1
|
Yang X, Zhang R, Han W, Han L. Molecular Dynamics Simulation Combined with Neural Relationship Inference and Markov Model to Reveal the Relationship between Conformational Regulation and Bioluminescence Properties of Gaussia Luciferase. Molecules 2024; 29:4029. [PMID: 39274876 PMCID: PMC11396600 DOI: 10.3390/molecules29174029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Gaussia luciferase (Gluc) is currently known as the smallest naturally secreted luciferase. Due to its small molecular size, high sensitivity, short half-life, and high secretion efficiency, it has become an ideal reporter gene and is widely used in monitoring promoter activity, studying protein-protein interactions, protein localization, high-throughput drug screening, and real-time monitoring of tumor occurrence and development. Although studies have shown that different Gluc mutations exhibit different bioluminescent properties, their mechanisms have not been further investigated. The purpose of this study is to reveal the relationship between the conformational changes of Gluc mutants and their bioluminescent properties through molecular dynamics simulation combined with neural relationship inference (NRI) and Markov models. Our results indicate that, after binding to the luciferin coelenterazine (CTZ), the α-helices of the 109-119 residues of the Gluc Mutant2 (GlucM2, the flash-type mutant) are partially unraveled, while the α-helices of the same part of the Gluc Mutant1 (GlucM1, the glow-type mutant) are clearly formed. The results of Markov flux analysis indicate that the conformational differences between glow-type and flash-type mutants when combined with luciferin substrate CTZ mainly involve the helicity change of α7. The most representative conformation and active pocket distance analysis indicate that compared to the flash-type mutant GlucM2, the glow-type mutant GlucM1 has a higher degree of active site closure and tighter binding. In summary, we provide a theoretical basis for exploring the relationship between the conformational changes of Gluc mutants and their bioluminescent properties, which can serve as a reference for the modification and evolution of luciferases.
Collapse
Affiliation(s)
- Xiaotang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ruoyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lu Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
2
|
Cowan B, Beveridge DL, Thayer KM. Allosteric Signaling in PDZ Energetic Networks: Embedding Error Analysis. J Phys Chem B 2023; 127:623-633. [PMID: 36626697 PMCID: PMC9884075 DOI: 10.1021/acs.jpcb.2c06546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Indexed: 01/12/2023]
Abstract
Allosteric signaling in proteins has been known for some half a century, yet how the signal traverses the protein remains an active area of research. Recently, the importance of electrostatics to achieve long-range signaling has become increasingly appreciated. Our laboratory has been working on developing network approaches to capture such interactions. In this study, we turn our attention to the well-studied allosteric model protein, PDZ. We study the allosteric dynamics on a per-residue basis in key constructs involving the PDZ domain, its allosteric effector, and its peptide ligand. We utilize molecular dynamics trajectories to create the networks for the constructs to explore the allosteric effect by plotting the heat kernel results onto axes defined by principal components. We introduce a new metric to quantitate the volume sampled by a residue in the latent space. We relate our findings to PDZ and the greater field of allostery.
Collapse
Affiliation(s)
- Benjamin
S. Cowan
- Department
of Computer Science, Wesleyan University, Middletown, Connecticut06457, United States
- College
of Integrative Sciences, Wesleyan University, Middletown, Connecticut06457, United States
| | - David L. Beveridge
- Molecular
Biophysics Program, Wesleyan University, Middletown, Connecticut06457, United States
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06457, United States
| | - Kelly M. Thayer
- Department
of Computer Science, Wesleyan University, Middletown, Connecticut06457, United States
- Molecular
Biophysics Program, Wesleyan University, Middletown, Connecticut06457, United States
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06457, United States
- College
of Integrative Sciences, Wesleyan University, Middletown, Connecticut06457, United States
| |
Collapse
|
3
|
Stevens AO, Kazan IC, Ozkan B, He Y. Investigating the allosteric response of the PICK1 PDZ domain to different ligands with all-atom simulations. Protein Sci 2022; 31:e4474. [PMID: 36251217 PMCID: PMC9667829 DOI: 10.1002/pro.4474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
The PDZ family is comprised of small modular domains that play critical roles in the allosteric modulation of many cellular signaling processes by binding to the C-terminal tail of different proteins. As dominant modular proteins that interact with a diverse set of peptides, it is of particular interest to explore how different binding partners induce different allosteric effects on the same PDZ domain. Because the PICK1 PDZ domain can bind different types of ligands, it is an ideal test case to answer this question and explore the network of interactions that give rise to dynamic allostery. Here, we use all-atom molecular dynamics simulations to explore dynamic allostery in the PICK1 PDZ domain by modeling two PICK1 PDZ systems: PICK1 PDZ-DAT and PICK1 PDZ-GluR2. Our results suggest that ligand binding to the PICK1 PDZ domain induces dynamic allostery at the αA helix that is similar to what has been observed in other PDZ domains. We found that the PICK1 PDZ-ligand distance is directly correlated with both dynamic changes of the αA helix and the distance between the αA helix and βB strand. Furthermore, our work identifies a hydrophobic core between DAT/GluR2 and I35 as a key interaction in inducing such dynamic allostery. Finally, the unique interaction patterns between different binding partners and the PICK1 PDZ domain can induce unique dynamic changes to the PICK1 PDZ domain. We suspect that unique allosteric coupling patterns with different ligands may play a critical role in how PICK1 performs its biological functions in various signaling networks.
Collapse
Affiliation(s)
- Amy O. Stevens
- Department of Chemistry and Chemical BiologyThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - I. Can Kazan
- Department of Physics, Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | - Banu Ozkan
- Department of Physics, Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | - Yi He
- Department of Chemistry and Chemical BiologyThe University of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
4
|
Stevens AO, Luo S, He Y. Three Binding Conformations of BIO124 in the Pocket of the PICK1 PDZ Domain. Cells 2022; 11:cells11152451. [PMID: 35954295 PMCID: PMC9368557 DOI: 10.3390/cells11152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The PDZ family has drawn attention as possible drug targets because of the domains’ wide ranges of function and highly conserved binding pockets. The PICK1 PDZ domain has been proposed as a possible drug target because the interactions between the PICK1 PDZ domain and the GluA2 subunit of the AMPA receptor have been shown to progress neurodegenerative diseases. BIO124 has been identified as a sub µM inhibitor of the PICK1–GluA2 interaction. Here, we use all-atom molecular dynamics simulations to reveal the atomic-level interaction pattern between the PICK1 PDZ domain and BIO124. Our simulations reveal three unique binding conformations of BIO124 in the PICK1 PDZ binding pocket, referred to here as state 0, state 1, and state 2. Each conformation is defined by a unique hydrogen bonding network and a unique pattern of hydrophobic interactions between BIO124 and the PICK1 PDZ domain. Interestingly, each conformation of BIO124 results in different dynamic changes to the PICK1 PDZ domain. Unlike states 1 and 2, state 0 induces dynamic coupling between BIO124 and the αA helix. Notably, this dynamic coupling with the αA helix is similar to what has been observed in other PDZ–ligand complexes. Our analysis indicates that the interactions formed between BIO124 and I35 may be the key to inducing dynamic coupling with the αA helix. Lastly, we suspect that the conformational shifts observed in our simulations may affect the stability and thus the overall effectiveness of BIO124. We propose that a physically larger inhibitor may be necessary to ensure sufficient interactions that permit stable binding between a drug and the PICK1 PDZ domain.
Collapse
Affiliation(s)
- Amy O. Stevens
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Samuel Luo
- Albuquerque Academy, Albuquerque, NM 87131, USA
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Correspondence:
| |
Collapse
|
5
|
Mizukami T, Roder H. Advances in Mixer Design and Detection Methods for Kinetics Studies of Macromolecular Folding and Binding on the Microsecond Time Scale. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113392. [PMID: 35684328 PMCID: PMC9182321 DOI: 10.3390/molecules27113392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
Abstract
Many important biological processes such as protein folding and ligand binding are too fast to be fully resolved using conventional stopped-flow techniques. Although advances in mixer design and detection methods have provided access to the microsecond time regime, there is room for improvement in terms of temporal resolution and sensitivity. To address this need, we developed a continuous-flow mixing instrument with a dead time of 12 to 27 µs (depending on solution viscosity) and enhanced sensitivity, sufficient for monitoring tryptophan or tyrosine fluorescence changes at fluorophore concentrations as low as 1 µM. Relying on commercially available laser microfabrication services, we obtained an integrated mixer/flow-cell assembly on a quartz chip, based on a cross-channel configuration with channel dimensions and geometry designed to minimize backpressure. By gradually increasing the width of the observation channel downstream from the mixing region, we are able to monitor a reaction progress time window ranging from ~10 µs out to ~3 ms. By combining a solid-state UV laser with a Galvano-mirror scanning strategy, we achieved highly efficient and uniform fluorescence excitation along the flow channel. Examples of applications, including refolding of acid-denatured cytochrome c triggered by a pH jump and binding of a peptide ligand to a PDZ domain, demonstrate the capability of the technique to resolve fluorescence changes down to the 10 µs time regime on modest amounts of reagents.
Collapse
|
6
|
Zhu J, Wang J, Han W, Xu D. Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations. Nat Commun 2022; 13:1661. [PMID: 35351887 PMCID: PMC8964751 DOI: 10.1038/s41467-022-29331-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Protein allostery is a biological process facilitated by spatially long-range intra-protein communication, whereby ligand binding or amino acid change at a distant site affects the active site remotely. Molecular dynamics (MD) simulation provides a powerful computational approach to probe the allosteric effect. However, current MD simulations cannot reach the time scales of whole allosteric processes. The advent of deep learning made it possible to evaluate both spatially short and long-range communications for understanding allostery. For this purpose, we applied a neural relational inference model based on a graph neural network, which adopts an encoder-decoder architecture to simultaneously infer latent interactions for probing protein allosteric processes as dynamic networks of interacting residues. From the MD trajectories, this model successfully learned the long-range interactions and pathways that can mediate the allosteric communications between distant sites in the Pin1, SOD1, and MEK1 systems. Furthermore, the model can discover allostery-related interactions earlier in the MD simulation trajectories and predict relative free energy changes upon mutations more accurately than other methods.
Collapse
Affiliation(s)
- Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Juexin Wang
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.
| |
Collapse
|
7
|
Stevens AO, He Y. Allosterism in the PDZ Family. Int J Mol Sci 2022; 23:1454. [PMID: 35163402 PMCID: PMC8836106 DOI: 10.3390/ijms23031454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Dynamic allosterism allows the propagation of signal throughout a protein. The PDZ (PSD-95/Dlg1/ZO-1) family has been named as a classic example of dynamic allostery in small modular domains. While the PDZ family consists of more than 200 domains, previous efforts have primarily focused on a few well-studied PDZ domains, including PTP-BL PDZ2, PSD-95 PDZ3, and Par6 PDZ. Taken together, experimental and computational studies have identified regions of these domains that are dynamically coupled to ligand binding. These regions include the αA helix, the αB lower-loop, and the αC helix. In this review, we summarize the specific residues on the αA helix, the αB lower-loop, and the αC helix of PTP-BL PDZ2, PSD-95 PDZ3, and Par6 PDZ that have been identified as participants in dynamic allostery by either experimental or computational approaches. This review can serve as an index for researchers to look back on the previously identified allostery in the PDZ family. Interestingly, our summary of previous work reveals clear consistencies between the domains. While the PDZ family has a low sequence identity, we show that some of the most consistently identified allosteric residues within PTP-BL PDZ2 and PSD-95 PDZ3 domains are evolutionarily conserved. These residues include A46/A347, V61/V362, and L66/L367 on PTP-BL PDZ2 and PSD-95 PDZ3, respectively. Finally, we expose a need for future work to explore dynamic allostery within (1) PDZ domains with multiple binding partners and (2) multidomain constructs containing a PDZ domain.
Collapse
Affiliation(s)
| | - Yi He
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA;
| |
Collapse
|
8
|
Kutlu Y, Ben-Tal N, Haliloglu T. Global Dynamics Renders Protein Sites with High Functional Response. J Phys Chem B 2021; 125:4734-4745. [PMID: 33914546 DOI: 10.1021/acs.jpcb.1c02511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deep mutational scanning enables examination of the effects of many mutations at each amino acid position in a query protein, readily disclosing positions that are particularly sensitive. Mutations in these positions alter protein function the most. Here, on the premise that dynamics underlie function, we explore to what extent the measured sensitivity to mutations could be linked to-perhaps be explained by-the structural dynamics of the protein. We employ a minimalist perturbation-response approach based on the Gaussian Network Model (GNM) on a data set of seven proteins with deep mutational scanning data. The analysis shows that the mutation-sensitive positions are often of capacity to modulate the global dynamics and to intermediate allosteric interactions in the structure. With that, upon strain perturbation, these positions decrease residue fluctuations the most, affecting function via entropy changes. This is particularly relevant for positions that are distant from binding sites or other functional regions of the protein and are sensitive to mutations, nevertheless. Our results indicate that mutations in these positions allosterically manipulate protein function.
Collapse
Affiliation(s)
- Yiǧit Kutlu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek, Istanbul 34342, Turkey
| |
Collapse
|
9
|
Abstract
The dynamic regulation of protein-protein interactions (PPIs) involves phosphorylation of short liner motifs in disordered protein regions modulating binding affinities. The ribosomal-S6-kinase 1 is capable of binding to scaffold proteins containing PDZ domains through a PDZ-binding motif (PBM) located at the disordered C-terminus of the kinase. Phosphorylation of the PBM dramatically changes the interactome of RSK1 with PDZ domains exerting a fine-tuning mechanism to regulate PPIs. Here we present in detail highly effective biophysical (fluorescence polarization, isothermal calorimetry) and cellular (protein-fragment complementation) methods to study the effect of phosphorylation on RSK1-PDZ interactions that can be also applied to investigate phosphoregulation of other PPIs in signaling pathways.
Collapse
Affiliation(s)
- Márton A Simon
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
10
|
The Conformational Plasticity Vista of PDZ Domains. Life (Basel) 2020; 10:life10080123. [PMID: 32726937 PMCID: PMC7460260 DOI: 10.3390/life10080123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 02/01/2023] Open
Abstract
The PDZ domain (PSD95-Discs large-ZO1) is a widespread modular domain present in the living organisms. A prevalent function in the PDZ family is to serve as scaffolding and adaptor proteins connecting multiple partners in signaling pathways. An explanation of the flexible functionality in this domain family, based just on a static perspective of the structure-activity relationship, might fall short. More dynamic and conformational aspects in the protein fold can be the reasons for such functionality. Folding studies indeed showed an ample and malleable folding landscape for PDZ domains where multiple intermediate states were experimentally detected. Allosteric phenomena that resemble energetic coupling between residues have also been found in PDZ domains. Additionally, several PDZ domains are modulated by post-translational modifications, which introduce conformational switches that affect binding. Altogether, the ability to connect diverse partners might arise from the intrinsic plasticity of the PDZ fold.
Collapse
|
11
|
Lake PT, Davidson RB, Klem H, Hocky GM, McCullagh M. Residue-Level Allostery Propagates through the Effective Coarse-Grained Hessian. J Chem Theory Comput 2020; 16:3385-3395. [PMID: 32251581 DOI: 10.1021/acs.jctc.9b01149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The long-ranged coupling between residues that gives rise to allostery in a protein is built up from short-ranged physical interactions. Computational tools used to predict this coupling and its functional relevance have relied on the application of graph theoretical metrics to residue-level correlations measured from all-atom molecular dynamics simulations. The short-ranged interactions that yield these long-ranged residue-level correlations are quantified by the effective coarse-grained Hessian. Here we compute an effective harmonic coarse-grained Hessian from simulations of a benchmark allosteric protein, IGPS, and demonstrate the improved locality of this graph Laplacian over two other connectivity matrices. Additionally, two centrality metrics are developed that indicate the direct and indirect importance of each residue at producing the covariance between the effector binding pocket and the active site. The residue importance indicated by these two metrics is corroborated by previous mutagenesis experiments and leads to unique functional insights; in contrast to previous computational analyses, our results suggest that fP76-hK181 is the most important contact for conveying direct allosteric paths across the HisF-HisH interface. The connectivity around fD98 is found to be important at affecting allostery through indirect means.
Collapse
Affiliation(s)
- Peter T Lake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Russell B Davidson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Heidi Klem
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Martin McCullagh
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
12
|
Lakhani B, Thayer KM, Black E, Beveridge DL. Spectral analysis of molecular dynamics simulations on PDZ: MD sectors. J Biomol Struct Dyn 2020; 38:781-790. [PMID: 31262238 PMCID: PMC7307555 DOI: 10.1080/07391102.2019.1588169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
The idea of protein "sectors" posits that sparse subsets of amino acid residues form cooperative networks that are key elements of protein stability, ligand binding, and allosterism. To date, protein sectors have been calculated by the statistical coupling analysis (SCA) method of Ranganathan and co-workers via the spectral analysis of conservation-weighted evolutionary covariance matrices obtained from a multiple sequence alignments of homologous families of proteins. SCA sectors, a knowledge-based protocol, have been indentified with functional properties and allosterism for a number of systems. In this study, we investigate the utility of the sector idea for the analysis of physics-based molecular dynamics (MD) trajectories of proteins. Our test case for this procedure is PSD95- PDZ3, one of the smallest proteins for which allosterism has been observed. It has served previously as a model system for a number of prediction algorithms, and is well characterized by X-ray crystallography, NMR spectroscopy and site specific mutagenisis. All-atom MD simulations were performed for a total of 500 nanoseconds using AMBER, and MD-calculated covariance matrices for the fluctuations of residue displacements and non-bonded interaction energies were subjected to spectral analysis in a manner analogous to that of SCA. The composition of MD sectors was compared with results from SCA, site specific mutagenesis, and allosterism. The concordance indicates that MD sectors are a viable protocol for analyzing MD trajectories and provide insight into the physical origin of the phenomenon.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharat Lakhani
- Program in Molecular Biophysics, Wesleyan University, Middletown CT 06459, USA
- Department of Molecular Biology & Biochemistry, Wesleyan University, Middletown CT 06459, USA
| | - Kelly M. Thayer
- Program in Molecular Biophysics, Wesleyan University, Middletown CT 06459, USA
- Chemistry Department, Wesleyan University, Middletown CT 06459, USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown CT 06459, USA
| | - Emily Black
- Program in Molecular Biophysics, Wesleyan University, Middletown CT 06459, USA
| | - David L. Beveridge
- Program in Molecular Biophysics, Wesleyan University, Middletown CT 06459, USA
- Chemistry Department, Wesleyan University, Middletown CT 06459, USA
| |
Collapse
|
13
|
Mendes LFS, Batista MRB, Judge PJ, Watts A, Redfield C, Costa-Filho AJ. Conformational flexibility of GRASPs and their constituent PDZ subdomains reveals structural basis of their promiscuous interactome. FEBS J 2020; 287:3255-3272. [PMID: 31920006 DOI: 10.1111/febs.15206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/19/2019] [Accepted: 01/08/2020] [Indexed: 01/04/2023]
Abstract
The Golgi complex is a central component of the secretory pathway, responsible for several critical cellular functions in eukaryotes. The complex is organized by the Golgi matrix that includes the Golgi reassembly and stacking protein (GRASP), which was shown to be involved in cisternae stacking and lateral linkage in metazoan. GRASPs also have critical roles in other processes, with an unusual ability to interact with several different binding partners. The conserved N terminus of the GRASP family includes two PSD-95, DLG, and ZO-1 (PDZ) domains. Previous crystallographic studies of orthologues suggest that PDZ1 and PDZ2 have similar conformations and secondary structure content. However, PDZ1 alone mediates nearly all interactions between GRASPs and their partners. In this work, NMR, synchrotron radiation CD, and molecular dynamics (MD) were used to examine the structure, flexibility, and stability of the two constituent PDZ domains. GRASP PDZs are structured in an unusual β3 α1 β4 β5 α2 β6 β1 β2 secondary structural arrangement and NMR data indicate that the PDZ1 binding pocket is formed by a stable β2 -strand and a more flexible and unstable α2 -helix, suggesting an explanation for the higher PDZ1 promiscuity. The conformational free energy profiles of the two PDZ domains were calculated using MD simulations. The data suggest that, after binding, the protein partner significantly reduces the conformational space that GRASPs can access by stabilizing one particular conformation, in a partner-dependent fashion. The structural flexibility of PDZ1, modulated by PDZ2, and the coupled, coordinated movement between the two PDZs enable GRASPs to interact with multiple partners, allowing them to function as promiscuous, multitasking proteins.
Collapse
Affiliation(s)
- Luis Felipe S Mendes
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry, University of Oxford, UK
| | - Mariana R B Batista
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil
| | - Peter J Judge
- Department of Biochemistry, University of Oxford, UK
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, UK
| | | | - Antonio J Costa-Filho
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
14
|
Hayatshahi HS, Ahuactzin E, Tao P, Wang S, Liu J. Probing Protein Allostery as a Residue-Specific Concept via Residue Response Maps. J Chem Inf Model 2019; 59:4691-4705. [PMID: 31589429 DOI: 10.1021/acs.jcim.9b00447] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allosteric regulation is a well-established phenomenon defined as a distal conformational or dynamical change of the protein upon allosteric effector binding. Here, we developed a novel approach to delineate allosteric effects in proteins. In this approach, we applied robust machine learning methods, including deep neural network and random forest, on extensive molecular dynamics (MD) simulations to distinguish otherwise similar allosteric states of proteins. Using the PDZ3 domain of PDS-95 as a model protein, we demonstrated that the allosteric effects could be represented as residue-specific properties through two-dimensional property-residue maps, which we refer to as "residue response maps". These maps were constructed through two machine learning methods and could accurately describe how different properties of various residues are affected upon allosteric perturbation on protein. Based on the "residue response maps", we propose allostery as a residue-specific concept, suggesting that all residues could be considered as allosteric residues because each residue "senses" the allosteric events through changing its single or multiple attributes in a quantitatively unique way. The "residue response maps" could be used to fingerprint a protein based on the unique patterns of residue responses upon binding events, providing a novel way to systematically describe the protein allosteric effects of each residue upon perturbation.
Collapse
Affiliation(s)
- Hamed S Hayatshahi
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy , University of North Texas Health Science Center , 3500 Camp Bowie Blvd. , Fort Worth , Texas 76107 , United States
| | - Emilio Ahuactzin
- Harmony School of Innovation-Fort Worth , 8100 S. Hulen St. , Fort Worth , Texas 76123 , United States
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Shouyi Wang
- Department of Industrial, Manufacturing, & Systems Engineering, College of Engineering , University of Texas at Arlington , 701 S. Nedderman Dr. , Arlington , Texas 76019 , United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy , University of North Texas Health Science Center , 3500 Camp Bowie Blvd. , Fort Worth , Texas 76107 , United States
| |
Collapse
|
15
|
Duro N, Varma S. Role of Structural Fluctuations in Allosteric Stimulation of Paramyxovirus Hemagglutinin-Neuraminidase. Structure 2019; 27:1601-1611.e2. [DOI: 10.1016/j.str.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022]
|
16
|
Toto A, Troilo F, Visconti L, Malagrinò F, Bignon C, Longhi S, Gianni S. Binding induced folding: Lessons from the kinetics of interaction between N TAIL and XD. Arch Biochem Biophys 2019; 671:255-261. [PMID: 31326517 DOI: 10.1016/j.abb.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022]
Abstract
Intrinsically Disordered Proteins (IDPs) are a class of protein that exert their function despite lacking a well-defined three-dimensional structure, which is sometimes achieved only upon binding to their natural ligands. This feature implies the folding of IDPs to be generally coupled with a binding event, representing an interesting challenge for kinetic studies. In this review, we recapitulate some of the most important findings of IDPs binding-induced folding mechanisms obtained by analyzing their binding kinetics. Furthermore, by focusing on the interaction between the Measles virus NTAIL protein, a prototypical IDP, and its physiological partner, the X domain, we recapitulate the major theoretical and experimental approaches that were used to describe binding induced folding.
Collapse
Affiliation(s)
- Angelo Toto
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Troilo
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Christophe Bignon
- Aix-Marseille University, CNRS, Architecture et Fonction des Macromolećules Biologiques (AFMB), UMR7257, Marseille, France
| | - Sonia Longhi
- Aix-Marseille University, CNRS, Architecture et Fonction des Macromolećules Biologiques (AFMB), UMR7257, Marseille, France.
| | - Stefano Gianni
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
17
|
Dicks M, Kock G, Kohl B, Zhong X, Pütz S, Heumann R, Erdmann KS, Stoll R. The binding affinity of PTPN13's tandem PDZ2/3 domain is allosterically modulated. BMC Mol Cell Biol 2019; 20:23. [PMID: 31286859 PMCID: PMC6615252 DOI: 10.1186/s12860-019-0203-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/02/2019] [Indexed: 11/24/2022] Open
Abstract
Background Protein tyrosine phosphatase PTPN13, also known as PTP-BL in mice, is a large multi-domain non-transmembrane scaffolding protein with a molecular mass of 270 kDa. It is involved in the regulation of several cellular processes such as cytokinesis and actin-cytoskeletal rearrangement. The modular structure of PTPN13 consists of an N-terminal KIND domain, a FERM domain, and five PDZ domains, followed by a C-terminal protein tyrosine phosphatase domain. PDZ domains are among the most abundant protein modules and they play a crucial role in signal transduction of protein networks. Results Here, we have analysed the binding characteristics of the isolated PDZ domains 2 and 3 from PTPN13 and compared them to the tandem domain PDZ2/3, which interacts with 12 C-terminal residues of the tumour suppressor protein of APC, using heteronuclear multidimensional NMR spectroscopy. Furthermore, we could show for the first time that PRK2 is a weak binding partner of PDZ2 and we demonstrate that the presence of PDZ3 alters the binding affinity of PDZ2 for APC, suggesting an allosteric effect and thereby modulating the binding characteristics of PDZ2. A HADDOCK-based molecular model of the PDZ2/3 tandem domain from PTPN13 supports these results. Conclusions Our study of tandem PDZ2/3 in complex with APC suggests that the interaction of PDZ3 with PDZ2 induces an allosteric modulation within PDZ2 emanating from the back of the domain to the ligand binding site. Thus, the modified binding preference of PDZ2 for APC could be explained by an allosteric effect and provides further evidence for the pivotal function of PDZ2 in the PDZ123 domain triplet within PTPN13.
Collapse
Affiliation(s)
- Markus Dicks
- Biomolecular NMR, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, 44780, Bochum, Germany
| | - Gerd Kock
- Biomolecular NMR, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, 44780, Bochum, Germany
| | - Bastian Kohl
- Biomolecular NMR, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, 44780, Bochum, Germany
| | - Xueyin Zhong
- Biomolecular NMR, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, 44780, Bochum, Germany
| | - Stefanie Pütz
- Biomolecular NMR, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, 44780, Bochum, Germany
| | - Rolf Heumann
- Biochemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, 44780, Bochum, Germany
| | - Kai S Erdmann
- Department of Biomedical Science, University of Sheffield, S10 2TN, Sheffield, UK
| | - Raphael Stoll
- Biomolecular NMR, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, 44780, Bochum, Germany.
| |
Collapse
|
18
|
The second PDZ domain of scaffold protein Frmpd2 binds to GluN2A of NMDA receptors. Biochem Biophys Res Commun 2019; 516:63-67. [PMID: 31196628 DOI: 10.1016/j.bbrc.2019.05.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 11/21/2022]
Abstract
The scaffold proteins Frmpd2 is localized at the basolateral membranes of polarized epithelial cells and associated with tight junction formation. In this report, we found that the Frmpd2 is specifically expressed at postsynaptic membrane. By using of co-immunoprecipitation and GST pull-down, Frmpd2 was reported to interact with postsynaptic excitatory N-methyl-d-aspartic acid (NMDA) receptors in vivo and in vitro. In addition, we demonstrated that the second PDZ (PDZ2) domain but not the first or third PDZ domain of Frmpd2 binds to the C-terminus of GluN2A and GluN2B, two subunits of NMDA receptors. By surface plasmon resonance, the affinity of Frmpd2-isolated PDZ2 to GluN2A and GluN2B was identified, which indicates that the interaction of Frmpd2 to GluN2A subunit is more strongly than that to GluN2B subunit. The crystal structure of the PDZ2 domain of the mouse homologue of Frmpd2 was further solved. Some amino acid residues of the PDZ2 structure are supposed to associate with the GluN2A binding. Our study suggests that the scaffold protein Frmpd2 is probably involved in synaptic NMDA receptors-mediated neural excitatory and neurotoxicity in a PDZ2 domain-dependent manner.
Collapse
|
19
|
Thirumalai D, Hyeon C, Zhuravlev PI, Lorimer GH. Symmetry, Rigidity, and Allosteric Signaling: From Monomeric Proteins to Molecular Machines. Chem Rev 2019; 119:6788-6821. [DOI: 10.1021/acs.chemrev.8b00760] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Thirumalai
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Pavel I. Zhuravlev
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
20
|
Liu X, Fuentes EJ. Emerging Themes in PDZ Domain Signaling: Structure, Function, and Inhibition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 343:129-218. [PMID: 30712672 PMCID: PMC7185565 DOI: 10.1016/bs.ircmb.2018.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Post-synaptic density-95, disks-large and zonula occludens-1 (PDZ) domains are small globular protein-protein interaction domains widely conserved from yeast to humans. They are composed of ∼90 amino acids and form a classical two α-helical/six β-strand structure. The prototypical ligand is the C-terminus of partner proteins; however, they also bind internal peptide sequences. Recent findings indicate that PDZ domains also bind phosphatidylinositides and cholesterol. Through their ligand interactions, PDZ domain proteins are critical for cellular trafficking and the surface retention of various ion channels. In addition, PDZ proteins are essential for neuronal signaling, memory, and learning. PDZ proteins also contribute to cytoskeletal dynamics by mediating interactions critical for maintaining cell-cell junctions, cell polarity, and cell migration. Given their important biological roles, it is not surprising that their dysfunction can lead to multiple disease states. As such, PDZ domain-containing proteins have emerged as potential targets for the development of small molecular inhibitors as therapeutic agents. Recent data suggest that the critical binding function of PDZ domains in cell signaling is more than just glue, and their binding function can be regulated by phosphorylation or allosterically by other binding partners. These studies also provide a wealth of structural and biophysical data that are beginning to reveal the physical features that endow this small modular domain with a central role in cell signaling.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Ernesto J. Fuentes
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- Corresponding author: E-mail:
| |
Collapse
|
21
|
Kock G, Dicks M, Yip KT, Kohl B, Pütz S, Heumann R, Erdmann KS, Stoll R. Molecular Basis of Class III Ligand Recognition by PDZ3 in Murine Protein Tyrosine Phosphatase PTPN13. J Mol Biol 2018; 430:4275-4292. [PMID: 30189200 DOI: 10.1016/j.jmb.2018.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/31/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022]
Abstract
Protein tyrosine phosphatase PTPN13, also known as PTP-BL in mice, represents a large multi-domain non-transmembrane scaffolding protein that contains five consecutive PDZ domains. Here, we report the solution structures of the extended murine PTPN13 PDZ3 domain in its apo form and in complex with its physiological ligand, the carboxy-terminus of protein kinase C-related kinase-2 (PRK2), determined by multidimensional NMR spectroscopy. Both in its ligand-free state and when complexed to PRK2, PDZ3 of PTPN13 adopts the classical compact, globular D/E fold. PDZ3 of PTPN13 binds five carboxy-terminal amino acids of PRK2 via a groove located between the EB-strand and the DB-helix. The PRK2 peptide resides in the canonical PDZ3 binding cleft in an elongated manner and the amino acid side chains in position P0 and P-2, cysteine and aspartate, of the ligand face the groove between EB-strand and DB-helix, whereas the PRK2 side chains of tryptophan and alanine located in position P-1 and P-3 point away from the binding cleft. These structures are rare examples of selective class III ligand recognition by a PDZ domain and now provide a basis for the detailed structural investigation of the promiscuous interaction between the PDZ domains of PTPN13 and their ligands. They will also lead to a better understanding of the proposed scaffolding function of these domains in multi-protein complexes assembled by PTPN13 and could ultimately contribute to low molecular weight antagonists that might even act on the PRK2 signaling pathway to modulate rearrangements of the actin cytoskeleton.
Collapse
Affiliation(s)
- Gerd Kock
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Markus Dicks
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - King Tuo Yip
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Bastian Kohl
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Stefanie Pütz
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Rolf Heumann
- Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Kai S Erdmann
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Raphael Stoll
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany.
| |
Collapse
|
22
|
Botlani M, Siddiqui A, Varma S. Machine learning approaches to evaluate correlation patterns in allosteric signaling: A case study of the PDZ2 domain. J Chem Phys 2018; 148:241726. [DOI: 10.1063/1.5022469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Mohsen Botlani
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA
| | - Ahnaf Siddiqui
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA
| | - Sameer Varma
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
23
|
Stock G, Hamm P. A non-equilibrium approach to allosteric communication. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170187. [PMID: 29735740 PMCID: PMC5941181 DOI: 10.1098/rstb.2017.0187] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
While the theory of protein folding is well developed, including concepts such as rugged energy landscape, folding funnel, etc., the same degree of understanding has not been reached for the description of the dynamics of allosteric transitions in proteins. This is not only due to the small size of the structural change upon ligand binding to an allosteric site, but also due to challenges in designing experiments that directly observe such an allosteric transition. On the basis of recent pump-probe-type experiments (Buchli et al. 2013 Proc. Natl Acad. Sci. USA110, 11 725-11 730. (doi:10.1073/pnas.1306323110)) and non-equilibrium molecular dynamics simulations (Buchenberg et al. 2017 Proc. Natl Acad. Sci. USA114, E6804-E6811. (doi:10.1073/pnas.1707694114)) studying an photoswitchable PDZ2 domain as model for an allosteric transition, we outline in this perspective how such a description of allosteric communication might look. That is, calculating the dynamical content of both experiment and simulation (which agree remarkably well with each other), we find that allosteric communication shares some properties with downhill folding, except that it is an 'order-order' transition. Discussing the multiscale and hierarchical features of the dynamics, the validity of linear response theory as well as the meaning of 'allosteric pathways', we conclude that non-equilibrium experiments and simulations are a promising way to study dynamical aspects of allostery.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, Freiburg, Germany
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Sharma T, Siddiqi MI. In silico identification and design of potent peptide inhibitors against PDZ-3 domain of Postsynaptic Density Protein (PSD-95). J Biomol Struct Dyn 2018; 37:1241-1253. [PMID: 29557723 DOI: 10.1080/07391102.2018.1454851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Unique intrinsic properties of peptides like low toxicity, high biological activity, and specificity make them attractive therapeutic agents. PDZ-binding peptide inhibitors have been demonstrated for curing of Alzheimer, Parkinson, Dementia, and other central nervous system ailments. In this article, we report the successful use of an integrated computational protocol to analyze the structural basis of how peptides bind to the shallow groove of the third PDZ domain (PDZ-3) from the postsynaptic density (PSD-95) protein. This protocol employs careful and precise computational techniques for design of new strategy for predicting novel and potent peptides against PDZ protein. We attempted to generate a pharmacophore model using crystal structure of peptide inhibitor bound to the PDZ-3. A highly specific and sensitive generated pharmacophore model was used for screening virtual database generated using different combination of amino acid substitutions as well as decoy peptide database for its sensitivity and specificity. Identified hit peptides were further analyzed by docking studies, and their stability analyzed using solvated molecular dynamics. Quantum Mechanics/Molecular Mechanics (QM/MM) interaction energy and GMX-PBSA scoring schemes were used for ranking of stable peptides. Computational approach applied here generated encouraging results for identifying peptides against PDZ interaction model. The workflow can be further exercised as a virtual screening technique for reducing the search space for candidate target peptides against PDZ domains.
Collapse
Affiliation(s)
- Tanuj Sharma
- a Laboratory of Computational Biology and Bioinformatics, Division of Molecular and Structural Biology , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | - Mohammad Imran Siddiqi
- a Laboratory of Computational Biology and Bioinformatics, Division of Molecular and Structural Biology , CSIR-Central Drug Research Institute , Lucknow 226031 , India.,b Academy of Scientific and Innovative Research (AcSIR) , CSIR-Central Drug Research Institute , Campus, Lucknow 226031 , India
| |
Collapse
|
25
|
Structure function relations in PDZ-domain-containing proteins: Implications for protein networks in cellular signalling. J Biosci 2017. [DOI: 10.1007/s12038-017-9727-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Stucki-Buchli B, Johnson PJM, Bozovic O, Zanobini C, Koziol KL, Hamm P, Gulzar A, Wolf S, Buchenberg S, Stock G. 2D-IR Spectroscopy of an AHA Labeled Photoswitchable PDZ2 Domain. J Phys Chem A 2017; 121:9435-9445. [DOI: 10.1021/acs.jpca.7b09675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brigitte Stucki-Buchli
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Philip J. M. Johnson
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Olga Bozovic
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Claudio Zanobini
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Klemens L. Koziol
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Peter Hamm
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Adnan Gulzar
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Steffen Wolf
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Sebastian Buchenberg
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Gerhard Stock
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| |
Collapse
|
27
|
Conti Nibali V, Morra G, Havenith M, Colombo G. Role of Terahertz (THz) Fluctuations in the Allosteric Properties of the PDZ Domains. J Phys Chem B 2017; 121:10200-10208. [PMID: 28991478 PMCID: PMC6421520 DOI: 10.1021/acs.jpcb.7b06590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
With
the aim of investigating the relationship between the fast
fluctuations of proteins and their allosteric behavior, we perform
molecular dynamics simulations of two model PDZ domains with differential
allosteric responses. We focus on protein dynamics in the THz regime
(0.1–3 THz) as opposed to lower frequencies. By characterizing
the dynamic modulation of the protein backbone induced by ligand binding
in terms of single residue and pairwise distance fluctuations, we
identify a response nucleus modulated by the ligand that is visible
only at THz frequencies. The residues of this nucleus undergo a significant
stiffening and an increase in mutual coordination upon binding. Additionally,
we find that the dynamic modulation is significantly more intense
for the side chains, where it is also redistributed to distal regions
not immediately in contact with the ligand allowing us to better define
the response nucleus at THz frequencies. The overlap between the known
allosterically responding residues of the investigated PDZ domains
and the modulated region highlighted here suggests that fast THz dynamics
could play a role in allosteric mechanisms.
Collapse
Affiliation(s)
| | - Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare, CNR , Via Mario Bianco 9, 20131 Milano, Italy.,Department of Physiology and Biophysics, Weill Cornell Medical College , New York, New York 10065, United States
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr Universität , 44801 Bochum, Germany
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR , Via Mario Bianco 9, 20131 Milano, Italy.,Dipartimento di Chimica, Università di Pavia , V.le Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
28
|
Toto A, Bonetti D, De Simone A, Gianni S. Understanding the mechanism of binding between Gab2 and the C terminal SH3 domain from Grb2. Oncotarget 2017; 8:82344-82351. [PMID: 29137268 PMCID: PMC5669894 DOI: 10.18632/oncotarget.19323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 01/18/2023] Open
Abstract
Gab2 is a large disordered protein that regulates several cellular signalling pathways and is overexpressed in different forms of cancer. Because of its disordered nature, a detailed characterization of the mechanisms of recognition between Gab2 and its physiological partners is particularly difficult. Here we provide a detailed kinetic characterization of the binding reaction between Gab2 and the C-terminal SH3 domain of the growth factor receptor-bound protein 2 (Grb2). We demonstrate that Gab2 folds upon binding following an induced fit type mechanism, whereby recognition is characterized by the formation of an intermediate, in which Gab2 is primarily disordered. In this scenario, folding of Gab2 into the bound conformation occurs only after binding. However, an alanine scanning of the proline residues of Gab2 suggests that the intermediate contains some degree of native-like structure, which might play a role for the recognition event to take place. The results, which represent a fundamental step forward in the understanding of this functional protein-protein interaction, are discussed on the light of previous structural works on these proteins.
Collapse
Affiliation(s)
- Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Daniela Bonetti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| |
Collapse
|
29
|
Bonetti D, Troilo F, Toto A, Brunori M, Longhi S, Gianni S. Analyzing the Folding and Binding Steps of an Intrinsically Disordered Protein by Protein Engineering. Biochemistry 2017; 56:3780-3786. [DOI: 10.1021/acs.biochem.7b00350] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniela Bonetti
- Istituto
Pasteur Italia-Fondazione Cenci Bolognetti, Istituto di Biologia e
Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Troilo
- Istituto
Pasteur Italia-Fondazione Cenci Bolognetti, Istituto di Biologia e
Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
- Aix-Marseille Univ, CNRS, Architecture et Fonction des
Macromolécules Biologiques (AFMB), UMR 7257, 13288 Marseille, France
| | - Angelo Toto
- Aix-Marseille Univ, CNRS, Architecture et Fonction des
Macromolécules Biologiques (AFMB), UMR 7257, 13288 Marseille, France
| | - Maurizio Brunori
- Istituto
Pasteur Italia-Fondazione Cenci Bolognetti, Istituto di Biologia e
Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
| | - Sonia Longhi
- Aix-Marseille Univ, CNRS, Architecture et Fonction des
Macromolécules Biologiques (AFMB), UMR 7257, 13288 Marseille, France
| | - Stefano Gianni
- Istituto
Pasteur Italia-Fondazione Cenci Bolognetti, Istituto di Biologia e
Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
| |
Collapse
|
30
|
Thayer KM, Lakhani B, Beveridge DL. Molecular Dynamics-Markov State Model of Protein Ligand Binding and Allostery in CRIB-PDZ: Conformational Selection and Induced Fit. J Phys Chem B 2017; 121:5509-5514. [PMID: 28489401 DOI: 10.1021/acs.jpcb.7b02083] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conformational selection and induced fit are well-known contributors to ligand binding and allosteric effects in proteins. Molecular dynamics (MD) simulations now enable the theoretical study of protein-ligand binding in terms of ensembles of interconverting microstates and the population shifts characteristic of "dynamical allostery." Here we investigate protein-ligand binding and allostery based on a Markov state model (MSM) with states and rates obtained from all-atom MD simulations. As an exemplary case, we consider the single domain protein par-6 PDZ with and without ligand and allosteric effector. This is one of the smallest proteins in which allostery has been experimentally observed. In spite of the increased complexity intrinsic to a statistical ensemble perspective, we find that conformational selection and induced fit mechanisms can be readily identified in the analysis. In the nonallosteric pathway, MD-MSM shows that PDZ binds ligand via conformational selection. However, the allosteric pathway requires an activation step that involves a conformational change induced by the allosteric effector Cdc42. Once in the allosterically activated state, we find that ligand binding can proceed by conformational selection. Our MD-MSM model predicts that allostery in this and possibly other systems involves both induced fit and conformational selection, not just one or the other.
Collapse
Affiliation(s)
- Kelly M Thayer
- Departments of Chemistry, ‡Molecular Biology & Biochemistry, §Molecular Biophysics Program, and ∥Department of Computer Science, Wesleyan University , Middletown, Connecticut 06459, United States of America
| | - Bharat Lakhani
- Departments of Chemistry, ‡Molecular Biology & Biochemistry, §Molecular Biophysics Program, and ∥Department of Computer Science, Wesleyan University , Middletown, Connecticut 06459, United States of America
| | - David L Beveridge
- Departments of Chemistry, ‡Molecular Biology & Biochemistry, §Molecular Biophysics Program, and ∥Department of Computer Science, Wesleyan University , Middletown, Connecticut 06459, United States of America
| |
Collapse
|
31
|
Toto A, Mattei A, Jemth P, Gianni S. Understanding the role of phosphorylation in the binding mechanism of a PDZ domain. Protein Eng Des Sel 2016; 30:1-5. [PMID: 27760803 DOI: 10.1093/protein/gzw055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 11/14/2022] Open
Abstract
The PDZ domain is one of the most common protein-protein interaction domains in mammalian species. While several studies have demonstrated the importance of phosphorylation in interactions involving PDZ domains, there is a paucity of detailed mechanistic data addressing how the PDZ interaction is affected by phosphorylation. Here, we address this question by equilibrium and kinetic binding experiments using PDZ2 from protein tyrosine phosphatase L1 and its interaction with a peptide from the natural ligand RIL. The results show that phosphorylation of a serine residue in the RIL peptide has dual and opposing effects: it increases both the association and dissociation rate constants, which leads to an overall weakening of binding. Furthermore, we performed binding experiments with a RIL peptide in which the serine was replaced by a glutamate, a commonly used method to mimic phosphorylation in proteins. Strikingly, both the affinity and the ionic strength dependence of the affinity differed markedly for the phosphoserine and glutamate peptides. These results show that, in this particular case, glutamate is a poor mimic of serine phosphorylation.
Collapse
Affiliation(s)
- Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Fondazione Cenci Bolognetti, Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Annalisa Mattei
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Fondazione Cenci Bolognetti, Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Fondazione Cenci Bolognetti, Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
32
|
Diaz-Franulic I, Poblete H, Miño-Galaz G, González C, Latorre R. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels. Annu Rev Biophys 2016; 45:371-98. [DOI: 10.1146/annurev-biophys-062215-011034] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ignacio Diaz-Franulic
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago 8370146, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
- Fraunhofer Chile Research, Las Condes 7550296, Santiago, Chile
| | - Horacio Poblete
- Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5802
| | - Germán Miño-Galaz
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago 8370146, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
| |
Collapse
|
33
|
Zafra Ruano A, Cilia E, Couceiro JR, Ruiz Sanz J, Schymkowitz J, Rousseau F, Luque I, Lenaerts T. From Binding-Induced Dynamic Effects in SH3 Structures to Evolutionary Conserved Sectors. PLoS Comput Biol 2016; 12:e1004938. [PMID: 27213566 PMCID: PMC4877006 DOI: 10.1371/journal.pcbi.1004938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 04/24/2016] [Indexed: 12/04/2022] Open
Abstract
Src Homology 3 domains are ubiquitous small interaction modules known to act as docking sites and regulatory elements in a wide range of proteins. Prior experimental NMR work on the SH3 domain of Src showed that ligand binding induces long-range dynamic changes consistent with an induced fit mechanism. The identification of the residues that participate in this mechanism produces a chart that allows for the exploration of the regulatory role of such domains in the activity of the encompassing protein. Here we show that a computational approach focusing on the changes in side chain dynamics through ligand binding identifies equivalent long-range effects in the Src SH3 domain. Mutation of a subset of the predicted residues elicits long-range effects on the binding energetics, emphasizing the relevance of these positions in the definition of intramolecular cooperative networks of signal transduction in this domain. We find further support for this mechanism through the analysis of seven other publically available SH3 domain structures of which the sequences represent diverse SH3 classes. By comparing the eight predictions, we find that, in addition to a dynamic pathway that is relatively conserved throughout all SH3 domains, there are dynamic aspects specific to each domain and homologous subgroups. Our work shows for the first time from a structural perspective, which transduction mechanisms are common between a subset of closely related and distal SH3 domains, while at the same time highlighting the differences in signal transduction that make each family member unique. These results resolve the missing link between structural predictions of dynamic changes and the domain sectors recently identified for SH3 domains through sequence analysis. Small protein domains as Src Homology 3 often act as docking sites and serve as regulatory elements. To understand their role in the regulation of a protein’s activity, one needs to understand how their backbone and sidechain dynamics are affected when binding to peptides. We have therefore computationally analyzed eight different SH3 domain structures, predicting dynamical effects induced by binding through our MCIT approach that has been shown to correlate well with experimental data. We show first that binding the Src SH3 domain triggers a particular cascade of dynamic effects, which are compatible with an induced fit mechanism reported before. We then combined the predictions for the eight SH3 domains into different consensus models, with the aim of analyzing, for the first time from a structural perspective, commonalities and differences in the transduction mechanisms among these SH3 domains. These consensus results are, on one hand, in agreement with the domain sectors recently identified for the entire family of SH3 domains. On the other hand, they reveal also that differences exist between the different subgroups that were studied here, requiring extensive experimental investigations of the importance of these differences for the proteins wherein these SH3 domains can be found.
Collapse
Affiliation(s)
- Ana Zafra Ruano
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Campus Fuentenueva s/n, Granada, Spain
| | - Elisa Cilia
- MLG, Départment d’Informatique, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), ULB-VUB, La Plaine Campus, Brussels, Belgium
| | - José R. Couceiro
- VIB SWITCH Laboratory, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, Leuven, Belgium
| | - Javier Ruiz Sanz
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Campus Fuentenueva s/n, Granada, Spain
| | - Joost Schymkowitz
- VIB SWITCH Laboratory, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, Leuven, Belgium
| | - Frederic Rousseau
- VIB SWITCH Laboratory, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, Leuven, Belgium
| | - Irene Luque
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Campus Fuentenueva s/n, Granada, Spain
| | - Tom Lenaerts
- MLG, Départment d’Informatique, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), ULB-VUB, La Plaine Campus, Brussels, Belgium
- AI-lab, Vakgroep Computerwetenschappen, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
34
|
Giansanti F, Sabatini D, Pennacchio MR, Scotti S, Angelucci F, Dhez AC, Antonosante A, Cimini A, Giordano A, Ippoliti R. PDZ Domain in the Engineering and Production of a Saporin Chimeric Toxin as a Tool for targeting Cancer Cells. J Cell Biochem 2016; 116:1256-66. [PMID: 25581839 DOI: 10.1002/jcb.25080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/06/2015] [Indexed: 11/07/2022]
Abstract
In this paper we have studied a PDZ protein domain as a possible tool for cellular targeting of the ribosome inactivating protein Saporin, exploiting the ability of PDZ domains to recognize and bind short peptide sequences located at the C-terminus of a cognate protein. We have focused our attention on the PDZ domain from hCASK (Human calcium/calmodulin-dependent serine protein kinase) that binds extracellular CD98 in epithelial cells, being this antigen recognized as a marker for several human tumors and particularly considered a negative prognostic marker for human glioblastoma. We produced recombinant fusions of one or two hCASK-PDZ domains with the ribosome inactivating protein Saporin and assayed them on two human glioblastoma cell lines (GL15 and U87). These constructs proved to be toxic, with increasing activity as a function of the number of PDZ domains, and induce cell death by apoptotic mechanisms in a dose-dependent and/or time dependent manner.
Collapse
Affiliation(s)
- Francesco Giansanti
- Department of Health, Life and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Domenica Sabatini
- Department of Health, Life and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Maria Rosaria Pennacchio
- Department of Health, Life and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Stefano Scotti
- Department of Health, Life and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Francesco Angelucci
- Department of Health, Life and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Anne-Chloè Dhez
- Department of Health, Life and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Andrea Antonosante
- Department of Health, Life and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Health, Life and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| | - Antonio Giordano
- Department of Medical, Surgery & Neurosciences, University of Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| | - Rodolfo Ippoliti
- Department of Health, Life and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| |
Collapse
|
35
|
Morra G, Genoni A, Colombo G. Mechanisms of Differential Allosteric Modulation in Homologous Proteins: Insights from the Analysis of Internal Dynamics and Energetics of PDZ Domains. J Chem Theory Comput 2015; 10:5677-89. [PMID: 26583250 DOI: 10.1021/ct500326g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allostery is a general phenomenon in proteins whereby a perturbation at one site reverberates into a functional change at another one, through modulation of its conformational dynamics. Herein, we address the problem of how the molecular signal encoded by a ligand is differentially transmitted through the structures of two homologous PDZ proteins: PDZ2, which responds to binding with structural and dynamical changes in regions distal from the ligand site, and PDZ3, which is characterized by less-intense dynamical variations. We use novel methods of analysis of MD simulations in the unbound and bound states to investigate the determinants of the differential allosteric behavior of the two proteins. The analysis of the correlations between the redistribution of stabilization energy and local fluctuation patterns highlights the nucleus of residues responsible for the stabilization of the 3D fold, the stability core, as the substructure that defines the difference in the allosteric response: in PDZ2, it undergoes a consistent dynamic and energetic reorganization, whereas in PDZ3, it remains largely unperturbed. Specifically, we observe for PDZ2 a significant anticorrelation between the motions of distal loops and residues of the stability core and differences in the correlation patterns between the bound and unbound states. Such variation is not observed in PDZ3, indicating that its energetics and internal dynamics are less affected by the presence/absence of the ligand. Finally, we propose a model with a direct link between the modulation of the structural, energetic and dynamic properties of a protein, and its allosteric response to a perturbation.
Collapse
Affiliation(s)
- Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche Via Mario Bianco 9, 20131 Milano, Italy
| | - Alessandro Genoni
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche Via Mario Bianco 9, 20131 Milano, Italy.,CNRS, Laboratoire SRSMC, UMR 7565, Vandoeuvre-lès-Nancy F-54506, France.,Université de Lorraine, Laboratoire SRSMC, UMR 7565, Vandoeuvre-lès-Nancy F-54506, France
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche Via Mario Bianco 9, 20131 Milano, Italy
| |
Collapse
|
36
|
Grosso M, Kalstein A, Parisi G, Roitberg AE, Fernandez-Alberti S. On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein. J Chem Phys 2015; 142:245101. [DOI: 10.1063/1.4922925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Marcos Grosso
- Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | - Adrian Kalstein
- Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | - Gustavo Parisi
- Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | - Adrian E. Roitberg
- Departments of Physics and Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
37
|
Miño-Galaz GA. Allosteric communication pathways and thermal rectification in PDZ-2 protein: a computational study. J Phys Chem B 2015; 119:6179-89. [PMID: 25933631 DOI: 10.1021/acs.jpcb.5b02228] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Allosteric communication in proteins is a fundamental and yet unresolved problem of structural biochemistry. Previous findings, from computational biology ( Ota, N.; Agard, D. A. J. Mol. Biol. 2005 , 351 , 345 - 354 ), have proposed that heat diffuses in a protein through cognate protein allosteric pathways. This work studied heat diffusion in the well-known PDZ-2 protein, and confirmed that this protein has two cognate allosteric pathways and that heat flows preferentially through these. Also, a new property was also observed for protein structures: heat diffuses asymmetrically through the structures. The underling structure of this asymmetrical heat flow was a normal length hydrogen bond (∼2.85 Å) that acted as a thermal rectifier. In contrast, thermal rectification was compromised in short hydrogen bonds (∼2.60 Å), giving rise to symmetrical thermal diffusion. Asymmetrical heat diffusion was due, on a higher scale, to the local, structural organization of residues that, in turn, was also mediated by hydrogen bonds. This asymmetrical/symmetrical energy flow may be relevant for allosteric signal communication directionality in proteins and for the control of heat flow in materials science.
Collapse
Affiliation(s)
- Germán A Miño-Galaz
- †Group of Nanomaterials, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.,‡Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,§Universidad Andres Bello Center for Bioinformatics and Integrative Biology (CBIB), Facultad en Ciencias Biologicas, Santiago, Chile
| |
Collapse
|
38
|
Blöchliger N, Xu M, Caflisch A. Peptide Binding to a PDZ Domain by Electrostatic Steering via Nonnative Salt Bridges. Biophys J 2015; 108:2362-70. [PMID: 25954893 PMCID: PMC4423040 DOI: 10.1016/j.bpj.2015.03.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 12/15/2022] Open
Abstract
We have captured the binding of a peptide to a PDZ domain by unbiased molecular dynamics simulations. Analysis of the trajectories reveals on-pathway encounter complex formation, which is driven by electrostatic interactions between negatively charged carboxylate groups in the peptide and positively charged side chains surrounding the binding site. In contrast, the final stereospecific complex, which matches the crystal structure, features completely different interactions, namely the burial of the hydrophobic side chain of the peptide C-terminal residue and backbone hydrogen bonds. The simulations show that nonnative salt bridges stabilize kinetically the encounter complex during binding. Unbinding follows the inverse sequence of events with the same nonnative salt bridges in the encounter complex. Thus, in contrast to protein folding, which is driven by native interactions, the binding of charged peptides can be steered by nonnative interactions, which might be a general mechanism, e.g., in the recognition of histone tails by bromodomains.
Collapse
Affiliation(s)
| | - Min Xu
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
39
|
PTEN–PDZ domain interactions: Binding of PTEN to PDZ domains of PTPN13. Methods 2015; 77-78:147-56. [DOI: 10.1016/j.ymeth.2014.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 02/07/2023] Open
|
40
|
Di Silvio E, Toto A, Bonetti D, Morrone A, Gianni S. Understanding the effect of alternative splicing in the folding and function of the second PDZ from protein tyrosine phosphatase-BL. Sci Rep 2015; 5:9299. [PMID: 25788329 PMCID: PMC4365404 DOI: 10.1038/srep09299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/26/2015] [Indexed: 11/10/2022] Open
Abstract
PDZ domains are the most prominent biological structural domains involved in protein-protein interactions in the human cell. The second PDZ domain of the protein tyrosine phosphatase BL (PDZ2) interacts and binds the C-termini of the tumour suppressor protein APC and of the LIM domain-containing protein RIL. One isoform of PDZ2 (PDZ2as) involves an alternative spliced form that exhibits an insertion of 5 residues in a loop. PDZ2as abrogates binding to its partners, even if the insertion is directly located in its binding pocket. Here, we investigate the folding and function of PDZ2as, in comparison to the previously characterized PDZ2 domain. Data reveal that, whilst the thermodynamic stability of PDZ2as appears as nearly identical to that of PDZ2, the insertion of 5 amino acids induces formation of some weak transient non-native interactions in the folding transition state, as mirrored by a concomitant increase of both the folding and unfolding rate constants. From a functional perspective, we show that the decrease in affinity is caused by a pronounced decrease of the association rate constants (by nearly ten fold), with no effect on the microscopic dissociation rate constants. The results are briefly discussed in the context of previous work on PDZ domains.
Collapse
Affiliation(s)
- Eva Di Silvio
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Daniela Bonetti
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Angela Morrone
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Stefano Gianni
- 1] Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy [2] Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
41
|
Miño G, Barriga R, Gutierrez G. Hydrogen Bonds and Heat Diffusion in α-Helices: A Computational Study. J Phys Chem B 2014; 118:10025-34. [DOI: 10.1021/jp503420e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- German Miño
- Group
of NanoMaterials, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
- Centro
Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Facultad
de Ciencias Biologicas, Centro de Bioinformatica y Biologia Integrativa, Universidad Andres Bello, Av.Republica 239, Santiago, Chile
| | - Raul Barriga
- Group
of NanoMaterials, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Gonzalo Gutierrez
- Group
of NanoMaterials, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| |
Collapse
|
42
|
Di Silvio E, Bonetti D, Toto A, Morrone A, Gianni S. The mechanism of binding of the second PDZ domain from the Protein Tyrosine Phosphatase-BL to the Adenomatous Polyposis Coli tumor suppressor. Protein Eng Des Sel 2014; 27:249-53. [DOI: 10.1093/protein/gzu022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Gianni S, Dogan J, Jemth P. Distinguishing induced fit from conformational selection. Biophys Chem 2014; 189:33-9. [DOI: 10.1016/j.bpc.2014.03.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 11/16/2022]
|
44
|
Investigations of heme distortion, low-frequency vibrational excitations, and electron transfer in cytochrome c. Proc Natl Acad Sci U S A 2014; 111:6570-5. [PMID: 24753591 DOI: 10.1073/pnas.1322274111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome (cyt) c is an important electron transfer protein. The ruffling deformation of its heme cofactor has been suggested to relate to its electron transfer rate. However, there is no direct experimental evidence demonstrating this correlation. In this work, we studied Pseudomonas aeruginosa cytochrome c551 and its F7A mutant. These two proteins, although similar in their X-ray crystal structure, display a significant difference in their heme out-of-plane deformations, mainly along the ruffling coordinate. Resonance Raman and vibrational coherence measurements also indicate significant differences in ruffling-sensitive modes, particularly the low-frequency γa mode found between ∼50-60 cm(-1). This supports previous assignments of γa as having a large ruffling content. Measurement of the photoreduction kinetics finds an order of magnitude decrease of the photoreduction cross-section in the F7A mutant, which has nearly twice the ruffling deformation as the WT. Additional measurements on cytochrome c demonstrate that heme ruffling is correlated exponentially with the electron transfer rates and suggest that ruffling could play an important role in redox control. A major relaxation of heme ruffling in cytochrome c, upon binding to the mitochondrial membrane, is discussed in this context.
Collapse
|
45
|
Post-translational modifications modulate ligand recognition by the third PDZ domain of the MAGUK protein PSD-95. PLoS One 2014; 9:e90030. [PMID: 24587199 PMCID: PMC3935999 DOI: 10.1371/journal.pone.0090030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/31/2014] [Indexed: 12/20/2022] Open
Abstract
The relative promiscuity of hub proteins such as postsynaptic density protein-95 (PSD-95) can be achieved by alternative splicing, allosteric regulation, and post-translational modifications, the latter of which is the most efficient method of accelerating cellular responses to environmental changes in vivo. Here, a mutational approach was used to determine the impact of phosphorylation and succinimidation post-translational modifications on the binding affinity of the postsynaptic density protein-95/discs large/zonula occludens-1 (PDZ3) domain of PSD-95. Molecular dynamics simulations revealed that the binding affinity of this domain is influenced by an interplay between salt-bridges linking the α3 helix, the β2–β3 loop and the positively charged Lys residues in its high-affinity hexapeptide ligand KKETAV. The α3 helix is an extra structural element that is not present in other PDZ domains, which links PDZ3 with the following SH3 domain in the PSD-95 protein. This regulatory mechanism was confirmed experimentally via thermodynamic and NMR chemical shift perturbation analyses, discarding intra-domain long-range effects. Taken together, the results presented here reveal the molecular basis of the regulatory role of the α3 extra-element and the effects of post-translational modifications of PDZ3 on its binding affinity, both energetically and dynamically.
Collapse
|
46
|
Dogan J, Gianni S, Jemth P. The binding mechanisms of intrinsically disordered proteins. Phys Chem Chem Phys 2013; 16:6323-31. [PMID: 24317797 DOI: 10.1039/c3cp54226b] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) of proteins are very common and instrumental for cellular signaling. Recently, a number of studies have investigated the kinetic binding mechanisms of IDPs and IDRs. These results allow us to draw conclusions about the energy landscape for the coupled binding and folding of disordered proteins. The association rate constants of IDPs cover a wide range (10(5)-10(9) M(-1) s(-1)) and are largely governed by long-range charge-charge interactions, similarly to interactions between well-folded proteins. Off-rate constants also differ significantly among IDPs (with half-lives of up to several minutes) but are usually around 0.1-1000 s(-1), allowing for rapid dissociation of complexes. Likewise, affinities span from pM to μM suggesting that the low-affinity high-specificity concept for IDPs is not straightforward. Overall, it appears that binding precedes global folding although secondary structure elements such as helices may form before the protein-protein interaction. Short IDPs bind in apparent two-state reactions whereas larger IDPs often display complex multi-step binding reactions. While the two extreme cases of two-step binding (conformational selection and induced fit) or their combination into a square mechanism is an attractive model in theory, it is too simplistic in practice. Experiment and simulation suggest a more complex energy landscape in which IDPs bind targets through a combination of conformational selection before binding (e.g., secondary structure formation) and induced fit after binding (global folding and formation of short-range intermolecular interactions).
Collapse
Affiliation(s)
- Jakob Dogan
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden.
| | | | | |
Collapse
|
47
|
Abstract
By covalently linking an azobenzene photoswitch across the binding groove of a PDZ domain, a conformational transition, similar to the one occurring upon ligand binding to the unmodified domain, can be initiated on a picosecond timescale by a laser pulse. The protein structures have been characterized in the two photoswitch states through NMR spectroscopy and the transition between them through ultrafast IR spectroscopy and molecular dynamics simulations. The binding groove opens on a 100-ns timescale in a highly nonexponential manner, and the molecular dynamics simulations suggest that the process is governed by the rearrangement of the water network on the protein surface. We propose this rearrangement of the water network to be another possible mechanism of allostery.
Collapse
|
48
|
Eildal JNN, Hultqvist G, Balle T, Stuhr-Hansen N, Padrah S, Gianni S, Strømgaard K, Jemth P. Probing the role of backbone hydrogen bonds in protein-peptide interactions by amide-to-ester mutations. J Am Chem Soc 2013; 135:12998-3007. [PMID: 23705582 DOI: 10.1021/ja402875h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
One of the most frequent protein-protein interaction modules in mammalian cells is the postsynaptic density 95/discs large/zonula occludens 1 (PDZ) domain, involved in scaffolding and signaling and emerging as an important drug target for several diseases. Like many other protein-protein interactions, those of the PDZ domain family involve formation of intermolecular hydrogen bonds: C-termini or internal linear motifs of proteins bind as β-strands to form an extended antiparallel β-sheet with the PDZ domain. Whereas extensive work has focused on the importance of the amino acid side chains of the protein ligand, the role of the backbone hydrogen bonds in the binding reaction is not known. Using amide-to-ester substitutions to perturb the backbone hydrogen-bonding pattern, we have systematically probed putative backbone hydrogen bonds between four different PDZ domains and peptides corresponding to natural protein ligands. Amide-to-ester mutations of the three C-terminal amides of the peptide ligand severely affected the affinity with the PDZ domain, demonstrating that hydrogen bonds contribute significantly to ligand binding (apparent changes in binding energy, ΔΔG = 1.3 to >3.8 kcal mol(-1)). This decrease in affinity was mainly due to an increase in the dissociation rate constant, but a significant decrease in the association rate constant was found for some amide-to-ester mutations suggesting that native hydrogen bonds have begun to form in the transition state of the binding reaction. This study provides a general framework for studying the role of backbone hydrogen bonds in protein-peptide interactions and for the first time specifically addresses these for PDZ domain-peptide interactions.
Collapse
Affiliation(s)
- Jonas N N Eildal
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kaya C, Armutlulu A, Ekesan S, Haliloglu T. MCPath: Monte Carlo path generation approach to predict likely allosteric pathways and functional residues. Nucleic Acids Res 2013; 41:W249-55. [PMID: 23742907 PMCID: PMC3692092 DOI: 10.1093/nar/gkt284] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Allosteric mechanism of proteins is essential in biomolecular signaling. An important aspect underlying this mechanism is the communication pathways connecting functional residues. Here, a Monte Carlo (MC) path generation approach is proposed and implemented to define likely allosteric pathways through generating an ensemble of maximum probability paths. The protein structure is considered as a network of amino acid residues, and inter-residue interactions are described by an atomistic potential function. PDZ domain structures are presented as case studies. The analysis for bovine rhodopsin and three myosin structures are also provided as supplementary case studies. The suggested pathways and the residues constituting the pathways are maximally probable and mostly agree with the previous studies. Overall, it is demonstrated that the communication pathways could be multiple and intrinsically disposed, and the MC path generation approach provides an effective tool for the prediction of key residues that mediate the allosteric communication in an ensemble of pathways and functionally plausible residues. The MCPath server is available at http://safir.prc.boun.edu.tr/clbet_server.
Collapse
Affiliation(s)
- Cihan Kaya
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | | | | | | |
Collapse
|
50
|
Raimondi F, Felline A, Seeber M, Mariani S, Fanelli F. A Mixed Protein Structure Network and Elastic Network Model Approach to Predict the Structural Communication in Biomolecular Systems: The PDZ2 Domain from Tyrosine Phosphatase 1E As a Case Study. J Chem Theory Comput 2013; 9:2504-18. [PMID: 26583738 DOI: 10.1021/ct400096f] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graph theory is being increasingly used to study the structural communication in biomolecular systems. This requires incorporating information on the system's dynamics, which is time-consuming and not suitable for high-throughput investigations. We propose a mixed Protein Structure Network (PSN) and Elastic Network Model (ENM)-based strategy, i.e., PSN-ENM, for fast investigation of allosterism in biological systems. PSN analysis and ENM-Normal Mode Analysis (ENM-NMA) are implemented in the structural analysis software Wordom, freely available at http://wordom.sourceforge.net/ . The method performs a systematic search of the shortest communication pathways that traverse a protein structure. A number of strategies to compare the structure networks of a protein in different functional states and to get a global picture of communication pathways are presented as well. The approach was validated on the PDZ2 domain from tyrosine phosphatase 1E (PTP1E) in its free (APO) and peptide-bound states. PDZ domains are, indeed, the systems whose structural communication and allosteric features are best characterized both in vitro and in silico. The agreement between predictions by the PSN-ENM method and in vitro evidence is remarkable and comparable to or higher than that reached by more time-consuming computational approaches tested on the same biological system. Finally, the PSN-ENM method was able to reproduce the salient communication features of unbound and bound PTP1E inferred from molecular dynamics simulations. High speed makes this method suitable for high throughput investigation of the communication pathways in large sets of biomolecular systems in different functional states.
Collapse
Affiliation(s)
- Francesco Raimondi
- Department of Life Sciences, via Campi 183, 41125, Modena, Italy.,Dulbecco Telethon Institute (DTI), via Campi 183, 41125, Modena, Italy
| | - Angelo Felline
- Department of Life Sciences, via Campi 183, 41125, Modena, Italy.,Dulbecco Telethon Institute (DTI), via Campi 183, 41125, Modena, Italy
| | - Michele Seeber
- Department of Life Sciences, via Campi 183, 41125, Modena, Italy.,Dulbecco Telethon Institute (DTI), via Campi 183, 41125, Modena, Italy
| | - Simona Mariani
- Department of Life Sciences, via Campi 183, 41125, Modena, Italy.,Dulbecco Telethon Institute (DTI), via Campi 183, 41125, Modena, Italy
| | - Francesca Fanelli
- Department of Life Sciences, via Campi 183, 41125, Modena, Italy.,Dulbecco Telethon Institute (DTI), via Campi 183, 41125, Modena, Italy
| |
Collapse
|