1
|
Shan Z, Ghadirian N, Lyumkis D, Horton NC. Pretransition state and apo structures of the filament-forming enzyme SgrAI elucidate mechanisms of activation and substrate specificity. J Biol Chem 2022; 298:101760. [PMID: 35202658 PMCID: PMC8960973 DOI: 10.1016/j.jbc.2022.101760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/01/2022] Open
Abstract
Enzyme filamentation is a widespread phenomenon that mediates enzyme regulation and function. For the filament-forming sequence-specific DNA endonuclease SgrAI, the process of filamentation both accelerates its DNA cleavage activity and expands its DNA sequence specificity, thus allowing for many additional DNA sequences to be rapidly cleaved. Both outcomes-the acceleration of DNA cleavage and the expansion of sequence specificity-are proposed to regulate critical processes in bacterial innate immunity. However, the mechanistic bases underlying these events remain unclear. Herein, we describe two new structures of the SgrAI enzyme that shed light on its catalytic function. First, we present the cryo-EM structure of filamentous SgrAI bound to intact primary site DNA and Ca2+ resolved to ∼2.5 Å within the catalytic center, which represents the trapped enzyme-DNA complex prior to the DNA cleavage reaction. This structure reveals important conformational changes that contribute to the catalytic mechanism and the binding of a second divalent cation in the enzyme active site, which is expected to contribute to increased DNA cleavage activity of SgrAI in the filamentous state. Second, we present an X-ray crystal structure of DNA-free (apo) SgrAI resolved to 2.0 Å resolution, which reveals a disordered loop involved in DNA recognition. Collectively, these multiple new observations clarify the mechanism of expansion of DNA sequence specificity of SgrAI, including the indirect readout of sequence-dependent DNA structure, changes in protein-DNA interactions, and the disorder-to-order transition of a crucial DNA recognition element.
Collapse
Affiliation(s)
- Zelin Shan
- Laboratory of Genetics, The Salk Institute of Biological Sciences, La Jolla, California, USA
| | - Niloofar Ghadirian
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute of Biological Sciences, La Jolla, California, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
2
|
Miyazono KI, Wang D, Ito T, Tanokura M. Distortion of double-stranded DNA structure by the binding of the restriction DNA glycosylase R.PabI. Nucleic Acids Res 2020; 48:5106-5118. [PMID: 32232412 PMCID: PMC7229829 DOI: 10.1093/nar/gkaa184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
R.PabI is a restriction DNA glycosylase that recognizes the sequence 5′-GTAC-3′ and hydrolyses the N-glycosidic bond of adenine in the recognition sequence. R.PabI drastically bends and unwinds the recognition sequence of double-stranded DNA (dsDNA) and flips the adenine and guanine bases in the recognition sequence into the catalytic and recognition sites on the protein surface. In this study, we determined the crystal structure of the R.PabI-dsDNA complex in which the dsDNA is drastically bent by the binding of R.PabI but the base pairs are not unwound. This structure is predicted to be important for the indirect readout of the recognition sequence by R.PabI. In the complex structure, wedge loops of the R.PabI dimer are inserted into the minor groove of dsDNA to stabilize the deformed dsDNA structure. A base stacking is distorted between the two wedge-inserted regions. R.PabI is predicted to utilize the distorted base stacking for the detection of the recognition sequence.
Collapse
Affiliation(s)
- Ken-Ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo 113-8657, Japan
| | - Delong Wang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoko Ito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Bower EKM, Cooper LP, Roberts GA, White JH, Luyten Y, Morgan RD, Dryden DTF. A model for the evolution of prokaryotic DNA restriction-modification systems based upon the structural malleability of Type I restriction-modification enzymes. Nucleic Acids Res 2019; 46:9067-9080. [PMID: 30165537 PMCID: PMC6158711 DOI: 10.1093/nar/gky760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
Restriction Modification (RM) systems prevent the invasion of foreign genetic material into bacterial cells by restriction and protect the host's genetic material by methylation. They are therefore important in maintaining the integrity of the host genome. RM systems are currently classified into four types (I to IV) on the basis of differences in composition, target recognition, cofactors and the manner in which they cleave DNA. Comparing the structures of the different types, similarities can be observed suggesting an evolutionary link between these different types. This work describes the ‘deconstruction’ of a large Type I RM enzyme into forms structurally similar to smaller Type II RM enzymes in an effort to elucidate the pathway taken by Nature to form these different RM enzymes. Based upon the ability to engineer new enzymes from the Type I ‘scaffold’, an evolutionary pathway and the evolutionary pressures required to move along the pathway from Type I RM systems to Type II RM systems are proposed. Experiments to test the evolutionary model are discussed.
Collapse
Affiliation(s)
- Edward K M Bower
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - Laurie P Cooper
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - Gareth A Roberts
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - John H White
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - Yvette Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | - Richard D Morgan
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | - David T F Dryden
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
4
|
McMurrough TA, Brown CM, Zhang K, Hausner G, Junop MS, Gloor GB, Edgell DR. Active site residue identity regulates cleavage preference of LAGLIDADG homing endonucleases. Nucleic Acids Res 2019; 46:11990-12007. [PMID: 30357419 PMCID: PMC6294521 DOI: 10.1093/nar/gky976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/05/2018] [Indexed: 12/30/2022] Open
Abstract
LAGLIDADG homing endonucleases (meganucleases) are site-specific mobile endonucleases that can be adapted for genome-editing applications. However, one problem when reprogramming meganucleases on non-native substrates is indirect readout of DNA shape and flexibility at the central 4 bases where cleavage occurs. To understand how the meganuclease active site regulates DNA cleavage, we used functional selections and deep sequencing to profile the fitness landscape of 1600 I-LtrI and I-OnuI active site variants individually challenged with 67 substrates with central 4 base substitutions. The wild-type active site was not optimal for cleavage on many substrates, including the native I-LtrI and I-OnuI targets. Novel combinations of active site residues not observed in known meganucleases supported activity on substrates poorly cleaved by the wild-type enzymes. Strikingly, combinations of E or D substitutions in the two metal-binding residues greatly influenced cleavage activity, and E184D variants had a broadened cleavage profile. Analyses of I-LtrI E184D and the wild-type proteins co-crystallized with the non-cognate AACC central 4 sequence revealed structural differences that correlated with kinetic constants for cleavage of individual DNA strands. Optimizing meganuclease active sites to enhance cleavage of non-native central 4 target sites is a straightforward addition to engineering workflows that will expand genome-editing applications.
Collapse
Affiliation(s)
- Thomas A McMurrough
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Christopher M Brown
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Kun Zhang
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Murray S Junop
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Gregory B Gloor
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| |
Collapse
|
5
|
Zrimec J, Lapanje A. DNA structure at the plasmid origin-of-transfer indicates its potential transfer range. Sci Rep 2018; 8:1820. [PMID: 29379098 PMCID: PMC5789077 DOI: 10.1038/s41598-018-20157-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/10/2018] [Indexed: 11/29/2022] Open
Abstract
Horizontal gene transfer via plasmid conjugation enables antimicrobial resistance (AMR) to spread among bacteria and is a major health concern. The range of potential transfer hosts of a particular conjugative plasmid is characterised by its mobility (MOB) group, which is currently determined based on the amino acid sequence of the plasmid-encoded relaxase. To facilitate prediction of plasmid MOB groups, we have developed a bioinformatic procedure based on analysis of the origin-of-transfer (oriT), a merely 230 bp long non-coding plasmid DNA region that is the enzymatic substrate for the relaxase. By computationally interpreting conformational and physicochemical properties of the oriT region, which facilitate relaxase-oriT recognition and initiation of nicking, MOB groups can be resolved with over 99% accuracy. We have shown that oriT structural properties are highly conserved and can be used to discriminate among MOB groups more efficiently than the oriT nucleotide sequence. The procedure for prediction of MOB groups and potential transfer range of plasmids was implemented using published data and is available at http://dnatools.eu/MOB/plasmid.html.
Collapse
Affiliation(s)
- Jan Zrimec
- Institute of Metagenomics and Microbial Technologies, 1000, Ljubljana, Slovenia. .,Faculty of Health Sciences, University of Primorska, 6320, Izola, Slovenia. .,Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden.
| | - Aleš Lapanje
- Institute of Metagenomics and Microbial Technologies, 1000, Ljubljana, Slovenia. .,Department of Nanotechnology, Saratov State University, 410012, Saratov, Russian Federation. .,Department of Environmental Sciences, Institute Jožef Štefan, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Ravichandran M, Jurkowska RZ, Jurkowski TP. Target specificity of mammalian DNA methylation and demethylation machinery. Org Biomol Chem 2018; 16:1419-1435. [DOI: 10.1039/c7ob02574b] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review here the molecular mechanisms employed by DNMTs and TET enzymes that are responsible for shaping the DNA methylation pattern of a mammalian cell.
Collapse
Affiliation(s)
| | | | - T. P. Jurkowski
- Universität Stuttgart
- Abteilung Biochemie
- Institute für Biochemie und Technische Biochemie
- Stuttgart D-70569
- Germany
| |
Collapse
|
7
|
Sanchez JL, Romero Z, Quinones A, Torgeson KR, Horton NC. DNA Binding and Cleavage by the Human Parvovirus B19 NS1 Nuclease Domain. Biochemistry 2016; 55:6577-6593. [PMID: 27809499 DOI: 10.1021/acs.biochem.6b00534] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Infection with human parvovirus B19 (B19V) has been associated with a myriad of illnesses, including erythema infectiosum (Fifth disease), hydrops fetalis, arthropathy, hepatitis, and cardiomyopathy, and also possibly the triggering of any number of different autoimmune diseases. B19V NS1 is a multidomain protein that plays a critical role in viral replication, with predicted nuclease, helicase, and gene transactivation activities. Herein, we investigate the biochemical activities of the nuclease domain (residues 2-176) of B19V NS1 (NS1-nuc) in sequence-specific DNA binding of the viral origin of replication sequences, as well as those of promoter sequences, including the viral p6 and the human p21, TNFα, and IL-6 promoters previously identified in NS1-dependent transcriptional transactivation. NS1-nuc was found to bind with high cooperativity and with multiple (five to seven) copies to the NS1 binding elements (NSBE) found in the viral origin of replication and the overlapping viral p6 promoter DNA sequence. NS1-nuc was also found to bind cooperatively with at least three copies to the GC-rich Sp1 binding sites of the human p21 gene promoter. Only weak or nonspecific binding of NS1-nuc to the segments of the TNFα and IL-6 promoters was found. Cleavage of DNA by NS1-nuc occurred at the expected viral sequence (the terminal resolution site), but only in single-stranded DNA, and NS1-nuc was found to covalently attach to the 5' end of the DNA at the cleavage site. Off-target cleavage by NS1-nuc was also identified.
Collapse
Affiliation(s)
- Jonathan L Sanchez
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Zachary Romero
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States.,Undergraduate Research Opportunities Consortium-Minorities Health Disparity Program (UROC-MHD), University of Arizona Graduate College, University of Arizona , Tucson, Arizona 85721, United States
| | - Angelica Quinones
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States.,Undergraduate Research Opportunities Consortium-Minorities Health Disparity Program (UROC-MHD), University of Arizona Graduate College, University of Arizona , Tucson, Arizona 85721, United States.,BUILDing SCHOLARS Program, University of Texas at El Paso , El Paso, Texas 79968, United States
| | - Kristiane R Torgeson
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Nancy C Horton
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
8
|
Zrimec J, Lapanje A. Fast Prediction of DNA Melting Bubbles Using DNA Thermodynamic Stability. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:1137-1145. [PMID: 26451825 DOI: 10.1109/tcbb.2015.2396057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
DNA melting bubbles are the basis of many DNA-protein interactions, such as those in regulatory DNA regions driving gene expression, DNA replication and bacterial horizontal gene transfer. Bubble formation is affected by DNA duplex stability and thermally induced duplex destabilization (TIDD). Although prediction of duplex stability with the nearest neighbor (NN) method is much faster than prediction of TIDD with the Peyrard-Bishop-Dauxois (PBD) model, PBD predicted TIDD defines regulatory DNA regions with higher accuracy and detail. Here, we considered that PBD predicted TIDD is inherently related to the intrinsic duplex stabilities of destabilization regions. We show by regression modeling that NN duplex stabilities can be used to predict TIDD almost as accurately as is predicted with PBD. Predicted TIDD is in fact ascribed to non-linear transformation of NN duplex stabilities in destabilization regions as well as effects of neighboring regions relative to destabilization size. Since the prediction time of our models is over six orders of magnitude shorter than that of PBD, the models present an accessible tool for researchers. TIDD can be predicted on our webserver at http://tidd.immt.eu.
Collapse
|
9
|
Zhitnikova MY, Boryskina OP, Shestopalova AV. Sequence-specific transitions of the torsion angle gamma change the polar-hydrophobic profile of the DNA grooves: implication for indirect protein-DNA recognition. J Biomol Struct Dyn 2013; 32:1670-85. [PMID: 23998351 DOI: 10.1080/07391102.2013.830579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Variations of the shape and polarity of the DNA grooves caused by changes of the DNA conformation play an important role in the DNA readout. Despite the fact that non-canonical trans and gauche- conformations of the DNA backbone angle γ (O5'-C5'-C4'-C3') are frequently found in the DNA crystal structures, their possible role in the DNA recognition has not been studied systematically. In order to fill in this gap, we analyze the available high-resolution crystal structures of the naked and complexed DNA. The analysis shows that the non-canonical γ angle conformations are present both in the naked and bound DNA, more often in the bound vs. naked DNA, and in the nucleotides with the A-like vs. the B-like sugar pucker. The alternative angle γ torsions are more frequently observed in the purines with the A-like sugar pucker and in the pyrimidines with the B-like sugar conformation. The minor groove of the nucleotides with non-canonical γ angle conformation is more polar, while the major groove is more hydrophobic than in the nucleotides with the classical γ torsions due to variations in exposure of the polar and hydrophobic groups of the DNA backbone. The propensity of the nucleotides with different γ angle conformations to participate in the protein-nucleic acid contacts in the minor and major grooves is connected with their sugar pucker and sequence-specific. Our findings imply that the angle γ transitions contribute to the process of the protein-DNA recognition due to modification of the polar/hydrophobic profile of the DNA grooves.
Collapse
Affiliation(s)
- Mariia Yu Zhitnikova
- a O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine , Acad. Proskura Street, 12, Kharkiv , 61085 , Ukraine
| | | | | |
Collapse
|
10
|
Grant BN, Dourlain EM, Araneda JN, Throneberry ML, McFail-Isom LA. DNA phosphate crowding correlates with protein cationic side chain density and helical curvature in protein/DNA crystal structures. Nucleic Acids Res 2013; 41:7547-55. [PMID: 23748560 PMCID: PMC3753625 DOI: 10.1093/nar/gkt492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sequence-specific binding of proteins to their DNA targets involves a complex spectrum of processes that often induce DNA conformational variation in the bound complex. The forces imposed by protein binding that cause the helical deformations are intimately interrelated and difficult to parse or rank in importance. To investigate the role of electrostatics in helical deformation, we quantified the relationship between protein cationic residue density (Cpc) and DNA phosphate crowding (Cpp). The correlation between Cpc and Cpp was then calculated for a subset of 58 high resolution protein-DNA crystal structures. Those structures containing strong Cpc/Cpp correlation (>±0.25) were likely to contain DNA helical curvature. Further, the correlation factor sign predicted the direction of helical curvature with positive (16 structures) and negative (seven structures) correlation containing concave (DNA curved toward protein) and convex (DNA curved away from protein) curvature, respectively. Protein-DNA complexes without significant Cpc/Cpp (36 structures) correlation (-0.25<0<0.25) tended to contain DNA without significant curvature. Interestingly, concave and convex complexes also include more arginine and lysine phosphate contacts, respectively, whereas linear complexes included essentially equivalent numbers of Lys/Arg phosphate contacts. Together, these findings suggest an important role for electrostatic interactions in protein-DNA complexes involving helical curvature.
Collapse
Affiliation(s)
- Bryce N Grant
- Department of Chemistry, University of Central Arkansas, Conway, AR 72035, USA
| | | | | | | | | |
Collapse
|
11
|
Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res 2012; 40:7016-45. [PMID: 22638584 PMCID: PMC3424549 DOI: 10.1093/nar/gks382] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Proteins belonging to PD-(D/E)XK phosphodiesterases constitute a functionally diverse superfamily with representatives involved in replication, restriction, DNA repair and tRNA-intron splicing. Their malfunction in humans triggers severe diseases, such as Fanconi anemia and Xeroderma pigmentosum. To date there have been several attempts to identify and classify new PD-(D/E)KK phosphodiesterases using remote homology detection methods. Such efforts are complicated, because the superfamily exhibits extreme sequence and structural divergence. Using advanced homology detection methods supported with superfamily-wide domain architecture and horizontal gene transfer analyses, we provide a comprehensive reclassification of proteins containing a PD-(D/E)XK domain. The PD-(D/E)XK phosphodiesterases span over 21,900 proteins, which can be classified into 121 groups of various families. Eleven of them, including DUF4420, DUF3883, DUF4263, COG5482, COG1395, Tsp45I, HaeII, Eco47II, ScaI, HpaII and Replic_Relax, are newly assigned to the PD-(D/E)XK superfamily. Some groups of PD-(D/E)XK proteins are present in all domains of life, whereas others occur within small numbers of organisms. We observed multiple horizontal gene transfers even between human pathogenic bacteria or from Prokaryota to Eukaryota. Uncommon domain arrangements greatly elaborate the PD-(D/E)XK world. These include domain architectures suggesting regulatory roles in Eukaryotes, like stress sensing and cell-cycle regulation. Our results may inspire further experimental studies aimed at identification of exact biological functions, specific substrates and molecular mechanisms of reactions performed by these highly diverse proteins.
Collapse
Affiliation(s)
- Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CENT, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | | | | | | |
Collapse
|
12
|
Tafvizi A, Mirny LA, van Oijen AM. Dancing on DNA: kinetic aspects of search processes on DNA. Chemphyschem 2011; 12:1481-9. [PMID: 21560221 DOI: 10.1002/cphc.201100112] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Indexed: 11/12/2022]
Abstract
Recognition and binding of specific sites on DNA by proteins is central for many cellular functions such as transcription, replication, and recombination. In the search for its target site, the DNA-associated protein is facing both thermodynamic and kinetic difficulties. The thermodynamic challenge lies in recognizing and tightly binding a cognate (specific) site among the billions of other (non-specific) sequences on the DNA. The kinetic difficulty lies in finding a cognate site in mere seconds amidst the crowded cellular environment that is filled with other DNA sequences and proteins. Herein, we discuss the history of the DNA search problem, the theoretical background and the various experimental methods used to study the kinetics of proteins searching for target sites on DNA.
Collapse
Affiliation(s)
- Anahita Tafvizi
- Dept. of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
13
|
Boryskina OP, Tkachenko MY, Shestopalova AV. Protein-DNA complexes: specificity and DNA readout mechanisms. ACTA ACUST UNITED AC 2011. [DOI: 10.7124/bc.00007c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- O. P. Boryskina
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine
| | - M. Yu. Tkachenko
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine
| | - A. V. Shestopalova
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine
| |
Collapse
|
14
|
Brown BL, Wood TK, Peti W, Page R. Structure of the Escherichia coli antitoxin MqsA (YgiT/b3021) bound to its gene promoter reveals extensive domain rearrangements and the specificity of transcriptional regulation. J Biol Chem 2010; 286:2285-96. [PMID: 21068382 DOI: 10.1074/jbc.m110.172643] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial cultures, especially biofilms, produce a small number of persister cells, a genetically identical subpopulation of wild type cells that are metabolically dormant, exhibit multidrug tolerance, and are highly enriched in bacterial toxins. The gene most highly up-regulated in Escherichia coli persisters is mqsR, a ribonuclease toxin that, along with mqsA, forms a novel toxin·antitoxin (TA) system. Like all known TA systems, both the MqsR·MqsA complex and MqsA alone regulate their own transcription. Despite the importance of TA systems in persistence and biofilms, very little is known about how TA modules, and antitoxins in particular, bind and recognize DNA at a molecular level. Here, we report the crystal structure of MqsA bound to a 26-bp fragment from the mqsRA promoter. We show that MqsA binds DNA predominantly via its C-terminal helix-turn-helix domain, with direct binding of recognition helix residues Asn(97) and Arg(101) to the DNA major groove. Unexpectedly, the structure also revealed that the MqsA N-terminal domain interacts with the DNA phosphate backbone. This results in a more than 105° rotation of the N-terminal domains between the free and complexed states, an unprecedented rearrangement for an antitoxin. The structure also shows that MqsA bends the DNA by more than 55° in order to achieve symmetrical binding. Finally, using a combination of biochemical and NMR studies, we show that the DNA sequence specificity of MqsA is mediated by direct readout.
Collapse
Affiliation(s)
- Breann L Brown
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
15
|
Firczuk M, Wojciechowski M, Czapinska H, Bochtler M. DNA intercalation without flipping in the specific ThaI-DNA complex. Nucleic Acids Res 2010; 39:744-54. [PMID: 20861000 PMCID: PMC3025569 DOI: 10.1093/nar/gkq834] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The PD-(D/E)XK type II restriction endonuclease ThaI cuts the target sequence CG/CG with blunt ends. Here, we report the 1.3 Å resolution structure of the enzyme in complex with substrate DNA and a sodium or calcium ion taking the place of a catalytic magnesium ion. The structure identifies Glu54, Asp82 and Lys93 as the active site residues. This agrees with earlier bioinformatic predictions and implies that the PD and (D/E)XK motifs in the sequence are incidental. DNA recognition is very unusual: the two Met47 residues of the ThaI dimer intercalate symmetrically into the CG steps of the target sequence. They approach the DNA from the minor groove side and penetrate the base stack entirely. The DNA accommodates the intercalating residues without nucleotide flipping by a doubling of the CG step rise to twice its usual value, which is accompanied by drastic unwinding. Displacement of the Met47 side chains from the base pair midlines toward the downstream CG steps leads to large and compensating tilts of the first and second CG steps. DNA intercalation by ThaI is unlike intercalation by HincII, HinP1I or proteins that bend or repair DNA.
Collapse
|
16
|
Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Origins of specificity in protein-DNA recognition. Annu Rev Biochem 2010; 79:233-69. [PMID: 20334529 DOI: 10.1146/annurev-biochem-060408-091030] [Citation(s) in RCA: 672] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Specific interactions between proteins and DNA are fundamental to many biological processes. In this review, we provide a revised view of protein-DNA interactions that emphasizes the importance of the three-dimensional structures of both macromolecules. We divide protein-DNA interactions into two categories: those when the protein recognizes the unique chemical signatures of the DNA bases (base readout) and those when the protein recognizes a sequence-dependent DNA shape (shape readout). We further divide base readout into those interactions that occur in the major groove from those that occur in the minor groove. Analogously, the readout of the DNA shape is subdivided into global shape recognition (for example, when the DNA helix exhibits an overall bend) and local shape recognition (for example, when a base pair step is kinked or a region of the minor groove is narrow). Based on the >1500 structures of protein-DNA complexes now available in the Protein Data Bank, we argue that individual DNA-binding proteins combine multiple readout mechanisms to achieve DNA-binding specificity. Specificity that distinguishes between families frequently involves base readout in the major groove, whereas shape readout is often exploited for higher resolution specificity, to distinguish between members within the same DNA-binding protein family.
Collapse
Affiliation(s)
- Remo Rohs
- Howard Hughes Medical Institute, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
17
|
Quantitative fine-tuning of photoreceptor cis-regulatory elements through affinity modulation of transcription factor binding sites. Gene Ther 2010; 17:1390-9. [PMID: 20463752 DOI: 10.1038/gt.2010.77] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Given the remarkable recent progress in gene therapy-based treatments for retinal disease, there is an urgent need for the development of new approaches to quantitative design and analysis of photoreceptor-specific promoters. In this study, we determined the relative binding affinity of all single-nucleotide variants of the consensus binding site of the mammalian photoreceptor transcription factor, Crx. We then showed that it is possible to use these data to accurately predict the relative binding affinity of Crx for all possible 8 bp sequences. By rationally adjusting the binding affinity of three Crx sites, we were able to fine-tune the expression of the rod-specific Rhodopsin promoter over a 225-fold range in living retinas. In addition, we showed that it is possible to fine-tune the activity of the rod-specific Gnat1 promoter over ∼275-fold range by modulating the affinity of a single Crx-binding site. We found that the action of individual binding sites depends on the precise promoter context of the site and that increasing binding affinity does not always equate with increased promoter output. Despite these caveats, this tuning approach permits quantitative engineering of photoreceptor-specific cis-regulatory elements, which can be used as drivers in gene therapy vectors for the treatment of blindness.
Collapse
|
18
|
Contreras-Moreira B, Sancho J, Angarica VE. Comparison of DNA binding across protein superfamilies. Proteins 2010; 78:52-62. [PMID: 19731374 DOI: 10.1002/prot.22525] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Specific protein-DNA interactions are central to a wide group of processes in the cell and have been studied both experimentally and computationally over the years. Despite the increasing collection of protein-DNA complexes, so far only a few studies have aimed at dissecting the structural characteristics of DNA binding among evolutionarily related proteins. Some questions that remain to be answered are: (a) what is the contribution of the different readout mechanisms in members of a given structural superfamily, (b) what is the degree of interface similarity among superfamily members and how this affects binding specificity, (c) how DNA-binding protein superfamilies distribute across taxa, and (d) is there a general or family-specific code for the recognition of DNA. We have recently developed a straightforward method to dissect the interface of protein-DNA complexes at the atomic level and here we apply it to study 175 proteins belonging to nine representative superfamilies. Our results indicate that evolutionarily unrelated DNA-binding domains broadly conserve specificity statistics, such as the ratio of indirect/direct readout and the frequency of atomic interactions, therefore supporting the existence of a set of recognition rules. It is also found that interface conservation follows trends that are superfamily-specific. Finally, this article identifies tendencies in the phylogenetic distribution of transcription factors, which might be related to the evolution of regulatory networks, and postulates that the modular nature of zinc finger proteins can explain its role in large genomes, as it allows for larger binding interfaces in a single protein molecule.
Collapse
Affiliation(s)
- Bruno Contreras-Moreira
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Av. Montañana 1.005, Zaragoza, Spain.
| | | | | |
Collapse
|
19
|
Ho PS. Detailed mechanism for transposition by TnpA transposase involves DNA shape rather than direct protein-DNA recognition to generate an active nucleoprotein complex. F1000 BIOLOGY REPORTS 2009; 1:37. [PMID: 20948648 PMCID: PMC2924686 DOI: 10.3410/b1-37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of single-crystal structures determined by Barabas and colleagues provides a detailed mechanism for how the TnpA transposase from Helicobacter pylori recognizes, cleaves, and integrates the IS200/IS605 class of transposable elements. An interesting aspect of the mechanism is that the transposase recognizes the transposon through the unique fold-back structure adopted by the sequences of the DNA components, rather than through direct protein-DNA interactions. This is an example of indirect readout that is reminiscent of how four-stranded junctions are recognized by recombination proteins, but is also analogous to ribonucleoproteins, in that the DNA facilitates formation of an active nucleic acid-protein complex.
Collapse
Affiliation(s)
- P Shing Ho
- Department of Biochemistry and Molecular Biology 1870 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1870 USA.
| |
Collapse
|