1
|
Paul JW, Muratcioğlu S, Kuriyan J. A fluorescence-based sensor for calibrated measurement of protein kinase stability in live cells. Protein Sci 2024; 33:e5023. [PMID: 38801214 PMCID: PMC11129626 DOI: 10.1002/pro.5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of signaling proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We determine the expression levels of protein kinases by monitoring the fluorescence of fluorescent proteins fused to those kinases, normalized to that of co-expressed reference fluorescent proteins. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 and Src-homology 3 domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.
Collapse
Affiliation(s)
- Joseph W. Paul
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Institute for Quantitative Bioscience (QB3)University of CaliforniaBerkeleyCaliforniaUSA
| | - Serena Muratcioğlu
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - John Kuriyan
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
2
|
Paul JW, Muratcioğlu S, Kuriyan J. A Fluorescence-Based Sensor for Calibrated Measurement of Protein Kinase Stability in Live Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570636. [PMID: 38106090 PMCID: PMC10723428 DOI: 10.1101/2023.12.07.570636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We monitor the fluorescence of kinases fused to a fluorescent protein relative to that of a co-expressed reference fluorescent protein. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 (SH2) and Src-homology 3 (SH3) domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.
Collapse
Affiliation(s)
- Joseph W. Paul
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720 USA
- California Institute for Quantitative Bioscience (QB3), University of California, Berkeley, CA, 94720 USA
| | - Serena Muratcioğlu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - John Kuriyan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240 USA
| |
Collapse
|
3
|
Robin AY, Brochier-Armanet C, Bertrand Q, Barette C, Girard E, Madern D. Deciphering Evolutionary Trajectories of Lactate Dehydrogenases Provides New Insights into Allostery. Mol Biol Evol 2023; 40:msad223. [PMID: 37797308 PMCID: PMC10583557 DOI: 10.1093/molbev/msad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
Lactate dehydrogenase (LDH, EC.1.1.127) is an important enzyme engaged in the anaerobic metabolism of cells, catalyzing the conversion of pyruvate to lactate and NADH to NAD+. LDH is a relevant enzyme to investigate structure-function relationships. The present work provides the missing link in our understanding of the evolution of LDHs. This allows to explain (i) the various evolutionary origins of LDHs in eukaryotic cells and their further diversification and (ii) subtle phenotypic modifications with respect to their regulation capacity. We identified a group of cyanobacterial LDHs displaying eukaryotic-like LDH sequence features. The biochemical and structural characterization of Cyanobacterium aponinum LDH, taken as representative, unexpectedly revealed that it displays homotropic and heterotropic activation, typical of an allosteric enzyme, whereas it harbors a long N-terminal extension, a structural feature considered responsible for the lack of allosteric capacity in eukaryotic LDHs. Its crystallographic structure was solved in 2 different configurations typical of the R-active and T-inactive states encountered in allosteric LDHs. Structural comparisons coupled with our evolutionary analyses helped to identify 2 amino acid positions that could have had a major role in the attenuation and extinction of the allosteric activation in eukaryotic LDHs rather than the presence of the N-terminal extension. We tested this hypothesis by site-directed mutagenesis. The resulting C. aponinum LDH mutants displayed reduced allosteric capacity mimicking those encountered in plants and human LDHs. This study provides a new evolutionary scenario of LDHs that unifies descriptions of regulatory properties with structural and mutational patterns of these important enzymes.
Collapse
Affiliation(s)
- Adeline Y Robin
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, CNRS, UMR5558, Villeurbanne F-69622, France
| | - Quentin Bertrand
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Caroline Barette
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble 38000, France
| | - Eric Girard
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Dominique Madern
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
4
|
Gul M, Navid A, Rashid S. Structural basis of constitutive c-Src kinase activity due to R175L and W118A mutations. J Biomol Struct Dyn 2023; 41:634-645. [PMID: 34854354 DOI: 10.1080/07391102.2021.2010600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cellular Src (c-Src) belongs to a non-receptor membrane-associated tyrosine kinase family that plays essential roles in cellular processes. Growing evidence suggests that R175L and W118A mutations in SH2/SH3 domains of c-Src functionally inactivate these domains leading to constitutive activation of kinase domain (KD). Here we modeled c-SrcR175L, c-SrcW118A and c-SrcW118A+R175L structures by inducing phosphorylation at Y416 or Y527, respectively to characterize the comparative dynamics in the active versus inactive states through molecular dynamics simulation assay. We observed more conformational readjustments in c-Srcopen than its close variants. In particular, C-terminal tail residues of c-SrcW118A-open and c-SrcW118A+R175L-open demonstrate significantly higher transitions. The cross-correlation analysis revealed an anticorrelation behavior in the motion of KD with respect to SH2, SH3 and the linker region of SrcW118A+R175L-open, while in c-SrcWT-open, SH2 and SH3 domains were anticorrelated, while KD and C-terminal tail motions were correlated. Due to these conformational differences, c-Src open forms exhibited lower interaction between pY527 and SH2 domain. Through detailed structural analysis, we observed a uniform myristate binding cavity in c-SrcWT-open, while the myristoyl pockets of mutant forms were deformed. We propose that constitutive activation of mutant Src forms may presumably be achieved by the prolonged membrane binding due to unusual conformations of C-terminal and myristoyl switch residues that may result in a higher dephosphorylation rate at pY527 in the myristoylated c-Src. Thus, our study establishes novel clues to decipher the constitutive activation status of c-Src in response to known mutations that may help in devising novel therapeutic strategies for cancer metastasis treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehreen Gul
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ahmad Navid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
5
|
Thomas T, Roux B. TYROSINE KINASES: COMPLEX MOLECULAR SYSTEMS CHALLENGING COMPUTATIONAL METHODOLOGIES. THE EUROPEAN PHYSICAL JOURNAL. B 2021; 94:203. [PMID: 36524055 PMCID: PMC9749240 DOI: 10.1140/epjb/s10051-021-00207-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/14/2021] [Indexed: 05/28/2023]
Abstract
Classical molecular dynamics (MD) simulations based on atomic models play an increasingly important role in a wide range of applications in physics, biology, and chemistry. Nonetheless, generating genuine knowledge about biological systems using MD simulations remains challenging. Protein tyrosine kinases are important cellular signaling enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Due to the large conformational changes and long timescales involved in their function, these kinases present particularly challenging problems to modern computational and theoretical frameworks aimed at elucidating the dynamics of complex biomolecular systems. Markov state models have achieved limited success in tackling the broader conformational ensemble and biased methods are often employed to examine specific long timescale events. Recent advances in machine learning continue to push the limitations of current methodologies and provide notable improvements when integrated with the existing frameworks. A broad perspective is drawn from a critical review of recent studies.
Collapse
|
6
|
von Raußendorf F, de Ruiter A, Leonard TA. A switch in nucleotide affinity governs activation of the Src and Tec family kinases. Sci Rep 2017; 7:17405. [PMID: 29234112 PMCID: PMC5727165 DOI: 10.1038/s41598-017-17703-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
The Tec kinases, closely related to Src family kinases, are essential for lymphocyte function in the adaptive immune system. Whilst the Src and Abl kinases are regulated by tail phosphorylation and N-terminal myristoylation respectively, the Tec kinases are notable for the absence of either regulatory element. We have found that the inactive conformations of the Tec kinase Itk and Src preferentially bind ADP over ATP, stabilising both proteins. We demonstrate that Itk adopts the same conformation as Src and that the autoinhibited conformation of Src is independent of its C-terminal tail. Allosteric activation of both Itk and Src depends critically on the disruption of a conserved hydrophobic stack that accompanies regulatory domain displacement. We show that a conformational switch permits the exchange of ADP for ATP, leading to efficient autophosphorylation and full activation. In summary, we propose a universal mechanism for the activation and autoinhibition of the Src and Tec kinases.
Collapse
Affiliation(s)
- Freia von Raußendorf
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Anita de Ruiter
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), 1190, Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Medical Biochemistry, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
7
|
Meng Y, Pond MP, Roux B. Tyrosine Kinase Activation and Conformational Flexibility: Lessons from Src-Family Tyrosine Kinases. Acc Chem Res 2017; 50:1193-1201. [PMID: 28426203 DOI: 10.1021/acs.accounts.7b00012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein kinases are enzymes that catalyze the covalent transfer of the γ-phosphate of an adenosine triphosphate (ATP) molecule onto a tyrosine, serine, threonine, or histidine residue in the substrate and thus send a chemical signal to networks of downstream proteins. They are important cellular signaling enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Unregulated protein kinase activity is often associated with a wide range of diseases, therefore making protein kinases major therapeutic targets. A prototypical system of central interest to understand the regulation of kinase activity is provided by tyrosine kinase c-Src, which belongs to the family of Src-related non-receptor tyrosine kinases (SFKs). Although the broad picture of autoinhibition via the regulatory domains and via the phosphorylation of the C-terminal tail is well characterized from a structural point of view, a detailed mechanistic understanding at the atomic-level is lacking. Advanced computational methods based on all-atom molecular dynamics (MD) simulations are employed to advance our understanding of tyrosine kinase activation. The computational studies suggest that the isolated kinase domain (KD) is energetically most favorable in the inactive conformation when the activation loop (A-loop) of the KD is not phosphorylated. The KD makes transient visits to a catalytically competent active-like conformation. The process of bimolecular trans-autophosphorylation of the A-loop eventually locks the KD in the active state. Activating point mutations may act by slightly increasing the population of the active-like conformation, enhancing the availability of the A-loop to be phosphorylated. The Src-homology 2 (SH2) and Src-homology 3 (SH3) regulatory domains, depending upon their configuration, either promote the inactive or the active state of the kinase domain. In addition to the roles played by the SH3, SH2, and KD, the Src-homology 4-Unique domain (SH4-U) region also serves as a key moderator of substrate specificity and kinase function. Thus, a fundamental understanding of the conformational propensity of the SH4-U region and how this affects the association to the membrane surface are likely to lead to the discovery of new intermediate states and alternate strategies for inhibition of kinase activity for drug discovery. The existence of a multitude of KD conformations poses a great challenge aimed at the design of specific inhibitors. One promising computational strategy to explore the conformational flexibility of the KD is to construct Markov state models from aggregated MD data.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Biochemistry
and Molecular Biology, Gordon Center for Integrative Science, University of Chicago 929 E 57th Street, Chicago, Illinois 60637, United States
| | - Matthew P. Pond
- Department of Biochemistry
and Molecular Biology, Gordon Center for Integrative Science, University of Chicago 929 E 57th Street, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry
and Molecular Biology, Gordon Center for Integrative Science, University of Chicago 929 E 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Fajer M, Meng Y, Roux B. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape. J Phys Chem B 2017; 121:3352-3363. [PMID: 27715044 PMCID: PMC5398919 DOI: 10.1021/acs.jpcb.6b08409] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.
Collapse
Affiliation(s)
| | | | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637, USA
| |
Collapse
|
9
|
Chopra N, Wales TE, Joseph RE, Boyken SE, Engen JR, Jernigan RL, Andreotti AH. Dynamic Allostery Mediated by a Conserved Tryptophan in the Tec Family Kinases. PLoS Comput Biol 2016; 12:e1004826. [PMID: 27010561 PMCID: PMC4807093 DOI: 10.1371/journal.pcbi.1004826] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
Bruton’s tyrosine kinase (Btk) is a Tec family non-receptor tyrosine kinase that plays a critical role in immune signaling and is associated with the immunological disorder X-linked agammaglobulinemia (XLA). Our previous findings showed that the Tec kinases are allosterically activated by the adjacent N-terminal linker. A single tryptophan residue in the N-terminal 17-residue linker mediates allosteric activation, and its mutation to alanine leads to the complete loss of activity. Guided by hydrogen/deuterium exchange mass spectrometry results, we have employed Molecular Dynamics simulations, Principal Component Analysis, Community Analysis and measures of node centrality to understand the details of how a single tryptophan mediates allostery in Btk. A specific tryptophan side chain rotamer promotes the functional dynamic allostery by inducing coordinated motions that spread across the kinase domain. Either a shift in the rotamer population, or a loss of the tryptophan side chain by mutation, drastically changes the coordinated motions and dynamically isolates catalytically important regions of the kinase domain. This work also identifies a new set of residues in the Btk kinase domain with high node centrality values indicating their importance in transmission of dynamics essential for kinase activation. Structurally, these node residues appear in both lobes of the kinase domain. In the N-lobe, high centrality residues wrap around the ATP binding pocket connecting previously described Catalytic-spine residues. In the C-lobe, two high centrality node residues connect the base of the R- and C-spines on the αF-helix. We suggest that the bridging residues that connect the catalytic and regulatory architecture within the kinase domain may be a crucial element in transmitting information about regulatory spine assembly to the catalytic machinery of the catalytic spine and active site. Bruton’s tyrosine kinase (Btk) belongs to the Tec family of protein tyrosine kinases, and plays a crucial role in the signaling pathway in B-cells. Alteration of Btk activity results in the serious immunological disorder, X-linked agammaglobulinemia. Btk is a multi-domain protein and the activity of the kinase domain is regulated by the adjacent non-catalytic domains, which mediate their effect by means of a conserved tryptophan residue. In this work, we have investigated the mechanism of regulation by this tryptophan residue, W395, in the linker preceding the Btk kinase domain. Using hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations we identify structural elements within the kinase domain that are required for function by transmitting the allosteric effects of W395. Molecular Dynamics simulations further guided us to delineate the kinase domain into dynamically correlated sets of residues using community analysis, thereby identifying the important communication nodes that connect the various elements of the kinase domain required for function. The analyses performed indicate clearly how the W395A mutant changes the communication pathway required for function.
Collapse
Affiliation(s)
- Nikita Chopra
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Raji E. Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Scott E. Boyken
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Robert L. Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Amy H. Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
10
|
Mechanism of the αβ conformational change in F1-ATPase after ATP hydrolysis: free-energy simulations. Biophys J 2015; 108:85-97. [PMID: 25564855 DOI: 10.1016/j.bpj.2014.11.1853] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
One of the motive forces for F1-ATPase rotation is the conformational change of the catalytically active β subunit due to closing and opening motions caused by ATP binding and hydrolysis, respectively. The closing motion is accomplished in two steps: the hydrogen-bond network around ATP changes and then the entire structure changes via B-helix sliding, as shown in our previous study. Here, we investigated the opening motion induced by ATP hydrolysis using all-atom free-energy simulations, combining the nudged elastic band method and umbrella sampling molecular-dynamics simulations. Because hydrolysis requires residues in the α subunit, the simulations were performed with the αβ dimer. The results indicate that the large-scale opening motion is also achieved by the B-helix sliding (in the reverse direction). However, the sliding mechanism is different from that of ATP binding because sliding is triggered by separation of the hydrolysis products ADP and Pi. We also addressed several important issues: 1), the timing of the product Pi release; 2), the unresolved half-closed β structure; and 3), the ADP release mechanism. These issues are fundamental for motor function; thus, the rotational mechanism of the entire F1-ATPase is also elucidated through this αβ study. During the conformational change, conserved residues among the ATPase proteins play important roles, suggesting that the obtained mechanism may be shared with other ATPase proteins. When combined with our previous studies, these results provide a comprehensive view of the β-subunit conformational change that drives the ATPase.
Collapse
|
11
|
Meng Y, Roux B. Computational study of the W260A activating mutant of Src tyrosine kinase. Protein Sci 2015; 25:219-30. [PMID: 26106037 DOI: 10.1002/pro.2731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 01/22/2023]
Abstract
Tyrosine kinases are enzymes playing a critical role in cellular signaling. Mutations causing increased in kinase activity are often associated with cancer and various pathologies. One example in Src tyrosine kinases is offered by the substitution of the highly conserved tryptophan 260 by an alanine (W260A), which has been shown to cause an increase in activity. Here, molecular dynamics simulations based on atomic models are carried out to characterize the conformational changes in the linker region and the catalytic (kinase) domain of Src kinase to elucidate the impact of the W260A mutation. Umbrella sampling calculations show that the conformation of the linker observed in the assembled down-regulated state of the kinase is most favored when the kinase domain is in the inactive state, whereas the conformation of the linker observed in the re-assembled up-regulated state of the kinase is favored when the kinase domain is in the unphosphorylated active-like state. The calculations further indicate that there are only small differences between the WT and W260A mutant. In both cases, the intermediates states are very similar and the down-regulated inactive conformation is the most stable state. However, the calculations also show that the free energy cost to reach the unphosphorylated active-like conformation is slightly smaller for the W260A mutant compared with WT. A simple kinetic model is developed and submitted to a Bayesian Monte Carlo analysis to illustrate how such small differences can contribute to accelerate the trans-autophosphorylation reaction and yield a large increase in the activity of the mutant as observed experimentally.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637
| |
Collapse
|
12
|
The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion. PLoS Comput Biol 2014; 10:e1003863. [PMID: 25299346 PMCID: PMC4191882 DOI: 10.1371/journal.pcbi.1003863] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/18/2014] [Indexed: 11/25/2022] Open
Abstract
Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors. The Abl kinase is a key player in many crucial cellular processes. It is also an important anti-cancer drug target, because a mutation leading to the fusion protein Bcr-Abl is the main cause for chronic myeloid leukemia (CML). Abl inhibitors are currently the only pharmaceutical treatment for CML. There are two main difficulties associated with the development of kinase inhibitors: the high similarity between active sites of different kinases, which makes selectivity a challenge, and mutations leading to resistance, which make it mandatory to search for alternative drugs. One important factor controlling Abl is the interplay between the catalytic domain and an SH2 domain. We used computer simulations to understand how the interactions between the domains modify the dynamic of the kinase and detected both local and global effects. Based on our computer model, we suggested mutations that should alter the domain-domain interplay. Consequently, we tested the mutants experimentally and found that they support our hypothesis. We propose that our findings can be of help for the development of new classes of Abl inhibitors, which would modify the domain-domain interplay instead of interfering directly with the active site.
Collapse
|
13
|
Chauvot de Beauchêne I, Allain A, Panel N, Laine E, Trouvé A, Dubreuil P, Tchertanov L. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity. PLoS Comput Biol 2014; 10:e1003749. [PMID: 25079768 PMCID: PMC4117417 DOI: 10.1371/journal.pcbi.1003749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/12/2014] [Indexed: 12/03/2022] Open
Abstract
Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D) localized in crucial regulatory segments, the juxtamembrane region (JMR) and the activation (A-) loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts. Receptor tyrosine kinase KIT plays a crucial role in the regulation of cell signaling. This allosterically controlled activity may be affected by gain-of-function mutations that promote the development of several cancers. Identification of the molecular basis of KIT constitutive activation and allosteric regulation has inspired computational study of KIT hotspot mutations. In the present contribution, we investigated the mutation-induced effects on KIT conformational dynamics and intra-protein communication conditionally on the mutation location and the nature of the substituting amino acid. Our data elucidate that all studied mutations stabilize an inactive non-autoinhibited state of KIT over the inactive auto-inhibited state prevalent for the native protein. This shift in the protein conformational landscape promotes KIT constitutive activation. Our in silico analysis established correlations between the structural and dynamical effects induced by oncogenic mutations and the mutants auto-activation rates and drug sensitivities measured in vitro and in vivo. Particularly, the A-loop mutations stabilize the drug-resistant forms, while the JMR mutations may facilitate inhibitors binding to the active site. Cross-correlations established between local and long-range structural and dynamical effects demonstrate the allosteric character of the gain-of-function mutations mode of action.
Collapse
Affiliation(s)
- Isaure Chauvot de Beauchêne
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Ariane Allain
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Nicolas Panel
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Elodie Laine
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Alain Trouvé
- Centre de Mathématiques et de Leurs Applications (CMLA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Patrice Dubreuil
- Inserm, U1068, Signaling, Hematopoiesis and Mechanism of Oncogenesis (CRCM); Institut Paoli-Calmettes; Aix-Marseille University; CNRS, UMR7258, Marseille, France
| | - Luba Tchertanov
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
- Centre de Mathématiques et de Leurs Applications (CMLA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
- * E-mail:
| |
Collapse
|
14
|
Sun H, Li Y, Tian S, Wang J, Hou T. P-loop conformation governed crizotinib resistance in G2032R-mutated ROS1 tyrosine kinase: clues from free energy landscape. PLoS Comput Biol 2014; 10:e1003729. [PMID: 25033171 PMCID: PMC4102447 DOI: 10.1371/journal.pcbi.1003729] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/02/2014] [Indexed: 01/04/2023] Open
Abstract
Tyrosine kinases are regarded as excellent targets for chemical drug therapy of carcinomas. However, under strong purifying selection, drug resistance usually occurs in the cancer cells within a short term. Many cases of drug resistance have been found to be associated with secondary mutations in drug target, which lead to the attenuated drug-target interactions. For example, recently, an acquired secondary mutation, G2032R, has been detected in the drug target, ROS1 tyrosine kinase, from a crizotinib-resistant patient, who responded poorly to crizotinib within a very short therapeutic term. It was supposed that the mutation was located at the solvent front and might hinder the drug binding. However, a different fact could be uncovered by the simulations reported in this study. Here, free energy surfaces were characterized by the drug-target distance and the phosphate-binding loop (P-loop) conformational change of the crizotinib-ROS1 complex through advanced molecular dynamics techniques, and it was revealed that the more rigid P-loop region in the G2032R-mutated ROS1 was primarily responsible for the crizotinib resistance, which on one hand, impaired the binding of crizotinib directly, and on the other hand, shortened the residence time induced by the flattened free energy surface. Therefore, both of the binding affinity and the drug residence time should be emphasized in rational drug design to overcome the kinase resistance. Cancers can eventually confer drug resistance to the continued medication. In most cases, mutations occurred in a drug target can attenuate the binding affinity of the drugs. Here, we studied the drug resistance mechanisms of the mutations G2032R in the ROS1 tyrosine kinase in fusion-type NSCLC. It is well known that the phosphate-binding loop (P-loop) plays a vital role in the binding of competitive inhibitors in tyrosine kinases, and numerous mutations have been found occurred around the P-loop, which may affect the binding/unbinding process of a drug. Free energy surfaces were constructed to characterize the impact of the mutation to the binding/unbinding process of a well-known NSCLC drug, crizotinib. Two advanced free energy calculation methods, namely funnel based well-tempered metadynamics and umbrella sampling based absolute binding free energy calculation achieved consistent results with the experimental data, suggesting that the rigid P-loop of the mutated target was mainly responsible for the crizotinib resistance to ROS1 tyrosine kinase.
Collapse
Affiliation(s)
- Huiyong Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Sheng Tian
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Junmei Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
15
|
Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat Commun 2014; 5:3397. [PMID: 24584478 PMCID: PMC4465921 DOI: 10.1038/ncomms4397] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/06/2014] [Indexed: 12/18/2022] Open
Abstract
Unregulated activation of Src kinases leads to aberrant signaling, uncontrolled growth, and differentiation of cancerous cells. Reaching a complete mechanistic understanding of large scale conformational transformations underlying the activation of kinases could greatly help in the development of therapeutic drugs for the treatment of these pathologies. In principle, the nature of conformational transition could be modeled in silico via atomistic molecular dynamics simulations, although this is very challenging due to the long activation timescales. Here, we employ a computational paradigm that couples transition pathway techniques and Markov state model-based massively distributed simulations for mapping the conformational landscape of c-src tyrosine kinase. The computations provide the thermodynamics and kinetics of kinase activation for the first time, and help identify key structural intermediates. Furthermore, the presence of a novel allosteric site in an intermediate state of c-src that could be potentially utilized for drug design is predicted.
Collapse
|
16
|
Meng Y, Roux B. Locking the active conformation of c-Src kinase through the phosphorylation of the activation loop. J Mol Biol 2013; 426:423-35. [PMID: 24103328 DOI: 10.1016/j.jmb.2013.10.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
Molecular dynamics umbrella sampling simulations are used to compare the relative stability of the active conformation of the catalytic domain of c-Src kinase while the tyrosine 416 in the activation loop (A-loop) is either unphosphorylated or phosphorylated. When the A-loop is unphosphorylated, there is considerable flexibility of the kinase. While the active conformation of the kinase is not forbidden and can be visited transiently, it is not the predominant state. This is consistent with the view that c-Src displays some catalytic activity even when the A-loop is unphosphorylated. In contrast, phosphorylation of the A-loop contributes to stabilize several structural features that are critical for catalysis, such as the hydrophobic regulatory spine, the HRD motif, and the electrostatic switch. In summary, the free-energy landscape calculations demonstrate that phosphorylation of tyrosine 416 in the A-loop essentially "locks" the kinase into its catalytically competent conformation.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
17
|
Ovchinnikov V, Karplus M. Analysis and elimination of a bias in targeted molecular dynamics simulations of conformational transitions: application to calmodulin. J Phys Chem B 2012; 116:8584-603. [PMID: 22409258 PMCID: PMC3406239 DOI: 10.1021/jp212634z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The popular targeted molecular dynamics (TMD) method for generating transition paths in complex biomolecular systems is revisited. In a typical TMD transition path, the large-scale changes occur early and the small-scale changes tend to occur later. As a result, the order of events in the computed paths depends on the direction in which the simulations are performed. To identify the origin of this bias, and to propose a method in which the bias is absent, variants of TMD in the restraint formulation are introduced and applied to the complex open ↔ closed transition in the protein calmodulin. Due to the global best-fit rotation that is typically part of the TMD method, the simulated system is guided implicitly along the lowest-frequency normal modes, until the large spatial scales associated with these modes are near the target conformation. The remaining portion of the transition is described progressively by higher-frequency modes, which correspond to smaller-scale rearrangements. A straightforward modification of TMD that avoids the global best-fit rotation is the locally restrained TMD (LRTMD) method, in which the biasing potential is constructed from a number of TMD potentials, each acting on a small connected portion of the protein sequence. With a uniform distribution of these elements, transition paths that lack the length-scale bias are obtained. Trajectories generated by steered MD in dihedral angle space (DSMD), a method that avoids best-fit rotations altogether, also lack the length-scale bias. To examine the importance of the paths generated by TMD, LRTMD, and DSMD in the actual transition, we use the finite-temperature string method to compute the free energy profile associated with a transition tube around a path generated by each algorithm. The free energy barriers associated with the paths are comparable, suggesting that transitions can occur along each route with similar probabilities. This result indicates that a broad ensemble of paths needs to be calculated to obtain a full description of conformational changes in biomolecules. The breadth of the contributing ensemble suggests that energetic barriers for conformational transitions in proteins are offset by entropic contributions that arise from a large number of possible paths.
Collapse
|
18
|
Huang H, Zhao R, Dickson BM, Skeel RD, Post CB. αC helix as a switch in the conformational transition of Src/CDK-like kinase domains. J Phys Chem B 2012; 116:4465-75. [PMID: 22448785 DOI: 10.1021/jp301628r] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One mechanism of regulating the catalytic activity of protein kinases is through conformational transitions. Despite great diversity in the structural changes involved in the transitions, a certain set of changes within the kinase domain (KD) has been observed for many kinases including Src and CDK2. We investigated this conformational transition computationally to identify the topological features that are energetically critical to the transition. Results from both molecular dynamics sampling and transition path optimization highlight the displacement of the αC helix as the major energy barrier, mediating the switch of the KD between the active and down-regulated states. The critical role of the αC helix is noteworthy by providing a rationale for a number of activation and deactivation mechanisms known to occur in cells. We find that kinases with the αC helix displacement exist throughout the kinome, suggesting that this feature may have emerged early in evolution.
Collapse
Affiliation(s)
- He Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | | | | | |
Collapse
|
19
|
Laine E, Chauvot de Beauchêne I, Perahia D, Auclair C, Tchertanov L. Mutation D816V alters the internal structure and dynamics of c-KIT receptor cytoplasmic region: implications for dimerization and activation mechanisms. PLoS Comput Biol 2011; 7:e1002068. [PMID: 21698178 PMCID: PMC3116893 DOI: 10.1371/journal.pcbi.1002068] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/11/2011] [Indexed: 12/02/2022] Open
Abstract
The type III receptor tyrosine kinase (RTK) KIT plays a crucial role in the transmission of cellular signals through phosphorylation events that are associated with a switching of the protein conformation between inactive and active states. D816V KIT mutation is associated with various pathologies including mastocytosis and cancers. D816V-mutated KIT is constitutively active, and resistant to treatment with the anti-cancer drug Imatinib. To elucidate the activating molecular mechanism of this mutation, we applied a multi-approach procedure combining molecular dynamics (MD) simulations, normal modes analysis (NMA) and binding site prediction. Multiple 50-ns MD simulations of wild-type KIT and its mutant D816V were recorded using the inactive auto-inhibited structure of the protein, characteristic of type III RTKs. Computed free energy differences enabled us to quantify the impact of D816V on protein stability in the inactive state. We evidenced a local structural alteration of the activation loop (A-loop) upon mutation, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. A thorough normal mode analysis of several MD conformations led to a plausible molecular rationale to propose that JMR is able to depart its auto-inhibitory position more easily in the mutant than in wild-type KIT and is thus able to promote kinase mutant dimerization without the need for extra-cellular ligand binding. Pocket detection at the surface of NMA-displaced conformations finally revealed that detachment of JMR from the kinase domain in the mutant was sufficient to open an access to the catalytic and substrate binding sites. Protein kinases are involved in a huge amount of cellular processes through phosphorylation, a crucial mechanism in cell signaling, and their misregulation often results in disease. The deactivation of protein tyrosine kinases (PTKs) or their oncogenic activation arises from mutations which affect the protein primary structure and the configuration of the enzymatic site apparently by stabilizing the activation loop (A-loop) extended conformation. Particularly, mutation D816V of receptor tyrosine kinase (RTK) KIT, found in patients with pediatric mastocytosis, acute leukemia or germ cell tumors, can be considered as the archetype of mutation inducing a displacement of the population equilibrium toward the active conformation. We present a comprehensive computational study of the activating mechanism(s) of this mutation. Our multi-approach in silico procedure evidenced a local alteration of the A-loop structure, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. Our results provided a plausible conception of how the observed departure of JMR from kinase domain in the mutant promotes kinase mutant dimerization without requiring extra-cellular ligand binding. The pocket profiles we obtained suggested putative allosteric binding sites that could be targeted by ligands/modulators that trap the mutated enzyme.
Collapse
Affiliation(s)
- Elodie Laine
- LBPA, CNRS - ENS de Cachan, Cachan, France
- * E-mail: (EL); (LT)
| | | | | | | | - Luba Tchertanov
- LBPA, CNRS - ENS de Cachan, Cachan, France
- * E-mail: (EL); (LT)
| |
Collapse
|
20
|
Darian E, Guvench O, Yu B, Qu CK, MacKerell AD. Structural mechanism associated with domain opening in gain-of-function mutations in SHP2 phosphatase. Proteins 2011; 79:1573-88. [PMID: 21365683 DOI: 10.1002/prot.22984] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/01/2010] [Accepted: 12/14/2010] [Indexed: 01/29/2023]
Abstract
The SHP2 phosphatase plays a central role in a number of signaling pathways were it dephosphorylates various substrate proteins. Regulation of SHP2 activity is, in part, achieved by an intramolecular interaction between the PTP domain of the protein, which contains the catalytic site, and the N-SH2 domain leading to a "closed" protein conformation and autoinhibition. Accordingly, "opening" of the N-SH2 and PTP domains is required for the protein to become active. Binding of phosphopeptides to the N-SH2 domain is known to induce the opening event, while a number of gain-of-function (GOF) mutants, implicated in Noonan's Syndrome and childhood leukemias, are thought to facilitate opening. In the present study, a combination of computational and experimental methods are used to investigate the structural mechanism of opening of SHP2 and the impact of three GOF mutants, D61G, E76K, and N308D, on the opening mechanism. Calculated free energies of opening indicate that opening must be facilitated by effector molecules, possibly the protein substrates themselves, as the calculated free energies preclude spontaneous opening. Simulations of both wild type (WT) SHP2 and GOF mutants in the closed state indicate GOF activity to involve increased solvent exposure of selected residues, most notably Arg362, which in turn may enhance interactions of SHP2 with its substrate proteins and thereby aid opening. In addition, GOF mutations cause structural changes in the phosphopeptide-binding region of the N-SH2 domain leading to conformations that mimic the bound state. Such conformational changes are suggested to enhance binding of phosphopeptides and/or decrease interactions between the PTP and N-SH2 domains thereby facilitating opening. Experimental assays of the impact of effector molecules on SHP2 phosphatase activity against both small molecule and peptide substrates support the hypothesized mechanism of GOF mutant action. The present calculations also suggest a role for the C-SH2 domain of SHP2 in stabilizing the overall conformation of the protein in the open state, thereby aiding conformational switching between the open active and closed inactive states.
Collapse
Affiliation(s)
- Eva Darian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
21
|
Ito Y, Oroguchi T, Ikeguchi M. Mechanism of the conformational change of the F1-ATPase β subunit revealed by free energy simulations. J Am Chem Soc 2011; 133:3372-80. [PMID: 21341660 DOI: 10.1021/ja1070152] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
F(1)-ATPase is an ATP-driven rotary motor enzyme. The β subunit changes its conformation from an open to a closed form upon ATP binding. The motion in the β subunit is regarded as a major driving force for rotation of the central stalk. In this Article, we explore the conformational change of the β subunit using all-atom free energy simulations with explicit solvent and propose a detailed mechanism for the conformational change. The β subunit conformational change is accomplished roughly in two characteristic steps: changing of the hydrogen-bond network around ATP and the dynamic movement of the C-terminal domain via sliding of the B-helix. The details of the former step agree well with experimental data. In the latter step, sliding of the B-helix enhances the hydrophobic stabilization due to the exclusion of water molecules from the interface and improved packing in the hydrophobic core. This step contributes to a decrease in free energy, leading to the generation of torque in the F(1)-ATPase upon ATP binding.
Collapse
Affiliation(s)
- Yuko Ito
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | |
Collapse
|
22
|
Aleksandrov A, Simonson T. Molecular dynamics simulations show that conformational selection governs the binding preferences of imatinib for several tyrosine kinases. J Biol Chem 2010; 285:13807-15. [PMID: 20200154 DOI: 10.1074/jbc.m110.109660] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tyrosine kinases transmit cellular signals through a complex mechanism, involving their phosphorylation and switching between inactive and active conformations. The cancer drug imatinib binds tightly to several homologous kinases, including Abl, but weakly to others, including Src. Imatinib specifically targets the inactive, so-called "DFG-out" conformation of Abl, which differs from the preferred, "DFG-in" conformation of Src in the orientation of a conserved Asp-Phe-Gly (DFG) activation loop. However, recent x-ray structures showed that Src can also adopt the DFG-out conformation and uses it to bind imatinib. The Src/Abl-binding free energy difference can thus be decomposed into two contributions. Contribution i measures the different protein-imatinib interactions when either kinase is in its DFG-out conformation. Contribution ii depends on the ability of imatinib to select or induce this conformation, i.e. on the relative stabilities of the DFG-out and DFG-in conformations of each kinase. Neither contribution has been measured experimentally. We use molecular dynamics simulations to show that contribution i is very small, 0.2 +/- 0.6 kcal/mol; imatinib interactions are very similar in the two kinases, including long range electrostatic interactions with the imatinib positive charge. Contribution ii, deduced using the experimental binding free energy difference, is much larger, 4.4 +/- 0.9 kcal/mol. Thus, conformational selection, easy in Abl, difficult in Src, underpins imatinib specificity. Contribution ii has a simple interpretation; it closely approximates the stability difference between the DFG-out and DFG-in conformations of apo-Src. Additional calculations show that conformational selection also governs the relative binding of imatinib to the kinases c-Kit and Lck. These results should help clarify the current framework for engineering kinase signaling.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France
| | | |
Collapse
|
23
|
Grant BJ, Gorfe AA, McCammon JA. Large conformational changes in proteins: signaling and other functions. Curr Opin Struct Biol 2010; 20:142-7. [PMID: 20060708 DOI: 10.1016/j.sbi.2009.12.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 11/30/2022]
Abstract
Guanine and adenine nucleotide triphosphatases, such as Ras proteins and protein kinases, undergo large conformational changes upon ligand binding in the course of their functions. New computer simulation methods have combined with experimental studies to deepen our understanding of these phenomena. In particular, a 'conformational selection' picture is emerging, where alterations in the relative populations of pre-existing conformations can best describe the conformational switching activity of these important proteins.
Collapse
Affiliation(s)
- Barry J Grant
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
24
|
Gardino AK, Villali J, Kivenson A, Lei M, Liu CF, Steindel P, Eisenmesser EZ, Labeikovsky W, Wolf-Watz M, Clarkson MW, Kern D. Transient non-native hydrogen bonds promote activation of a signaling protein. Cell 2010; 139:1109-18. [PMID: 20005804 DOI: 10.1016/j.cell.2009.11.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/03/2009] [Accepted: 11/04/2009] [Indexed: 11/25/2022]
Abstract
Phosphorylation is a common mechanism for activating proteins within signaling pathways. Yet, the molecular transitions between the inactive and active conformational states are poorly understood. Here we quantitatively characterize the free-energy landscape of activation of a signaling protein, nitrogen regulatory protein C (NtrC), by connecting functional protein dynamics of phosphorylation-dependent activation to protein folding and show that only a rarely populated, pre-existing active conformation is energetically stabilized by phosphorylation. Using nuclear magnetic resonance (NMR) dynamics, we test an atomic scale pathway for the complex conformational transition, inferred from molecular dynamics simulations (Lei et al., 2009). The data show that the loss of native stabilizing contacts during activation is compensated by non-native transient atomic interactions during the transition. The results unravel atomistic details of native-state protein energy landscapes by expanding the knowledge about ground states to transition landscapes.
Collapse
Affiliation(s)
- Alexandra K Gardino
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02452, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gan W, Yang S, Roux B. Atomistic view of the conformational activation of Src kinase using the string method with swarms-of-trajectories. Biophys J 2009; 97:L8-L10. [PMID: 19686639 PMCID: PMC2726321 DOI: 10.1016/j.bpj.2009.06.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/08/2009] [Accepted: 06/18/2009] [Indexed: 11/30/2022] Open
Abstract
The inactive-to-active conformational transition of the catalytic domain of human c-Src tyrosine kinase is characterized using the string method with swarms-of-trajectories with all-atom explicit solvent molecular dynamics simulations. The activation process occurs in two main steps in which the activation loop (A-loop) opens first, followed by the rotation of the alphaC helix. The computed potential of mean force energy along the activation pathway displays a local minimum, which allows the identification of an intermediate state. These results show that the string method with swarms-of-trajectories is an effective technique to characterize complex and slow conformational transitions in large biomolecular systems.
Collapse
Affiliation(s)
- Wenxun Gan
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637
| | - Sichun Yang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
26
|
Brooks B, Brooks C, MacKerell A, Nilsson L, Petrella R, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R, Post C, Pu J, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York D, Karplus M. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30:1545-614. [PMID: 19444816 PMCID: PMC2810661 DOI: 10.1002/jcc.21287] [Citation(s) in RCA: 6216] [Impact Index Per Article: 414.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983.
Collapse
Affiliation(s)
- B.R. Brooks
- Laboratory of Computational Biology, National Heart, Lung, and
Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - C.L. Brooks
- Departments of Chemistry & Biophysics, University of
Michigan, Ann Arbor, MI 48109
| | - A.D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy,
University of Maryland, Baltimore, MD, 21201
| | - L. Nilsson
- Karolinska Institutet, Department of Biosciences and Nutrition,
SE-141 57, Huddinge, Sweden
| | - R.J. Petrella
- Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA 02138
- Department of Medicine, Harvard Medical School, Boston, MA
02115
| | - B. Roux
- Department of Biochemistry and Molecular Biology, University of
Chicago, Gordon Center for Integrative Science, Chicago, IL 60637
| | - Y. Won
- Department of Chemistry, Hanyang University, Seoul
133–792 Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - M. Karplus
- Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA 02138
- Laboratoire de Chimie Biophysique, ISIS, Université de
Strasbourg, 67000 Strasbourg France
| |
Collapse
|
27
|
Piserchio A, Ghose R, Cowburn D. Optimized bacterial expression and purification of the c-Src catalytic domain for solution NMR studies. JOURNAL OF BIOMOLECULAR NMR 2009; 44:87-93. [PMID: 19399371 PMCID: PMC2735562 DOI: 10.1007/s10858-009-9318-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 04/06/2009] [Indexed: 05/27/2023]
Abstract
Progression of a host of human cancers is associated with elevated levels of expression and catalytic activity of the Src family of tyrosine kinases (SFKs), making them key therapeutic targets. Even with the availability of multiple crystal structures of active and inactive forms of the SFK catalytic domain (CD), a complete understanding of its catalytic regulation is unavailable. Also unavailable are atomic or near-atomic resolution information about their interactions, often weak or transient, with regulating phosphatases and downstream targets. Solution NMR, the biophysical method best suited to tackle this problem, was previously hindered by difficulties in bacterial expression and purification of sufficient quantities of soluble, properly folded protein for economically viable labeling with NMR-active isotopes. Through a choice of optimal constructs, co-expression with chaperones and optimization of the purification protocol, we have achieved the ability to bacterially produce large quantities of the isotopically-labeled CD of c-Src, the prototypical SFK, and of its activating Tyr-phosphorylated form. All constructs produce excellent spectra allowing solution NMR studies of this family in an efficient manner.
Collapse
Affiliation(s)
- Andrea Piserchio
- New York Structural Biology Center, New York, New York, 10027
- The Department of Chemistry, The City College of New York, New York 10031
| | - Ranajeet Ghose
- The Department of Chemistry, The City College of New York, New York 10031
- Graduate Center of the City University of New York, New York, New York 10016
| | - David Cowburn
- New York Structural Biology Center, New York, New York, 10027
| |
Collapse
|
28
|
Huang K, Wang YH, Brown A, Sun G. Identification of N-terminal lobe motifs that determine the kinase activity of the catalytic domains and regulatory strategies of Src and Csk protein tyrosine kinases. J Mol Biol 2009; 386:1066-77. [PMID: 19244618 PMCID: PMC2768531 DOI: 10.1016/j.jmb.2009.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Csk and Src protein tyrosine kinases are structurally homologous but use opposite regulatory strategies. The isolated catalytic domain of Csk is intrinsically inactive and is activated by interactions with the regulatory Src homology 3 (SH3) and SH2 domains, while the isolated catalytic domain of Src is intrinsically active and is suppressed by interactions with the regulatory SH3 and SH2 domains. The structural basis for why one isolated catalytic domain is intrinsically active while the other is inactive is not clear. In this study, we identified structural elements in the N-terminal lobe of the catalytic domain that render the Src catalytic domain active. These structural elements include the alpha-helix C region, a beta turn between the beta4 and beta5 strands, and an Arg residue at the beginning of the catalytic domain. These three motifs interact with one another to activate the Src catalytic domain, but the equivalent motifs in Csk directly interact with the regulatory domains that are important for Csk activation. The Src motifs can be grafted to the Csk catalytic domain to obtain an active Csk catalytic domain. These results, together with available Src and Csk tertiary structures, reveal an important structural switch that determines the kinase activity of a catalytic domain and dictates the regulatory strategy of a kinase.
Collapse
Affiliation(s)
- Kezhen Huang
- Department of Cell and Molecular Biology, University of Rhode Island, 117 Morrill Science Building, 45 Lower College Road, Kingston, RI 02881, USA
| | | | | | | |
Collapse
|
29
|
Deng Y, Roux B. Computations of standard binding free energies with molecular dynamics simulations. J Phys Chem B 2009; 113:2234-46. [PMID: 19146384 PMCID: PMC3837708 DOI: 10.1021/jp807701h] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An increasing number of studies have reported computations of the standard (absolute) binding free energy of small ligands to proteins using molecular dynamics (MD) simulations and explicit solvent molecules that are in good agreement with experiments. This encouraging progress suggests that physics-based approaches hold the promise of making important contributions to the process of drug discovery and optimization in the near future. Two types of approaches are principally used to compute binding free energies with MD simulations. The most widely known is the alchemical double decoupling method, in which the interaction of the ligand with its surroundings are progressively switched off. It is also possible to use a potential of mean force (PMF) method, in which the ligand is physically separated from the protein receptor. For both of these computational approaches, restraining potentials may be activated and released during the simulation for sampling efficiently the changes in translational, rotational, and conformational freedom of the ligand and protein upon binding. Because such restraining potentials add bias to the simulations, it is important that their effects be rigorously removed to yield a binding free energy that is properly unbiased with respect to the standard state. A review of recent results is presented, and differences in computational methods are discussed. Examples of computations with T4-lysozyme mutants, FKBP12, SH2 domain, and cytochrome P450 are discussed and compared. Remaining difficulties and challenges are highlighted.
Collapse
Affiliation(s)
- Yuqing Deng
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois, USA
| | | |
Collapse
|
30
|
Mapping the conformational transition in Src activation by cumulating the information from multiple molecular dynamics trajectories. Proc Natl Acad Sci U S A 2009; 106:3776-81. [PMID: 19225111 DOI: 10.1073/pnas.0808261106] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Src-family kinases are allosteric enzymes that play a key role in the regulation of cell growth and proliferation. In response to cellular signals, they undergo large conformational changes to switch between distinct inactive and active states. A computational strategy for characterizing the conformational transition pathway is presented to bridge the inactive and active states of the catalytic domain of Hck. The information from a large number (78) of independent all-atom molecular dynamics trajectories with explicit solvent is combined together to assemble a connectivity map of the conformational transition. Two intermediate states along the activation pathways are identified, and their structural features are characterized. A coarse free-energy landscape is built in terms of the collective motions corresponding to the opening of the activation loop (A-loop) and the rotation of the alphaC helix. This landscape shows that the protein can adopt a multitude of conformations in which the A-loop is partially open, while the alphaC helix remains in the orientation characteristic of the inactive conformation. The complete transition leading to the active conformation requires a concerted movement involving further opening of the A-loop, the relative alignment of N-lobe and C-lobe, and the rotation of the alphaC helix needed to recruit the residues necessary for catalysis in the active site. The analysis leads to a dynamic view of the full-length kinase activation, whereby transitions of the catalytic domain to intermediate configurations with a partially open A-loop are permitted, even while the SH2-SH3 clamp remains fully engaged. These transitions would render Y416 available for the transphosphorylation event that ultimately locks down the active state. The results provide a broad framework for picturing the conformational transitions leading to kinase activation.
Collapse
|
31
|
Banavali NK, Roux B. Flexibility and charge asymmetry in the activation loop of Src tyrosine kinases. Proteins 2009; 74:378-89. [PMID: 18623061 DOI: 10.1002/prot.22153] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Regulated activity of Src kinases is critical for cell growth. Src kinases can be activated by trans-phosphorylation of a tyrosine located in the central activation loop of the catalytic domain. However, because the required exposure of this tyrosine is not observed in the down-regulated X-ray structures of Src kinases, transient partial opening of the activation loop appears to be necessary for such processes. Umbrella sampling molecular dynamics simulations are used to characterize the free energy landscape of opening of the hydrophilic part of the activation loop in the Src kinase Hck. The loop prefers a partially open conformation where Tyr416 has increased accessibility, but remains partly shielded. An asymmetric distribution of the charged residues in the sequence near Tyr416, which contributes to shielding, is found to be conserved in Src family members. A conformational equilibrium involving exchange of electrostatic interactions between the conserved residues Glu310 and Arg385 or Arg409 affects activation loop opening. A mechanism for access of unphosphorylated Tyr416 into an external catalytic site is suggested based on these observations.
Collapse
Affiliation(s)
- Nilesh K Banavali
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
32
|
Woo HJ, Liu Y, Sousa R. Molecular dynamics studies of the energetics of translocation in model T7 RNA polymerase elongation complexes. Proteins 2008; 73:1021-36. [PMID: 18536012 DOI: 10.1002/prot.22134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Translocation in the single subunit T7 RNA polymerase elongation complex was studied by molecular dynamics simulations using the posttranslocated crystal structure with the fingers domain open, an intermediate stable in the absence of pyrophosphate, magnesium ions, and nucleotide substrate. Unconstrained and umbrella sampling simulations were performed to examine the energetics of translocations. The extent of translocation was quantified using reaction coordinates representing the average and individual displacements of the RNA-DNA hybrid base pairs with respect to a reference structure. In addition, an unconstrained simulation was also performed for the product complex with the fingers domain closed, but with the pyrophosphate and magnesium removed, in order to examine the local stability of the pretranslocated closed state after the pyrophosphate release. The average spatial movement of the entire hybrid was found to be energetically costly in the post- to pretranslocated direction in the open state, while the pretranslocated state was stable in the closed complex, supporting the notion that the conformational state dictates the global stability of translocation states. However, spatial fluctuations of the RNA 3'-end in the open conformation were extensive, with the typical range reaching 3-4 A. Our results suggest that thermal fluctuations play more important roles in the translocation of individual nucleotides than in the movement of large sections of nucleotide strands: RNA 3'-end can move into and out of the active site within a single conformational state, while a global movement of the hybrid may be thermodynamically unfavorable without the conformational change.
Collapse
Affiliation(s)
- Hyung-June Woo
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, USA
| | | | | |
Collapse
|
33
|
Ozkirimli E, Yadav SS, Miller WT, Post CB. An electrostatic network and long-range regulation of Src kinases. Protein Sci 2008; 17:1871-80. [PMID: 18687871 DOI: 10.1110/ps.037457.108] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The regulatory mechanism of Src tyrosine kinases includes conformational activation by a change in the catalytic domain tertiary structure and in domain-domain contacts between the catalytic domain and the SH2/SH3 regulatory domains. The kinase is activated when tyrosine phosphorylation occurs on the activation loop, but without phosphorylation of the C-terminal tail. Activation also occurs by allostery when contacts between the catalytic domain (CD) and the regulatory SH3 and SH2 domains are released as a result of exogenous protein binding. The aim of this work is to examine the proposed role of an electrostatic network in the conformational transition and to elucidate the molecular mechanism for long-range, allosteric conformational activation by using a combination of experimental enzyme kinetics and nonequilibrium molecular dynamics simulations. Salt dependence of the induction phase is observed in kinetic assays and supports the role of an electrostatic network in the transition. In addition, simulations provide evidence that allosteric activation involves a concerted motion coupling highly conserved residues, and spanning several nanometers from the catalytic site to the regulatory domain interface to communicate between the CD and the regulatory domains.
Collapse
Affiliation(s)
- Elif Ozkirimli
- 1Medicinal Chemistry and Molecular Pharmacology Department, Markey Center for Structural Biology and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907-2091, USA
| | | | | | | |
Collapse
|
34
|
Harris MJ, Woo HJ. Energetics of subdomain movements and fluorescence probe solvation environment change in ATP-bound myosin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:1-12. [PMID: 18568345 DOI: 10.1007/s00249-008-0347-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/16/2008] [Accepted: 05/22/2008] [Indexed: 10/21/2022]
Abstract
Energetics of conformational changes experienced by an ATP-bound myosin head detached from actin was studied by all-atom explicit water umbrella sampling simulations. The statistics of coupling between large scale domain movements and smaller scale structural features were examined, including the closing of the ATP binding pocket, and a number of key hydrogen bond formations shown to play roles in structural and biochemical studies. The statistics for the ATP binding pocket open/close transition show an evolution of the relative stability from the open state in the early stages of the recovery stroke to the stable closed state after the stroke. The change in solvation environment of the fluorescence probe Trp507 (scallop numbering; 501 in Dictyostelium discoideum) indicates that the probe faithfully reflects the closing of the binding pocket as previously shown in experimental studies, while being directly coupled to roughly the early half of the overall large scale conformational change of the converter domain rotation. The free energy change of this solvation environment change, in particular, is -1.3 kcal/mol, in close agreement with experimental estimates. In addition, our results provide direct molecular level data allowing for interpretations of the fluorescence experiments of myosin conformational change in terms of the de-solvation of Trp side chain.
Collapse
Affiliation(s)
- Michael J Harris
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
35
|
Yang S, Roux B. Src kinase conformational activation: thermodynamics, pathways, and mechanisms. PLoS Comput Biol 2008; 4:e1000047. [PMID: 18369437 PMCID: PMC2268010 DOI: 10.1371/journal.pcbi.1000047] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 02/28/2008] [Indexed: 11/19/2022] Open
Abstract
Tyrosine kinases of the Src-family are large allosteric enzymes that play a key role in cellular signaling. Conversion of the kinase from an inactive to an active state is accompanied by substantial structural changes. Here, we construct a coarse-grained model of the catalytic domain incorporating experimental structures for the two stable states, and simulate the dynamics of conformational transitions in kinase activation. We explore the transition energy landscapes by constructing a structural network among clusters of conformations from the simulations. From the structural network, two major ensembles of pathways for the activation are identified. In the first transition pathway, we find a coordinated switching mechanism of interactions among the alphaC helix, the activation-loop, and the beta strands in the N-lobe of the catalytic domain. In a second pathway, the conformational change is coupled to a partial unfolding of the N-lobe region of the catalytic domain. We also characterize the switching mechanism for the alphaC helix and the activation-loop in detail. Finally, we test the performance of a Markov model and its ability to account for the structural kinetics in the context of Src conformational changes. Taken together, these results provide a broad framework for understanding the main features of the conformational transition taking place upon Src activation.
Collapse
Affiliation(s)
- Sichun Yang
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, Chicago, Illinois, United States of America
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
36
|
Lau AY, Roux B. The free energy landscapes governing conformational changes in a glutamate receptor ligand-binding domain. Structure 2007; 15:1203-14. [PMID: 17937910 DOI: 10.1016/j.str.2007.07.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/27/2007] [Accepted: 07/31/2007] [Indexed: 11/29/2022]
Abstract
Ionotropic glutamate receptors are ligand-gated transmembrane ion channels activated by the binding of glutamate. The free energy landscapes governing the opening/closing of the GluR2 S1S2 ligand-binding domain in the apo, DNQX-, and glutamate-bound forms are computed by using all-atom molecular dynamics simulations with explicit solvent, in conjunction with an umbrella sampling strategy. The apo S1S2 easily accesses low-energy conformations that are more open than observed in X-ray crystal structures. A free energy of 9-12 kcal/mol becomes available upon glutamate binding for driving conformational changes in S1S2 associated with receptor activation. Small-angle X-ray scattering profiles calculated from computed ensemble averages agree better with experimental results than profiles calculated from static X-ray crystal structures. Water molecules in the cleft may contribute to stabilizing the apo S1S2 in open conformations. Free energy landscapes were also computed for the glutamate-bound T686A and T686S S1S2 mutants, and the results elaborate on findings from experimental functional studies.
Collapse
Affiliation(s)
- Albert Y Lau
- Institute for Molecular Pediatric Sciences, Department of Biochemistry and Molecular Biology, Ellen and Melvin Gordon Center for Integrative Science, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | | |
Collapse
|
37
|
Large-scale allosteric conformational transitions of adenylate kinase appear to involve a population-shift mechanism. Proc Natl Acad Sci U S A 2007; 104:18496-501. [PMID: 18000050 DOI: 10.1073/pnas.0706443104] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Large-scale conformational changes in proteins are often associated with the binding of a substrate. Because conformational changes may be related to the function of an enzyme, understanding the kinetics and energetics of these motions is very important. We have delineated the atomically detailed conformational transition pathway of the phosphotransferase enzyme adenylate kinase (AdK) in the absence and presence of an inhibitor. The computed free energy profiles associated with conformational transitions offer detailed mechanistic insights into, as well as kinetic information on, the ligand binding mechanism. Specifically, potential of mean force calculations reveal that in the ligand-free state, there is no significant barrier separating the open and closed conformations of AdK. The enzyme samples near closed conformations, even in the absence of its substrate. The ligand binding event occurs late, toward the closed state, and transforms the free energy landscape. In the ligand-bound state, the closed conformation is energetically most favored with a large barrier to opening. These results emphasize the underlying dynamic nature of the enzyme and indicate that the conformational transitions in AdK are more intricate than a mere two-state jump between the crystal-bound and -unbound states. Based on the existence of the multiple conformations of the enzyme in the open and closed states, a different viewpoint of ligand binding is presented. Our estimated activation energy barrier for the conformational transition is also in reasonable accord with the experimental findings.
Collapse
|
38
|
Ma L, Cui Q. Activation mechanism of a signaling protein at atomic resolution from advanced computations. J Am Chem Soc 2007; 129:10261-8. [PMID: 17655236 PMCID: PMC2561194 DOI: 10.1021/ja073059f] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advanced computational techniques including transition path sampling and free energy calculations are combined synergistically to reveal the activation mechanism at unprecedented resolution for a small signaling protein, chemotaxis protein Y. In the conventional "Y-T coupling" model for response regulators, phosphorylation induces the displacement of the conserved Thr87 residue through hydrogen-bond formation, which in turn makes it sterically possible for Tyr106 to isomerize from a solvent exposed configuration to a buried rotameric state. More than 160 unbiased activation trajectories show, however, that the rotation of Tyr106 does not rely on the displacement of Thr87 per se. Free energy calculations reveal that the Tyr106 rotation is a low-barrier process in the absence of the Thr87-phosphate hydrogen bond, although the rotation is stabilized by the formation of this interaction. The simulations also find that structural change in the beta4-alpha4 loop does not gate the Tyr106 rotation as suggested previously; rather, the rotation of Tyr106 stabilizes the activated configuration of this loop. The computational strategy used and mechanistic insights obtained have an impact on the study of signaling proteins and allosteric systems in general.
Collapse
Affiliation(s)
- Liang Ma
- Graduate program in Biophysics and Department of Chemistry and Theoretical Chemical Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
39
|
Banavali NK, Roux B. Anatomy of a structural pathway for activation of the catalytic domain of Src kinase Hck. Proteins 2007; 67:1096-112. [PMID: 17380483 DOI: 10.1002/prot.21334] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Src kinase activity is implicated in the regulation of downstream signal transduction pathways involved in cell growth processes. Crystallographic studies indicate that activation of Hematopoietic cell kinase (Hck), a member of the Src kinase family, is accompanied structurally by a large conformational change in two specific parts of its catalytic domain: the alpha-C helix and the activation loop. In the present study, molecular dynamics (MD) simulations are used to characterize the transformation pathway from the inactive to the active state. Four different conditions are considered: the presence or absence of Tyr416 phosphorylation in the activation loop, and the presence or absence of substrate ATP-2Mg(+2) in the active site. Effective free energy landscapes for local residues are determined using a combination of restrained MD simulations with a Root Mean Square Distance (RMSD) biasing potential to enforce the change followed by free MD simulations to allow relaxation from artificially enforced intermediates. A conceptual subdivision of the kinase catalytic domain into four moving parts: the flexible activation loop segment, the buried activation loop segment, the alpha-C helix, and the N-terminal end linker, leads to a concise hypothesis in which each of the moving parts are only required to be coupled to their nearest neighbor to ensure bidirectional allostery in the regulation of protein tyrosine kinases. Both Tyr416 phosphorylation and ATP-2Mg(+2) affect the local backbone torsional free energy landscapes accompanying the structural transition. When these two factors are present together, a metastable coordinated state of ATP-2Mg(+2) and the phosphorylated Tyr416 is observed that offers a possible explanation for the inhibition of protein kinase activity due to increase in Mg(+2) ion concentration.
Collapse
Affiliation(s)
- Nilesh K Banavali
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
40
|
Yu H, Ma L, Yang Y, Cui Q. Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations. PLoS Comput Biol 2007; 3:e21. [PMID: 17291159 PMCID: PMC1796662 DOI: 10.1371/journal.pcbi.0030021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 12/21/2006] [Indexed: 12/28/2022] Open
Abstract
Although the major structural transitions in molecular motors are often argued to couple to the binding of Adenosine triphosphate (ATP), the recovery stroke in the conventional myosin has been shown to be dependent on the hydrolysis of ATP. To obtain a clearer mechanistic picture for such "mechanochemical coupling" in myosin, equilibrium active-site simulations with explicit solvent have been carried out to probe the behavior of the motor domain as functions of the nucleotide chemical state and conformation of the converter/relay helix. In conjunction with previous studies of ATP hydrolysis with different active-site conformations and normal mode analysis of structural flexibility, the results help establish an energetics-based framework for understanding the mechanochemical coupling. It is proposed that the activation of hydrolysis does not require the rotation of the lever arm per se, but the two processes are tightly coordinated because both strongly couple to the open/close transition of the active site. The underlying picture involves shifts in the dominant population of different structural motifs as a consequence of changes elsewhere in the motor domain. The contribution of this work and the accompanying paper [] is to propose the actual mechanism behind these "population shifts" and residues that play important roles in the process. It is suggested that structural flexibilities at both the small and large scales inherent to the motor domain make it possible to implement tight couplings between different structural motifs while maintaining small free-energy drops for processes that occur in the detached states, which is likely a feature shared among many molecular motors. The significantly different flexibility of the active site in different X-ray structures with variable level arm orientations supports the notation that external force sensed by the lever arm may transmit into the active site and influence the chemical steps (nucleotide hydrolysis and/or binding).
Collapse
Affiliation(s)
- Haibo Yu
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Liang Ma
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Yang Yang
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
41
|
Wang J, Deng Y, Roux B. Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Biophys J 2006; 91:2798-814. [PMID: 16844742 PMCID: PMC1578458 DOI: 10.1529/biophysj.106.084301] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 06/27/2006] [Indexed: 11/18/2022] Open
Abstract
The absolute (standard) binding free energy of eight FK506-related ligands to FKBP12 is calculated using free energy perturbation molecular dynamics (FEP/MD) simulations with explicit solvent. A number of features are implemented to improve the accuracy and enhance the convergence of the calculations. First, the absolute binding free energy is decomposed into sequential steps during which the ligand-surrounding interactions as well as various biasing potentials restraining the translation, orientation, and conformation of the ligand are turned "on" and "off." Second, sampling of the ligand conformation is enforced by a restraining potential based on the root mean-square deviation relative to the bound state conformation. The effect of all the restraining potentials is rigorously unbiased, and it is shown explicitly that the final results are independent of all artificial restraints. Third, the repulsive and dispersive free energy contribution arising from the Lennard-Jones interactions of the ligand with its surrounding (protein and solvent) is calculated using the Weeks-Chandler-Andersen separation. This separation also improves convergence of the FEP/MD calculations. Fourth, to decrease the computational cost, only a small number of atoms in the vicinity of the binding site are simulated explicitly, while all the influence of the remaining atoms is incorporated implicitly using the generalized solvent boundary potential (GSBP) method. With GSBP, the size of the simulated FKBP12/ligand systems is significantly reduced, from approximately 25,000 to 2500. The computations are very efficient and the statistical error is small ( approximately 1 kcal/mol). The calculated binding free energies are generally in good agreement with available experimental data and previous calculations (within approximately 2 kcal/mol). The present results indicate that a strategy based on FEP/MD simulations of a reduced GSBP atomic model sampled with conformational, translational, and orientational restraining potentials can be computationally inexpensive and accurate.
Collapse
Affiliation(s)
- Jiyao Wang
- Institute of Molecular Pediatric Sciences, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
42
|
Woo HJ. Exploration of the conformational space of myosin recovery stroke via molecular dynamics. Biophys Chem 2006; 125:127-37. [PMID: 16889886 DOI: 10.1016/j.bpc.2006.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/01/2006] [Accepted: 07/01/2006] [Indexed: 11/17/2022]
Abstract
Muscle contractions are driven by cyclic conformational changes of myosin, whose molecular mechanisms of operation are being elucidated by recent advances in crystallographic studies and single molecule experiments. To complement such structural studies and consider the energetics of the conformational changes of myosin head, umbrella sampling molecular dynamics (MD) simulations were performed with the all-atom model of the scallop myosin sub-fragment 1 (S1) with a bound ATP in solution in explicit water using the crystallographic near-rigor and transition state conformations as two references. The constraints on RMSD reaction coordinates used for the umbrella sampling were found to steer the conformational changes efficiently, and relatively close correlations have been observed between the set of characteristic structural changes including the lever arm rotation and the closing of the nucleotide binding pocket. The lever arm angle and key residue interaction distances in the nucleotide binding pocket and the relay helix show gradual changes along the recovery stroke reaction coordinate, consistent with previous crystallographic and computational minimum energy studies. Thermal fluctuations, however, appear to make the switch-2 coordination of ATP more flexible than suggested by crystal structures. The local solvation environment of the fluorescence probe, Trp 507 (scallop numbering), also appears highly mobile in the presence of thermal fluctuations.
Collapse
Affiliation(s)
- Hyung-June Woo
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
43
|
Abstract
Src tyrosine kinases are essential in numerous cell signaling pathways, and improper functioning of these enzymes has been implicated in many diseases. The activity of Src kinases is regulated by conformational activation, which involves several structural changes within the catalytic domain (CD): the orientation of two lobes of CD; rearrangement of the activation loop (A-loop); and movement of an alpha-helix (alphaC), which is located at the interface between the two lobes, into or away from the catalytic cleft. Conformational activation was investigated using biased molecular dynamics to explore the transition pathway between the active and the down-regulated conformation of CD for the Src-kinase family member Lyn kinase, and to gain insight into the interdependence of these changes. Lobe opening is observed to be a facile motion, whereas movement of the A-loop motion is more complex requiring secondary structure changes as well as communication with alphaC. A key result is that the conformational transition involves a switch in an electrostatic network of six polar residues between the active and the down-regulated conformations. The exchange between interactions links the three main motions of the CD. Kinetic experiments that would demonstrate the contribution of the switched electrostatic network to the enzyme mechanism are proposed. Possible implications for regulation conferred by interdomain interactions are also discussed.
Collapse
Affiliation(s)
- Elif Ozkirimli
- Medicinal Chemistry and Molecular Pharmacology Department, Markey Center for Structural Biology and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907-2091, USA
| | | |
Collapse
|