energy landscape. The findings imply differences in the singly protonated and double protonated conformational states of BM2 ion channel and provide insights to help further studies of these ion channels as the drug targets for the influenza virus.
Collapse
Affiliation(s)
- Unmesh D Chowdhury
- School of Chemical Sciences, National Institute of Science Education & Research - Bhubaneswar, an OCC of Homi Bhabha National Institute, P.O.Jatni, Khurda, Odisha 752050, India
| | - B L Bhargava
- School of Chemical Sciences, National Institute of Science Education & Research - Bhubaneswar, an OCC of Homi Bhabha National Institute, P.O.Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
4
|
Movellan KT, Dervişoğlu R, Becker S, Andreas LB. Porengebundenes Wasser an der Schlüsselaminosäure Histidin‐37 in Influenza A M2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kumar Tekwani Movellan
- NMR-basierte Strukturbiologie Max-Planck-Institut für biophysikalische Chemie Am Faßberg 11 Göttingen 37077 Deutschland
| | - Rıza Dervişoğlu
- NMR-basierte Strukturbiologie Max-Planck-Institut für biophysikalische Chemie Am Faßberg 11 Göttingen 37077 Deutschland
| | - Stefan Becker
- NMR-basierte Strukturbiologie Max-Planck-Institut für biophysikalische Chemie Am Faßberg 11 Göttingen 37077 Deutschland
| | - Loren B. Andreas
- NMR-basierte Strukturbiologie Max-Planck-Institut für biophysikalische Chemie Am Faßberg 11 Göttingen 37077 Deutschland
| |
Collapse
|
5
|
Movellan KT, Dervişoğlu R, Becker S, Andreas LB. Pore-Bound Water at the Key Residue Histidine 37 in Influenza A M2. Angew Chem Int Ed Engl 2021; 60:24075-24079. [PMID: 34477305 PMCID: PMC8597138 DOI: 10.1002/anie.202103955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/02/2021] [Indexed: 01/14/2023]
Abstract
Atomic details of structured water molecules are indispensable to understand the thermodynamics of important biological processes including the proton conduction mechanism of the M2 protein. Despite the expectation of structured water molecules based on crystal structures of Influenza A M2, only two water populations have been observed by NMR in reconstituted lipid bilayer samples. These are the bulk‐ and lipid‐associated water populations typically seen in membrane samples. Here, we detect a bound water molecule at a chemical shift of 11 ppm, located near the functional histidine 37 residue in the M2 conductance domain, which comprises residues 18 to 60. Combining 100 kHz magic‐angle spinning NMR, dynamic nuclear polarization and density functional theory calculations, we show that the bound water forms a hydrogen bond to the δ1 nitrogen of histidine 37.
Collapse
Affiliation(s)
- Kumar Tekwani Movellan
- NMR based Structural Biology, Max Planck Institute for biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| | - Rıza Dervişoğlu
- NMR based Structural Biology, Max Planck Institute for biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| | - Stefan Becker
- NMR based Structural Biology, Max Planck Institute for biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| | - Loren B Andreas
- NMR based Structural Biology, Max Planck Institute for biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| |
Collapse
|
6
|
Mtambo SE, Amoako DG, Somboro AM, Agoni C, Lawal MM, Gumede NS, Khan RB, Kumalo HM. Influenza Viruses: Harnessing the Crucial Role of the M2 Ion-Channel and Neuraminidase toward Inhibitor Design. Molecules 2021; 26:880. [PMID: 33562349 PMCID: PMC7916051 DOI: 10.3390/molecules26040880] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
As a member of the Orthomyxoviridae family of viruses, influenza viruses (IVs) are known causative agents of respiratory infection in vertebrates. They remain a major global threat responsible for the most virulent diseases and global pandemics in humans. The virulence of IVs and the consequential high morbidity and mortality of IV infections are primarily attributed to the high mutation rates in the IVs' genome coupled with the numerous genomic segments, which give rise to antiviral resistant and vaccine evading strains. Current therapeutic options include vaccines and small molecule inhibitors, which therapeutically target various catalytic processes in IVs. However, the periodic emergence of new IV strains necessitates the continuous development of novel anti-influenza therapeutic options. The crux of this review highlights the recent studies on the biology of influenza viruses, focusing on the structure, function, and mechanism of action of the M2 channel and neuraminidase as therapeutic targets. We further provide an update on the development of new M2 channel and neuraminidase inhibitors as an alternative to existing anti-influenza therapy. We conclude by highlighting therapeutic strategies that could be explored further towards the design of novel anti-influenza inhibitors with the ability to inhibit resistant strains.
Collapse
Affiliation(s)
- Sphamadla E. Mtambo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Daniel G. Amoako
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Anou M. Somboro
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Clement Agoni
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Monsurat M. Lawal
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Nelisiwe S. Gumede
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Rene B. Khan
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Hezekiel M. Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| |
Collapse
|
7
|
Ripstein ZA, Vahidi S, Rubinstein JL, Kay LE. A pH-Dependent Conformational Switch Controls N. meningitidis ClpP Protease Function. J Am Chem Soc 2020; 142:20519-20523. [PMID: 33232135 DOI: 10.1021/jacs.0c09474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
ClpPs are a conserved family of serine proteases that collaborate with ATP-dependent translocases to degrade protein substrates. Drugs targeting these enzymes have attracted interest for the treatment of cancer and bacterial infections due to their critical role in mitochondrial and bacterial proteostasis, respectively. As such, there is significant interest in understanding structure-function relationships in this protein family. ClpPs are known to crystallize in extended, compact, and compressed forms; however, it is unclear what conditions favor the formation of each form and whether they are populated by wild-type enzymes in solution. Here, we use cryo-EM and solution NMR spectroscopy to demonstrate that a pH-dependent conformational switch controls an equilibrium between the active extended and inactive compressed forms of ClpP from the Gram-negative pathogen Neisseria meningitidis. Our findings provide insight into how ClpPs exploit their rugged energy landscapes to enable key conformational changes that regulate their function.
Collapse
Affiliation(s)
- Zev A Ripstein
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Siavash Vahidi
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - John L Rubinstein
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Lewis E Kay
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
8
|
Perez Sirkin YA, Szleifer I, Tagliazucchi M. Voltage-Triggered Structural Switching of Polyelectrolyte-Modified Nanochannels. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yamila A. Perez Sirkin
- INQUIMAE-CONICET and DQIAQF, University of Buenos Aires, School of Sciences, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - Igal Szleifer
- Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Mario Tagliazucchi
- INQUIMAE-CONICET and DQIAQF, University of Buenos Aires, School of Sciences, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| |
Collapse
|
9
|
Zhang X, Han X, Qian S, Yang Y, Hu N. Tuning Ion Transport through a Nanopore by Self-Oscillating Chemical Reactions. Anal Chem 2019; 91:4600-4607. [DOI: 10.1021/acs.analchem.8b05823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoling Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, PR China
| | - Xianwei Han
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, PR China
| | - Shizhi Qian
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Yuanjian Yang
- School of Safety Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, PR China
| |
Collapse
|
10
|
Influenza A Virus M2 Protein: Roles from Ingress to Egress. Int J Mol Sci 2017; 18:ijms18122649. [PMID: 29215568 PMCID: PMC5751251 DOI: 10.3390/ijms18122649] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) matrix protein 2 (M2) is among the smallest bona fide, hence extensively studied, ion channel proteins. The M2 ion channel activity is not only essential for virus replication, but also involved in modulation of cellular homeostasis in a variety of ways. It is also the target for ion channel inhibitors, i.e., anti-influenza drugs. Thus far, several studies have been conducted to elucidate its biophysical characteristics, structure-function relationships of the ion channel, and the M2-host interactome. In this review, we discuss M2 protein synthesis and assembly into an ion channel, its roles in IAV replication, and the pathophysiological impact on the host cell.
Collapse
|
11
|
Lin CW, Mensa B, Barniol-Xicota M, DeGrado WF, Gai F. Activation pH and Gating Dynamics of Influenza A M2 Proton Channel Revealed by Single-Molecule Spectroscopy. Angew Chem Int Ed Engl 2017; 56:5283-5287. [PMID: 28374543 PMCID: PMC5543805 DOI: 10.1002/anie.201701874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 12/17/2022]
Abstract
Because of its importance in viral replication, the M2 proton channel of the influenza A virus has been the focus of many studies. Although we now know a great deal about the structural architecture underlying its proton conduction function, we know little about its conformational dynamics, especially those controlling the rate of this action. Herein, we employ a single-molecule fluorescence method to assess the dynamics of the inter-helical channel motion of both full-length M2 and the transmembrane domain of M2. The rate of this motion depends not only on the identity of the channel and membrane composition but also on the pH in a sigmoidal manner. For the full-length M2 channel, the rate is increased from approximately 190 μs-1 at high pH to approximately 80 μs-1 at low pH, with a transition midpoint at pH 6.1. Because the latter value is within the range reported for the conducting pKa value of the His37 tetrad, we believe that this inter-helical motion accompanies proton conduction.
Collapse
Affiliation(s)
- Chun-Wei Lin
- Ultrafast Optical Processes Laboratory, Department of Chemistry, University of Pennsylvania, Philadelphia, 231 S. 34th Street, Philadelphia, PA, 19104, USA
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158-2517, USA
| | - Marta Barniol-Xicota
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158-2517, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158-2517, USA
| | - Feng Gai
- Ultrafast Optical Processes Laboratory, Department of Chemistry, University of Pennsylvania, Philadelphia, 231 S. 34th Street, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, 231 S. 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
12
|
Lin CW, Mensa B, Barniol-Xicota M, DeGrado WF, Gai F. Activation pH and Gating Dynamics of Influenza A M2 Proton Channel Revealed by Single-Molecule Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chun-Wei Lin
- Ultrafast Optical Processes Laboratory; Department of Chemistry; University of Pennsylvania, Philadelphia; 231 S. 34th Street Philadelphia PA 19104 USA
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry; University of California San Francisco; 600 16th Street San Francisco CA 94158-2517 USA
| | - Marta Barniol-Xicota
- Department of Pharmaceutical Chemistry; University of California San Francisco; 600 16th Street San Francisco CA 94158-2517 USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry; University of California San Francisco; 600 16th Street San Francisco CA 94158-2517 USA
| | - Feng Gai
- Ultrafast Optical Processes Laboratory; Department of Chemistry; University of Pennsylvania, Philadelphia; 231 S. 34th Street Philadelphia PA 19104 USA
- Department of Chemistry; University of Pennsylvania, Philadelphia; 231 S. 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
13
|
Markiewicz BN, Lemmin T, Zhang W, Ahmed IA, Jo H, Fiorin G, Troxler T, DeGrado WF, Gai F. Infrared and fluorescence assessment of the hydration status of the tryptophan gate in the influenza A M2 proton channel. Phys Chem Chem Phys 2016; 18:28939-28950. [PMID: 27725984 PMCID: PMC5157935 DOI: 10.1039/c6cp03426h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The M2 proton channel of the influenza A virus has been the subject of extensive studies because of its critical role in viral replication. As such, we now know a great deal about its mechanism of action, especially how it selects and conducts protons in an asymmetric fashion. The conductance of this channel is tuned to conduct protons at a relatively low biologically useful rate, which allows acidification of the viral interior of a virus entrapped within an endosome, but not so great as to cause toxicity to the infected host cell prior to packaging of the virus. The dynamic, structural and chemical features that give rise to this tuning are not fully understood. Herein, we use a tryptophan (Trp) analog, 5-cyanotryptophan, and various methods, including linear and nonlinear infrared spectroscopies, static and time-resolved fluorescence techniques, and molecular dynamics simulations, to site-specifically interrogate the structure and hydration dynamics of the Trp41 gate in the transmembrane domain of the M2 proton channel. Our results suggest that the Trp41 sidechain adopts the t90 rotamer, the χ2 dihedral angle of which undergoes an increase of approximately 35° upon changing the pH from 7.4 to 5.0. Furthermore, we find that Trp41 is situated in an environment lacking bulk-like water, and somewhat surprisingly, the water density and dynamics do not show a measurable difference between the high (7.4) and low (5.0) pH states. Since previous studies have shown that upon channel opening water flows into the cavity above the histidine tetrad (His37), the present finding thus provides evidence indicating that the lack of sufficient water molecules near Trp41 needed to establish a continuous hydrogen bonding network poses an additional energetic bottleneck for proton conduction.
Collapse
Affiliation(s)
- Beatrice N Markiewicz
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Thomas Lemmin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA.
| | - Wenkai Zhang
- Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ismail A Ahmed
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA.
| | - Giacomo Fiorin
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Thomas Troxler
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. and Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA.
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. and Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Han K, Heng L, Wen L, Jiang L. Biomimetic heterogeneous multiple ion channels: a honeycomb structure composite film generated by breath figures. NANOSCALE 2016; 8:12318-12323. [PMID: 27270836 DOI: 10.1039/c6nr02506d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields.
Collapse
Affiliation(s)
- Keyu Han
- School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China.
| | - Liping Heng
- School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China.
| | - Liping Wen
- Chinese Acad Sci, Tech Inst Phys & Chem, Lab Bioinspired Smart Interfacial Sci, Beijing 100190, P. R. China.
| | - Lei Jiang
- School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China.
| |
Collapse
|
15
|
Le SN, Porebski BT, McCoey J, Fodor J, Riley B, Godlewska M, Góra M, Czarnocka B, Banga JP, Hoke DE, Kass I, Buckle AM. Modelling of Thyroid Peroxidase Reveals Insights into Its Enzyme Function and Autoantigenicity. PLoS One 2015; 10:e0142615. [PMID: 26623656 PMCID: PMC4666655 DOI: 10.1371/journal.pone.0142615] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
Thyroid peroxidase (TPO) catalyses the biosynthesis of thyroid hormones and is a major autoantigen in Hashimoto's disease--the most common organ-specific autoimmune disease. Epitope mapping studies have shown that the autoimmune response to TPO is directed mainly at two surface regions on the molecule: immunodominant regions A and B (IDR-A, and IDR-B). TPO has been a major target for structural studies for over 20 years; however, to date, the structure of TPO remains to be determined. We have used a molecular modelling approach to investigate plausible modes of TPO structure and dimer organisation. Sequence features of the C-terminus are consistent with a coiled-coil dimerization motif that most likely anchors the TPO dimer in the apical membrane of thyroid follicular cells. Two contrasting models of TPO were produced, differing in the orientation and exposure of their active sites relative to the membrane. Both models are equally plausible based upon the known enzymatic function of TPO. The "trans" model places IDR-B on the membrane-facing side of the myeloperoxidase (MPO)-like domain, potentially hindering access of autoantibodies, necessitating considerable conformational change, and perhaps even dissociation of the dimer into monomers. IDR-A spans MPO- and CCP-like domains and is relatively fragmented compared to IDR-B, therefore most likely requiring domain rearrangements in order to coalesce into one compact epitope. Less epitope fragmentation and higher solvent accessibility of the "cis" model favours it slightly over the "trans" model. Here, IDR-B clusters towards the surface of the MPO-like domain facing the thyroid follicular lumen preventing steric hindrance of autoantibodies. However, conformational rearrangements may still be necessary to allow full engagement with autoantibodies, with IDR-B on both models being close to the dimer interface. Taken together, the modelling highlights the need to consider the oligomeric state of TPO, its conformational properties, and its proximity to the membrane, when interpreting epitope-mapping data.
Collapse
Affiliation(s)
- Sarah N. Le
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Benjamin T. Porebski
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Julia McCoey
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - James Fodor
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Blake Riley
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Marlena Godlewska
- The Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, Warsaw, Poland
| | - Monika Góra
- Institute of Biochemistry and Biophysics PAS, Department of Genetics, Warsaw, Poland
| | - Barbara Czarnocka
- The Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, Warsaw, Poland
| | - J Paul Banga
- King's College London School of Medicine, Division of Diabetes and Nutrition Sciences, London, United Kingdom
| | - David E. Hoke
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Itamar Kass
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
- * E-mail: (AMB); (IK)
| | - Ashley M. Buckle
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
- * E-mail: (AMB); (IK)
| |
Collapse
|
16
|
Gu R, Liu LA, Wei D. Drug inhibition and proton conduction mechanisms of the influenza a M2 proton channel. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:205-26. [PMID: 25387967 DOI: 10.1007/978-94-017-9245-5_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The influenza A virus matrix protein 2 (M2 protein) is a pH-regulated proton channel embedded in the viral membrane. Inhibition of the M2 proton channel has been used to treat influenza infections for decades due to the crucial role of this protein in viral infection and replication. However, the widely-used M2 inhibitors, amantadine and rimantadine, have gradually lost their efficiencies because of naturally-occurring drug resistant mutations. Therefore, investigation of the structure and function of the M2 proton channel will not only increase our understanding of this important biological system, but also lead to the design of novel and effective anti-influenza drugs. Despite the simplicity of the M2 molecular structure, the M2 channel is highly flexible and there have been controversies and arguments regarding the channel inhibition mechanism and the proton conduction mechanism. In this book chapter, we will first carefully review the experimental and computational studies of the two possible drug binding sites on the M2 protein and explain the mechanisms regarding how inhibitors prevent proton conduction. Then, we will summarize our recent molecular dynamics simulations of the drug-resistant mutant channels and propose mechanisms for drug resistance. Finally, we will discuss two existing proton conduction mechanisms and talk about the remaining questions regarding the proton-relay process through the channel. The studies reviewed here demonstrate how molecular modeling and simulations have complemented experimental work and helped us understand the M2 channel structure and function.
Collapse
Affiliation(s)
- Ruoxu Gu
- State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | |
Collapse
|
17
|
Fast Atomic Charge Calculation for Implementation into a Polarizable Force Field and Application to an Ion Channel Protein. J CHEM-NY 2015. [DOI: 10.1155/2015/908204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polarization of atoms plays a substantial role in molecular interactions. Class I and II force fields mostly calculate with fixed atomic charges which can cause inadequate descriptions for highly charged molecules, for example, ion channels or metalloproteins. Changes in charge distributions can be included into molecular mechanics calculations by various methods. Here, we present a very fast computational quantum mechanical method, the Bond Polarization Theory (BPT). Atomic charges are obtained via a charge calculation method that depend on the 3D structure of the system in a similar way as atomic charges ofab initiocalculations. Different methods of population analysis and charge calculation methods and their dependence on the basis set were investigated. A refined parameterization yielded excellent correlation ofR=0.9967. The method was implemented in the force field COSMOS-NMR and applied to the histidine-tryptophan-complex of the transmembrane domain of the M2 protein channel of influenza A virus. Our calculations show that moderate changes of side chain torsion angleχ1and small variations ofχ2of Trp-41 are necessary to switch from the inactivated into the activated state; and a rough two-side jump model of His-37 is supported for proton gating in accordance with a flipping mechanism.
Collapse
|
18
|
Wei C, Pohorille A. Activation and proton transport mechanism in influenza A M2 channel. Biophys J 2014; 105:2036-45. [PMID: 24209848 DOI: 10.1016/j.bpj.2013.08.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/09/2013] [Accepted: 08/08/2013] [Indexed: 12/23/2022] Open
Abstract
Molecular dynamics trajectories 2 μs in length have been generated for the pH-activated, tetrameric M2 proton channel of the influenza A virus in all protonation states of the pH sensor located at the His(37) tetrad. All simulated structures are in very good agreement with high-resolution structures. Changes in the channel caused by progressive protonation of His(37) provide insight into the mechanism of proton transport. The channel is closed at both His(37) and Trp(41) sites in the singly and doubly protonated states, but it opens at Trp(41) upon further protonation. Anions access the charged His(37) and by doing so stabilize the protonated states of the channel. The narrow opening at the His(37) site, further blocked by anions, is inconsistent with the water-wire mechanism of proton transport. Instead, conformational interconversions of His(37) correlated with hydrogen bonding to water molecules indicate that these residues shuttle protons in high-protonation states. Hydrogen bonds between charged and uncharged histidines are rare. The valve at Val(27) remains on average quite narrow in all protonation states but fluctuates sufficiently to support water and proton transport. A proton transport mechanism in which the channel, depending on pH, opens at either the histidine or valine gate is only partially supported by the simulations.
Collapse
Affiliation(s)
- Chenyu Wei
- NASA Ames Research Center, Moffett Field, California; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California.
| | | |
Collapse
|
19
|
DeCoursey TE, Hosler J. Philosophy of voltage-gated proton channels. J R Soc Interface 2014; 11:20130799. [PMID: 24352668 PMCID: PMC3899857 DOI: 10.1098/rsif.2013.0799] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/22/2013] [Indexed: 02/02/2023] Open
Abstract
In this review, voltage-gated proton channels are considered from a mainly teleological perspective. Why do proton channels exist? What good are they? Why did they go to such lengths to develop several unique hallmark properties such as extreme selectivity and ΔpH-dependent gating? Why is their current so minuscule? How do they manage to be so selective? What is the basis for our belief that they conduct H(+) and not OH(-)? Why do they exist in many species as dimers when the monomeric form seems to work quite well? It is hoped that pondering these questions will provide an introduction to these channels and a way to logically organize their peculiar properties as well as to understand how they are able to carry out some of their better-established biological functions.
Collapse
Affiliation(s)
- Thomas E. DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison, Chicago, IL 60612, USA
| | - Jonathan Hosler
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
20
|
Zeng Z, Ai Y, Qian S. pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes. Phys Chem Chem Phys 2014; 16:2465-74. [DOI: 10.1039/c3cp54097a] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Dong H, Yi M, Cross TA, Zhou HX. Ab initio calculations and validation of the pH-dependent structures of the His37-Trp41 quartet, the heart of acid activation and proton conductance in the M2 protein of Influenza A virus. Chem Sci 2013; 4:2776-2787. [PMID: 23930201 PMCID: PMC3733280 DOI: 10.1039/c3sc50293g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The M2 protein of Influenza A virus forms a homotetrameric proton channel activated by low pH. The His37-Trp41 quartet is the heart of acid activation and proton conductance, but the functional mechanism is still controversial. We carried out ab initio calculations to model the pH-dependent structures of the His37-Trp41 quartet. In our model at neutral pH, the four His37 residues are configured into a pair of dimers; in each dimer, a proton is shared between Nδ1 on one residue and Nε2 on the other, and, under the restraint of the backbone, the two imidazole rings are nearly parallel, in contrast to a perpendicular arrangement for a free imidazole-imidazolium dimer. Within each dimer the +1 charge is highly delocalized, contributing to its stabilization in a low dielectric environment. The Nδ1-H-Nε2 strong hydrogen bonds result in significantly downfield shifted Nδ1 and Nε2 chemical shifts (at 169.7 and 167.6 ppm, respectively), in good agreement with experiments. In our model at acidic pH (where the channel becomes activated), a third proton binds to an imidazole-imidazolium dimer; the imidazole rings rotate away (each by ~55°) from each other, destroying the dimer structure. The two imidazoliums are stabilized by hydrogen bonds with water molecules and a cation-π interaction with Trp41. The Raman spectra calculated for the His37-Trp41 quartet at neutral and acidic pH are in agreement with experiments. Our calculations support an activation and conductance mechanism in which a hydronium ion from the N-terminal side passes a proton to an imidazole-imidazolium dimer; when the Trp41 gate is open, relaying of a proton onto a water molecule from the C-terminal side then allows the imidazole-imidazolium dimer to reform and be ready for the next round of proton conductance.
Collapse
Affiliation(s)
- Hao Dong
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Myunggi Yi
- Department of Biomedical Engineering, Pukyong National University, Busan 608-737, Korea
| | - Timothy A. Cross
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, and National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
22
|
Zhou HX, Cross TA. Modeling the membrane environment has implications for membrane protein structure and function: influenza A M2 protein. Protein Sci 2013; 22:381-94. [PMID: 23389890 DOI: 10.1002/pro.2232] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 12/13/2022]
Abstract
The M2 protein, a proton channel, from Influenza A has been structurally characterized by X-ray diffraction and by solution and solid-state NMR spectroscopy in a variety of membrane mimetic environments. These structures show substantial backbone differences even though they all present a left-handed tetrameric helical bundle for the transmembrane domain. Variations in the helix tilt influence drug binding and the chemistry of the histidine tetrad responsible for acid activation, proton selectivity and transport. Some of the major structural differences do not arise from the lack of precision, but instead can be traced to the influences of the membrane mimetic environments. The structure in lipid bilayers displays unique chemistry for the histidine tetrad, which binds two protons cooperatively to form a pair of imidazole-imidazolium dimers. The resulting interhistidine hydrogen bonds contribute to a three orders of magnitude enhancement in tetramer stability. Integration with computation has provided detailed understanding of the functional mechanism for proton selectivity, conductance and gating of this important drug target.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
23
|
Albesa AG, Rafti M, Vicente JL. Trivalent cations switch the selectivity in nanopores. J Mol Model 2013; 19:2183-8. [DOI: 10.1007/s00894-013-1761-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/07/2013] [Indexed: 11/28/2022]
|
24
|
Abstract
Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely, the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance approximately 10(3) times smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn(2+) (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B-lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H(+) for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
25
|
Brunsen A, Díaz C, Pietrasanta LI, Yameen B, Ceolín M, Soler-Illia GJAA, Azzaroni O. Proton and calcium-gated ionic mesochannels: phosphate-bearing polymer brushes hosted in mesoporous thin films as biomimetic interfacial architectures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:3583-3592. [PMID: 22309103 DOI: 10.1021/la204854r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Rational construction of interfaces based on multicomponent responsive systems in which molecular transport is mediated by structures of nanoscale dimensions has become a very fertile research area in biomimetic supramolecular chemistry. Herein, we describe the creation of hybrid mesostructured interfaces with reversible gate-like transport properties that can be controlled by chemical inputs, such as protons or calcium ions. This was accomplished by taking advantage of the surface-initiated polymerization of 2-(methacryloyloxy)ethyl phosphate (MEP) monomer units into and onto mesoporous silica thin films. In this way, phosphate-bearing polymer brushes were used as "gatekeepers" located not only on the outer surface of mesoporous thin films but also in the inner environment of the porous scaffold. Pore-confined PMEP brushes respond to the external triggering chemical signals not only by altering their physicochemical properties but also by switching the transport properties of the mesoporous film. The ion-gate response/operation was based on the protonation and/or chelation of phosphate monomer units in which the polymer brush works as an off-on switch in response to the presence of protons or Ca(2+) ions. The hybrid meso-architectured interface and their functional features were studied by a combination of experimental techniques including ellipso-porosimetry, cyclic voltammetry, X-ray reflectivity, grazing incidence small-angle X-ray scattering, X-ray photoelectron spectroscopy, and in situ atomic force microscopy. In this context, we believe that the integration of stimuli-responsive polymer brushes into nanoscopic supramolecular architectures would provide new routes toward multifunctional biomimetic nanosystems displaying transport properties similar to those encountered in biological ligand-gated ion channels.
Collapse
Affiliation(s)
- Annette Brunsen
- Gerencia Química, Comisión Nacional de Energía Atómica, Argentina
| | | | | | | | | | | | | |
Collapse
|
26
|
Gu RX, Liu LA, Wei DQ, Du JG, Liu L, Liu H. Free energy calculations on the two drug binding sites in the M2 proton channel. J Am Chem Soc 2011; 133:10817-25. [PMID: 21711026 DOI: 10.1021/ja1114198] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two alternative binding sites of adamantane-type drugs in the influenza A M2 channel have been suggested, one with the drug binding inside the channel pore and the other with four drug molecule S-binding to the C-terminal surface of the transmembrane domain. Recent computational and experimental studies have suggested that the pore binding site is more energetically favorable but the external surface binding site may also exist. Nonetheless, which drug binding site leads to channel inhibition in vivo and how drug-resistant mutations affect these sites are not completely understood. We applied molecular dynamics simulations and potential of mean force calculations to examine the structures and the free energies associated with these putative drug binding sites in an M2-lipid bilayer system. We found that, at biological pH (~7.4), the pore binding site is more thermodynamically favorable than the surface binding site by ~7 kcal/mol and, hence, would lead to more stable drug binding and channel inhibition. This result is in excellent agreement with several recent studies. More importantly, a novel finding of ours is that binding to the channel pore requires overcoming a much higher energy barrier of ~10 kcal/mol than binding to the C-terminal channel surface, indicating that the latter site is more kinetically favorable. Our study is the first computational work that provides both kinetic and thermodynamic energy information on these drug binding sites. Our results provide a theoretical framework to interpret and reconcile existing and often conflicting results regarding these two binding sites, thus helping to expand our understanding of M2-drug binding, and may help guide the design and screening of novel drugs to combat the virus.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- State Key Laboratory of Microbial Metabolism, Luc Montagnier Biomedical Research Institute, and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai Minhang District, China 200240
| | | | | | | | | | | |
Collapse
|
27
|
Leonov H, Astrahan P, Krugliak M, Arkin IT. How Do Aminoadamantanes Block the Influenza M2 Channel, and How Does Resistance Develop? J Am Chem Soc 2011; 133:9903-11. [DOI: 10.1021/ja202288m] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hadas Leonov
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Peleg Astrahan
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Miriam Krugliak
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Isaiah T. Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|
28
|
Kass I, Reboul CF, Buckle AM. Computational methods for studying serpin conformational change and structural plasticity. Methods Enzymol 2011; 501:295-323. [PMID: 22078540 DOI: 10.1016/b978-0-12-385950-1.00014-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Currently, over a hundred high-resolution structures of serpins are available, exhibiting a wide range of conformations. However, our understanding of serpin dynamics and conformational change is still limited, mainly due to challenges of monitoring structural changes and characterizing transient conformations using experimental methods. Insight can be provided, however, by employing theoretical and computational approaches. In this chapter, we present an overview of such methods, focusing on molecular dynamics and simulation. As serpin conformational dynamics span a wide range of timescales, we discuss the relative merits of each method and suggest which method is suited to specific conformational phenomena.
Collapse
Affiliation(s)
- Itamar Kass
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
29
|
Qin G, Yu K, Shi T, Luo C, Li G, Zhu W, Jiang H. How does influenza virus a escape from amantadine? J Phys Chem B 2010; 114:8487-93. [PMID: 20521806 DOI: 10.1021/jp911588y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antiflu drugs such as amantadine (AMT) were reported to be insensitive to influenza A virus gradually after their marketing. Mutation experiments indicate that the trans-membrane domain of M2 protein plays an essential role in AMT resistance, especially the S31N mutation. To investigate the details of structure and mechanism, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations have been carried out on both the wild-type protein and its S31N mutant. Our MD simulations reveal AMT can occupy different binding positions in the pore of M2 channel, and the binding modes have also been verified and analyzed by QM/MM calculations. More importantly, we find the formation of a water wire modulated by the binding position of AMT to be essential for the function of M2 protein, and, the block of water wire can inhibit channel function in the WT system. Failure of channel blocking would cause AMT drug resistance in the S31N mutant. These results support one of the conflicting views about M2-drug binding sites: AMT binds to the pore of M2 channel. Our findings help clarify the resistant mechanism of AMT to M2 protein and should facilitate the discovery of new drugs for treating influenza A virus.
Collapse
Affiliation(s)
- Guangrong Qin
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Liang X, Li ZY. Ion channels as antivirus targets. Virol Sin 2010; 25:267-80. [PMID: 20960300 DOI: 10.1007/s12250-010-3136-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022] Open
Abstract
Ion channels are membrane proteins that are found in a number of viruses and which are of crucial physiological importance in the viral life cycle. They have one common feature in that their action mode involves a change of electrochemical or proton gradient across the bilayer lipid membrane which modulates viral or cellular activity. We will discuss a group of viral channel proteins that belong to the viroproin family, and which participate in a number of viral functions including promoting the release of viral particles from cells. Blocking these channel-forming proteins may be "lethal", which can be a suitable and potential therapeutic strategy. In this review we discuss seven ion channels of viruses which can lead serious infections in human beings: M2 of influenza A, NB and BM2 of influenza B, CM2 of influenza C, Vpu of HIV-1, p7 of HCV and 2B of picornaviruses.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | |
Collapse
|
31
|
Phongphanphanee S, Rungrotmongkol T, Yoshida N, Hannongbua S, Hirata F. Proton Transport through the Influenza A M2 Channel: Three-Dimensional Reference Interaction Site Model Study. J Am Chem Soc 2010; 132:9782-8. [DOI: 10.1021/ja1027293] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Saree Phongphanphanee
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, Center of Innovative Nanotechnology and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Thanyada Rungrotmongkol
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, Center of Innovative Nanotechnology and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Norio Yoshida
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, Center of Innovative Nanotechnology and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Supot Hannongbua
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, Center of Innovative Nanotechnology and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Fumio Hirata
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, Center of Innovative Nanotechnology and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| |
Collapse
|
32
|
Intharathep P, Rungrotmongkol ,T, Decha ,P, Nunthaboot ,N, Kaiyawet ,N, Kerdcharoen ,T, Sompornpisut ,P, Hannongbua S. Evaluating how rimantadines control the proton gating of the influenza A M2-proton port via allosteric binding outside of the M2-channel: MD simulations. J Enzyme Inhib Med Chem 2010; 26:162-8. [DOI: 10.3109/14756366.2010.482530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Pathumwadee Intharathep
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Physics Department and Centre of Nanoscience and Nanotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - , Thanyada Rungrotmongkol
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Centre of Innovative Nanotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - , Panita Decha
- Computational Chemistry Research Unit, Department of Chemistry, Faculty of Science, Thaksin University, Phattalung, Thailand
| | - , Nadtanet Nunthaboot
- Department of Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand
| | - , Nopphorn Kaiyawet
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - , Teerakiat Kerdcharoen
- Physics Department and Centre of Nanoscience and Nanotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - , Pornthep Sompornpisut
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supot Hannongbua
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Centre of Innovative Nanotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
33
|
Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O. Proton-regulated rectified ionic transport through solid-state conical nanopores modified with phosphate-bearing polymer brushes. Chem Commun (Camb) 2010; 46:1908-10. [DOI: 10.1039/b920870d] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the use of polyprotic polymer brushes to construct robust signal-responsive chemical devices mimicking the transport properties of proton regulated biological channels.
Collapse
Affiliation(s)
- Basit Yameen
- Max-Planck-Institut für Polymerforschung
- Mainz
- Germany
| | - Mubarak Ali
- Technische Universität Darmstadt
- Darmstadt
- Germany
| | | | | | | | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) – Universidad Nacional de La Plata – CONICET
- 1900 La Plata
- Argentina
| |
Collapse
|
34
|
Rouse SL, Carpenter T, Stansfeld PJ, Sansom MSP. Simulations of the BM2 proton channel transmembrane domain from influenza virus B. Biochemistry 2009; 48:9949-51. [PMID: 19780586 DOI: 10.1021/bi901166n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BM2 is a small integral membrane protein from influenza B virus which forms proton-permeable channels. Coarse-grained (CG) molecular dynamics simulations have been used to produce a model of the BM2 channel by self-assembly of a tetrameric bundle of BM2 transmembrane helices in a lipid bilayer. The BM2 channel model is conformationally stable on a 5 mus time scale. This CG model was converted to atomistic resolution to refine interhelix and channel-water interactions. Atomistic molecular dynamics simulations indicate that the BM2 channel is closed when no more than two of the four His19 residues are protonated. Protonating a third His19 side chain initiates a conformational change that opens the channel. In summary, our simulations suggest a common mechanism for BM2 and A/M2, whereby changes in helix packing play a functional role in channel gating.
Collapse
Affiliation(s)
- Sarah L Rouse
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
35
|
Mustafa M, Henderson DJ, Busath DD. Free-energy profiles for ions in the influenza M2-TMD channel. Proteins 2009; 76:794-807. [PMID: 19296508 DOI: 10.1002/prot.22376] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
M(2) transmembrane domain channel (M(2)-TMD) permeation properties are studied using molecular dynamics simulations of M(2)-TMD (1NYJ) embedded in a lipid bilayer (DMPC) with 1 mol/kg NaCl or KCl saline solution. This study allows examination of spontaneous cation and anion entry into the selectivity filter. Three titration states of the M(2)-TMD tetramer are modeled for which the four His(37) residues, forming the selectivity filter, are net uncharged, +2 charged, or +3 charged. M(2)-TMD structural properties from our simulations are compared with the properties of other models extracted from NMR and X-ray studies. During 10 ns simulations, chloride ions occasionally occupy the positively-charged selectivity filter region, and from umbrella sampling simulations, Cl(-) has a lower free-energy barrier in the selectivity-filter region than either Na(+) or NH(4) (+), and NH(4) (+) has a lower free-energy barrier than Na(+). For Na(+) and Cl(-), the free-energy barriers are less than 5 kcal/mol, suggesting that the 1NYJ conformation would probably not be exquisitely proton selective. We also point out a rotameric configuration of Trp(41) that could fully occlude the channel.
Collapse
Affiliation(s)
- Morad Mustafa
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| | | | | |
Collapse
|
36
|
Vereshaga YA, Volynsky PE, Pustovalova JE, Nolde DE, Arseniev AS, Efremov RG. Specificity of helix packing in transmembrane dimer of the cell death factor BNIP3: a molecular modeling study. Proteins 2009; 69:309-25. [PMID: 17600828 DOI: 10.1002/prot.21555] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BNIP3 is a mitochondrial 19-kDa proapoptotic protein, a member of the Bcl-2 family. It has a single COOH-terminal transmembrane (TM) alpha-helical domain, which is required for membrane targeting, proapoptotic activity, hetero- and homo-dimerization in membrane. The role and the molecular details of association of TM helices of BNIP3 are yet to be established. Here, we present a molecular modeling study of helix interactions in its membrane domain. The approach combines Monte Carlo conformational search in an implicit hydrophobic slab followed by molecular dynamics simulations in a hydrated full-atom lipid bilayer. The former technique was used for exhaustive sampling of the peptides' conformational space and for generation of putative "native-like" structures of the dimer. The latter ones were taken as realistic starting points to assess stability and dynamic behavior of the complex in explicit lipid-water surrounding. As a result, several groups of tightly packed right-handed structures of the dimer were proposed. They have almost similar helix-helix interface, which includes the motif A(176)xxxG(180)xxxG(184) and agrees well with previous mutagenesis data and preliminary NMR analysis. Molecular dynamics simulations of these structures reveal perfect adaptation of most of them to heterogeneous membrane environment. A remarkable feature of the predicted dimeric structures is the occurrence of a cluster of H-bonded histidine 173 and serines 168 and 172 on the helix interface, near the N-terminus. Because of specific polar interactions between the monomers, this part of the dimer has no such dense packing as the C-terminal one, thus allowing penetration of water from the extramembrane side into the membrane interior. We propose that the ionization state of His(173) can mediate structural and dynamic properties of the dimer. This, in turn, may be related to pH-dependent proapoptotic activity of BNIP3, which is triggering on by acidosis appearing under hypoxic conditions.
Collapse
Affiliation(s)
- Yana A Vereshaga
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow V-437, 117997 GSP, Russia
| | | | | | | | | | | |
Collapse
|
37
|
Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O. Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. NANO LETTERS 2009; 9:2788-2793. [PMID: 19518086 DOI: 10.1021/nl901403u] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The creation of switchable and tunable nanodevices displaying transport properties similar to those observed in biological pores poses a major challenge in molecular nanotechnology. Here, we describe the construction of a fully "abiotic" nanodevice whose transport properties can be accurately controlled by manipulating the proton concentration in the surrounding environment. The ionic current switching characteristics displayed by the nanochannels resemble the typical behavior observed in many biological channels that fulfill key pH-dependent transport functions in living organisms, that is, the nanochannel can be switched from an "off" state to an "on" state in response to a pH drop. The construction of such a chemical nanoarchitecture required the integration of stable and ductile macromolecular building blocks constituted of pH-responsive poly(4-vinyl pyridine) brushes into solid state nanopores that could act as gate-keepers managing and constraining the flow of ionic species through the confined environment. In this context, we envision that the integration of environmental stimuli-responsive brushes into solid-state nanochannels would provide a plethora of new chemical alternatives for molecularly design robust signal-responsive "abiotic" devices mimicking the function of proton-gated ion channels commonly encountered in biological membranes.
Collapse
Affiliation(s)
- Basit Yameen
- Max-Planck-Institut fur Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Laohpongspaisan C, Rungrotmongkol T, Intharathep P, Malaisree M, Decha P, Aruksakunwong O, Sompornpisut P, Hannongbua S. Why amantadine loses its function in influenza m2 mutants: MD simulations. J Chem Inf Model 2009; 49:847-52. [PMID: 19281265 DOI: 10.1021/ci800267a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamics simulations of the drug-resistant M2 mutants, A30T, S31N, and L26I, were carried out to investigate the inhibition of M2 activity using amantadine (AMT). The closed and open channel conformations were examined via non- and triply protonated H37. For the nonprotonated state, these mutants exhibited zero water density in the conducting region, and AMT was still bound to the channel pore. Thus, water transport is totally suppressed, similar to the wild-type channel. In contrast, the triply protonated states of the mutants exhibited a different water density and AMT position. A30T and L26I both have a greater water density compared to the wild-type M2, while for the A30T system, AMT is no longer inside the pore. Hydrogen bonding between AMT and H37 crucial for the bioactivity is entirely lost in the open conformation. The elimination of this important interaction of these mutations is responsible for the lost of AMT's function in influenza A M2. This is different for the S31N mutant in which AMT was observed to locate at the pore opening region and bond with V27 instead of S31.
Collapse
Affiliation(s)
- Chittima Laohpongspaisan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Structure and dynamics of the influenza A M2 Channel: a comparison of three structures. J Mol Model 2009; 15:1317-28. [DOI: 10.1007/s00894-009-0493-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/19/2009] [Indexed: 10/20/2022]
|
40
|
Leonov H, Arkin IT. pH-driven helix rotations in the influenza M2 H+ channel: a potential gating mechanism. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:1043-9. [PMID: 19343337 DOI: 10.1007/s00249-009-0434-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 02/16/2009] [Accepted: 02/23/2009] [Indexed: 11/28/2022]
Abstract
The pH activated M2 H(+) channel from influenza A has been a subject of numerous studies due to following: (1) It serves as a target for the aminoadamantane drugs that block its channel activity. (2) M2's small size makes it amenable to biophysical scrutiny. (3) A single histidine residue is thought to control the pH gating of the channel. Recent FTIR analysis proposed that the helices of the channel rotate about their directors during pH activation. Herein, we report on molecular dynamics simulations of the X-ray structure of the protein with three charged histidine residues, representing the open form of the protein and two rotated forms with neutral histidines, representing its closed form. We compare the channel stability, convergence, interaction with water and hydration of the histidine residues that have been implicated in channel gating. Taken together, we show that both forms of the protein are stable during the course of the MD simulation and that indeed a rotation of the helices leads to channel closure. Finally, we propose a mechanism for channel gating that involves protonation of the histidine residues that necessities their increased solvation.
Collapse
Affiliation(s)
- Hadas Leonov
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus Givat-Ram, 91904, Jerusalem, Israel.
| | | |
Collapse
|
41
|
Molecular dynamics calculations suggest a conduction mechanism for the M2 proton channel from influenza A virus. Proc Natl Acad Sci U S A 2009; 106:1069-74. [PMID: 19144924 DOI: 10.1073/pnas.0811720106] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The M2 protein of the influenza A virus is activated by low endosomal pH and performs the essential function of proton transfer into the viral interior. The resulting decrease in pH within the virion is essential for the uncoating and further replication of the viral genetic material. The x-ray crystal [Stouffer AL, et al. (2008) Nature 451:596-599] and solution NMR [Schnell JR, Chou JJ (2008) Nature 451:591-595] structures of the transmembrane region of the M2 homo-tetrameric bundle both revealed pores with narrow constrictions at one end, leaving a question as to how protons enter the channel. His-37, which is essential for proton-gating and selective conduction of protons, lies in the pore of the crystallographic and NMR structures. Here, we explore the different protonation states of the His-37 residues of the M2 bundle in a bilayer using molecular dynamics (MD) simulations. When the His-37 residues are neutral, the protein prefers an Open(out)-Closed(in) conformation in which the channel is open to the environment on the outside of the virus but closed to the interior environment of the virus. Diffusion of protons into the channel from the outside of the virus and protonation of His-37 residues in the tetramer stabilizes an oppositely gated Closed(out)-Open(in) conformation. Thus, protons might be conducted through a transporter-like mechanism, in which the protein alternates between Open(out)-Closed(in) and Closed(out)-Open(in) conformations, and His-37 is protonated/deprotonated during each turnover. The transporter-like mechanism is consistent with the known properties of the M2 bundle, including its relatively low rate of proton flux and its strong rectifying behavior.
Collapse
|
42
|
Abstract
This review is an attempt to identify and place in context some of the many questions about voltage-gated proton channels that remain unsolved. As the gene was identified only 2 years ago, the situation is very different than in fields where the gene has been known for decades. For the proton channel, most of the obvious and less obvious structure-function questions are still wide open. Remarkably, the proton channel protein strongly resembles the voltage-sensing domain of many voltage-gated ion channels, and thus offers a novel approach to study gating mechanisms. Another surprise is that the proton channel appears to function as a dimer, with two separate conduction pathways. A number of significant biological questions remain in dispute, unanswered, or in some cases, not yet asked. This latter deficit is ascribable to the intrinsic difficulty in evaluating the importance of one component in a complex system, and in addition, to the lack, until recently, of a means of performing an unambiguous lesion experiment, that is, of selectively eliminating the molecule in question. We still lack a potent, selective pharmacological inhibitor, but the identification of the gene has allowed the development of powerful new tools including proton channel antibodies, siRNA and knockout mice.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
43
|
Abstract
The history of research on voltage-gated proton channels is recounted, from their proposed existence in dinoflagellates by Hastings in 1972 and their demonstration in snail neurons by Thomas and Meech in 1982 to the discovery in 2006 (after a decade of controversy) of genes that unequivocally code for proton channels. Voltage-gated proton channels are perfectly selective for protons, conduct deuterons half as well, and the conductance is strongly temperature dependent. These properties are consistent with a conduction mechanism involving hydrogen-bonded-chain transfer, in which the selectivity filter is a titratable amino acid residue. Channel opening is regulated stringently by pH such that only outward current is normally activated. Main functions of proton channels include acid extrusion from cells and charge compensation for the electrogenic activity of the phagocyte NADPH oxidase. Genetic approaches hold the promise of rapid progress in the near future.
Collapse
Affiliation(s)
- T E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison, Chicago, Illinois 60612, USA.
| |
Collapse
|
44
|
Self-assembly of a simple membrane protein: coarse-grained molecular dynamics simulations of the influenza M2 channel. Biophys J 2008; 95:3790-801. [PMID: 18621807 DOI: 10.1529/biophysj.108.131078] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transmembrane (TM) domain of the M2 channel protein from influenza A is a homotetrameric bundle of alpha-helices and provides a model system for computational approaches to self-assembly of membrane proteins. Coarse-grained molecular dynamics (CG-MD) simulations have been used to explore partitioning into a membrane of M2 TM helices during bilayer self-assembly from lipids. CG-MD is also used to explore tetramerization of preinserted M2 TM helices. The M2 helix monomer adopts a membrane spanning orientation in a lipid (DPPC) bilayer. Multiple extended CG-MD simulations (5 x 5 micros) were used to study the tetramerization of inserted M2 helices. The resultant tetramers were evaluated in terms of the most populated conformations and the dynamics of their interconversion. This analysis reveals that the M2 tetramer has 2x rotationally symmetrical packing of the helices. The helices form a left-handed bundle, with a helix tilt angle of approximately 16 degrees. The M2 helix bundle generated by CG-MD was converted to an atomistic model. Simulations of this model reveal that the bundle's stability depends on the assumed protonation state of the H37 side chains. These simulations alongside comparison with recent x-ray (3BKD) and NMR (2RLF) structures of the M2 bundle suggest that the model yielded by CG-MD may correspond to a closed state of the channel.
Collapse
|
45
|
How amantadine and rimantadine inhibit proton transport in the M2 protein channel. J Mol Graph Model 2008; 27:342-8. [PMID: 18620883 DOI: 10.1016/j.jmgm.2008.06.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/25/2008] [Accepted: 06/02/2008] [Indexed: 11/21/2022]
Abstract
To understand how antiviral drugs inhibit the replication of influenza A virus via the M2 ion channel, molecular dynamics simulations have been applied to the six possible protonation states of the M2 ion channel in free form and its complexes with two commercial drugs in a fully hydrated lipid bilayer. Among the six different states of free M2 tetramer, water density was present in the pore of the systems with mono-protonated, di-protonated at adjacent position, tri-protonated and tetra-protonated systems. In the presence of inhibitor, water density in the channel was considerably better reduced by rimantadine than amantadine, agreed well with the experimental IC(50) values. With the preferential position and orientation of the two drugs in all states, two mechanisms of action, where the drug binds to the opening pore and the histidine gate, were clearly explained, i.e., (i) inhibitor was detected to localize slightly closer to the histidine gate and can facilitate the orientation of His37 imidazole rings to lie in the close conformation and (ii) inhibitor acts as a blocker, binding at almost above the opening pore and interacts slightly with the three pore-lining residues, Leu26, Ala30 and Ser31. Here, the inhibitors were found to bind very weakly to the channel due to their allosteric hindrance while theirs side chains were strongly solvated.
Collapse
|
46
|
Yi M, Cross TA, Zhou HX. A secondary gate as a mechanism for inhibition of the M2 proton channel by amantadine. J Phys Chem B 2008; 112:7977-9. [PMID: 18476738 DOI: 10.1021/jp800171m] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of inhibition of the influenza A virus M2 proton channel by the antiviral drug amantadine has been under intense investigation. The importance of a mechanistic understanding is heightened by the prevalence of amantadine-resistant mutations. To gain mechanistic insight at the molecular level, we carried out extensive molecular dynamics simulations of the tetrameric M2 proton channel in both apo and amantadine-bound forms in a lipid bilayer. The simulation of the apo form revealed that Val27 from the four M2 subunits can form a secondary gate near the channel entrance and break the water wire in the channel pore. This gate arises from physical occlusion and the elimination of hydrogen-bonding partners for water molecules. In the presence of amantadine, the secondary gate formed by Val27 and the drug molecule lying just below form an extended blockage, which breaks the water wire throughout the simulation. The location and orientation of amantadine inside of the channel pore as found in our simulation are supported by a host of experimental observations. Our study suggests a novel role for Val27 in the inhibition of the M2 proton channel by amantadine.
Collapse
Affiliation(s)
- Myunggi Yi
- Department of Physics, Institute of Molecular Biophysics, School of Computational Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | |
Collapse
|
47
|
Li C, Qin H, Gao FP, Cross TA. Solid-state NMR characterization of conformational plasticity within the transmembrane domain of the influenza A M2 proton channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:3162-70. [PMID: 17936720 DOI: 10.1016/j.bbamem.2007.08.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/11/2007] [Accepted: 08/29/2007] [Indexed: 11/27/2022]
Abstract
Membrane protein function within the membrane interstices is achieved by mechanisms that are not typically available to water-soluble proteins. The whole balance of molecular interactions that stabilize three-dimensional structure in the membrane environment is different from that in an aqueous environment. As a result interhelical interactions are often dominated by non-specific van der Waals interactions permitting dynamics and conformational heterogeneity in these interfaces. Here, solid-state NMR data of the transmembrane domain of the M2 protein from influenza A virus are used to exemplify such conformational plasticity in a tetrameric helical bundle. Such data lead to very high resolution structural restraints that can identify both subtle and substantial structural differences associated with various states of the protein. Spectra from samples using two different preparation protocols, samples prepared in the presence and absence of amantadine, and spectra as a function of pH are used to illustrate conformational plasticity.
Collapse
Affiliation(s)
- Conggang Li
- Department of Chemistry and Biochemistry, Florida State University, Florida, USA
| | | | | | | |
Collapse
|
48
|
Moffat JC, Vijayvergiya V, Gao PF, Cross TA, Woodbury DJ, Busath DD. Proton transport through influenza A virus M2 protein reconstituted in vesicles. Biophys J 2007; 94:434-45. [PMID: 17827230 PMCID: PMC2157240 DOI: 10.1529/biophysj.107.109082] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza A virus M2 protein is known to form acid-activated, proton-selective, amantadine-sensitive channels. We directly measured proton uptake in vesicles containing reconstituted M2 by monitoring external pH after addition of valinomycin to vesicles with 100-fold-diluted external [K(+)]. External pH typically increased by a few tenths of a pH unit over a few minutes after valinomycin addition, but proton uptake was not significantly altered by acidification. Under neutral conditions, external addition of 1 mM amantadine produced a reduction in flux consistent with randomly ordered channels; however, experimental variation is high with this method and the block was not statistically significant. Amantadine block was reduced at pH 5.4. In accord with Lin and Schroeder's study of reconstituted M2 using a pH-sensitive dye to monitor intravesicular pH, we conclude that bath pH weakly affects or does not significantly affect proton flow in the pH range 5.4-7.0 for the reconstituted system, contrary to results from electrophysiological studies. Theoretical analysis of the relaxation to Donnan equilibrium utilized for such vesicle uptake assays illuminates the appropriate timescale of the initial slope and an important limitation that must be placed on inferences about channel ion selectivity. The rise in pH over 10 s after ionophore addition yielded time-averaged single-channel conductances of 0.35 +/- 0.20 aS and 0.72 +/- 0.42 aS at pH 5.4 and 7.0, respectively, an order of magnitude lower than previously reported in vesicles. Assuming complete membrane incorporation and tetramerization of the reconstituted protein, such a low time-averaged conductance in the face of previously observed single-channel conductance (6 pS at pH 3) implies an open channel probability of 10(-6)-10(-4). Based on leakage of potassium from M2-containing vesicles, compared to protein-free vesicles, we conclude that M2 exhibits approximately 10(7) selectivity for hydrogen over potassium.
Collapse
Affiliation(s)
- J Craig Moffat
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | | | |
Collapse
|
49
|
Chen H, Wu Y, Voth GA. Proton transport behavior through the influenza A M2 channel: insights from molecular simulation. Biophys J 2007; 93:3470-9. [PMID: 17693473 PMCID: PMC2072055 DOI: 10.1529/biophysj.107.105742] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural properties of the influenza A virus M2 transmembrane channel in dimyristoylphosphatidylcholine bilayer for each of the four protonation states of the proton-gating His-37 tetrad and their effects on proton transport for this low-pH activated, highly proton-selective channel are studied by classical molecular dynamics with the multistate empirical valence-bond (MS-EVB) methodology. The excess proton permeation free energy profile and maximum ion conductance calculated from the MS-EVB simulation data combined with the Poisson-Nernst-Planck theory indicates that the triply protonated His-37 state is the most likely open state via a significant side-chain conformational change of the His-37 tetrad. This proposed open state of M2 has a calculated proton permeation free energy barrier of 7 kcal/mol and a maximum conductance of 53 pS compared to the experimental value of 6 pS. By contrast, the maximum conductance for Na(+) is calculated to be four orders of magnitude lower, in reasonable agreement with the experimentally observed proton selectivity. The pH value to activate the channel opening is estimated to be 5.5 from dielectric continuum theory, which is also consistent with experimental results. This study further reveals that the Ala-29 residue region is the primary binding site for the antiflu drug amantadine (AMT), probably because that domain is relatively spacious and hydrophobic. The presence of AMT is calculated to reduce the proton conductance by 99.8% due to a significant dehydration penalty of the excess proton in the vicinity of the channel-bound AMT.
Collapse
Affiliation(s)
- Hanning Chen
- Center for Biophysical Modeling and Simulation, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | | | | |
Collapse
|
50
|
Safdar A, Cox MMJ. Baculovirus-expressed influenza vaccine. A novel technology for safe and expeditious vaccine production for human use. Expert Opin Investig Drugs 2007; 16:927-34. [PMID: 17594180 DOI: 10.1517/13543784.16.7.927] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Effectiveness of the influenza vaccine in persons with high-risk conditions needs to be improved. In this paper, the authors review various vaccination strategies, including repeated doses of the vaccine or the use of higher hemagglutinin (HA) content vaccines that have been shown to result in improved immunogenicity. A recombinant HA vaccine produced in insect cells using the baculovirus vectors system presents the possibility for safe and expeditious vaccine production. The high purity of the antigen enables administration at much higher doses without a significant increase in side effects in human subjects. An overview of the use of this production system for the development of alternative influenza vaccine targets is also provided, such as neuraminidase and possibly M2. However, the role of M2 may be more appropriate as an adjuvant vaccine in combination with standard HA vaccine supplement and needs further evaluation. The conclusion that the insect cell-baculovirus production technology is a modern solution for rapid viral or parasitic antigen production is made and that this technology is particularly suitable for influenza where annual adjustment of the vaccine is required. In addition, a highly purified recombinant protein vaccine results in an improved influenza vaccine response in those with high-risk medical conditions.
Collapse
Affiliation(s)
- Amar Safdar
- MD Anderson Cancer Center, Department of Infectious Diseases, Infection Control and Employee Health, Houston, Texas 77030, USA.
| | | |
Collapse
|