1
|
He Q, Wang F, Yao NY, O'Donnell ME, Li H. Structures of the human leading strand Polε-PCNA holoenzyme. Nat Commun 2024; 15:7847. [PMID: 39245668 PMCID: PMC11381554 DOI: 10.1038/s41467-024-52257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024] Open
Abstract
In eukaryotes, the leading strand DNA is synthesized by Polε and the lagging strand by Polδ. These replicative polymerases have higher processivity when paired with the DNA clamp PCNA. While the structure of the yeast Polε catalytic domain has been determined, how Polε interacts with PCNA is unknown in any eukaryote, human or yeast. Here we report two cryo-EM structures of human Polε-PCNA-DNA complex, one in an incoming nucleotide bound state and the other in a nucleotide exchange state. The structures reveal an unexpected three-point interface between the Polε catalytic domain and PCNA, with the conserved PIP (PCNA interacting peptide)-motif, the unique P-domain, and the thumb domain each interacting with a different protomer of the PCNA trimer. We propose that the multi-point interface prevents other PIP-containing factors from recruiting to PCNA while PCNA functions with Polε. Comparison of the two states reveals that the finger domain pivots around the [4Fe-4S] cluster-containing tip of the P-domain to regulate nucleotide exchange and incoming nucleotide binding.
Collapse
Affiliation(s)
- Qing He
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Feng Wang
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Nina Y Yao
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
2
|
Özmaldar A, Balta B. Formation and Effects of Upstream DNA-RNA Base Pairing in Telomerase. Chembiochem 2023; 24:e202300501. [PMID: 37743538 DOI: 10.1002/cbic.202300501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Telomere elongation by telomerase consists of two types of translocation: duplex translocation during each repeat synthesis and template translocation at the end of repeat synthesis. Our replica exchange molecular dynamics simulations show that in addition to the Watson-Crick interactions in the active site, templating RNA can also form base pairs with the upstream regions of DNA, mostly with the second upstream DNA repeat with respect to the 3'-end. At the end of the repeat synthesis, dG10-P442 and dG11-N446 hydrogen bonds form. Then, active-site base pairs dissociate one by one, and the RNA bases reanneal with the complementary base on the upstream DNA repeat. For each dissociating base pair a new one forms, thus conserving the number of base pairs during template translocation.
Collapse
Affiliation(s)
- Aydın Özmaldar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Bülent Balta
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| |
Collapse
|
3
|
Shi Y, Wang J, Batista VS. Translocation pause of remdesivir-containing primer/template RNA duplex within SARS-CoV-2’s RNA polymerase complexes. Front Mol Biosci 2022; 9:999291. [PMID: 36387272 PMCID: PMC9640752 DOI: 10.3389/fmolb.2022.999291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/07/2022] [Indexed: 01/18/2023] Open
Abstract
The mechanism of remdesivir incorporation into the RNA primer by the RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains to be fully established at the molecular level. Here, we compare molecular dynamics (MD) simulations after incorporation of either remdesivir monophosphate (RMP) or adenosine monophosphate (AMP). We find that the Mg2+-pyrophosphate (PPi) binds more tightly to the polymerase when the added RMP is at the third primer position than in the AMP added complex. The increased affinity of Mg2+-PPi to the RMP-added primer/template (P/T) RNA duplex complex introduces a new hydrogen bond of a substituted cyano group in RMP with the K593 sidechain. The new interactions disrupt a switching mechanism of a hydrogen bond network that is essential for translocation of the P/T duplex product and for opening of a vacant NTP-binding site necessary for next primer extension. Furthermore, steric interactions between the sidechain of S861 and the 1′-cyano group of RMP at position i+3 hinders translocation of RMP to the i + 4 position, where i labels the insertion site. These findings are particularly valuable to guide the design of more effective inhibitors of SARS-CoV-2 RNA polymerase.
Collapse
Affiliation(s)
- Yuanjun Shi
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- *Correspondence: Jimin Wang, ; Victor S. Batista,
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, CT, United States
- *Correspondence: Jimin Wang, ; Victor S. Batista,
| |
Collapse
|
4
|
Kumari A, Yadav A, Lahiri I. Transient State Kinetics of Plasmodium falciparum Apicoplast DNA Polymerase Suggests the Involvement of Accessory Factors for Efficient and Accurate DNA Synthesis. Biochemistry 2022; 61:2319-2333. [PMID: 36251801 DOI: 10.1021/acs.biochem.2c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium, the causative agent of malaria, belongs to the phylum Apicomplexa. Most apicomplexans, including Plasmodium, contain an essential nonphotosynthetic plastid called the apicoplast that harbors its own genome that is replicated by a dedicated organellar replisome. This replisome employs a single DNA polymerase (apPol), which is expected to perform both replicative and translesion synthesis. Unlike other replicative polymerases, no processivity factor for apPol has been identified. While preliminary structural and biochemical studies have provided an overall characterization of apPol, the kinetic mechanism of apPol's activity remains unknown. We have used transient state methods to determine the kinetics of replicative and translesion synthesis by apPol and show that apPol has low processivity and efficiency while copying undamaged DNA. Moreover, while apPol can bypass oxidatively damaged lesions, the bypass is error-prone. Taken together, our results raise the following question─how does a polymerase with low processivity, efficiency, and fidelity (for translesion synthesis) faithfully replicate the apicoplast organellar DNA within the hostile environment of the human host? We hypothesize that interactions with putative components of the apicoplast replisome and/or an as-yet-undiscovered processivity factor transform apPol into an efficient and accurate enzyme.
Collapse
Affiliation(s)
- Anamika Kumari
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Anjali Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Indrajit Lahiri
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India.,Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
5
|
Evans GW, Craggs T, Kapanidis AN. The Rate-limiting Step of DNA Synthesis by DNA Polymerase Occurs in the Fingers-closed Conformation. J Mol Biol 2022; 434:167410. [PMID: 34929202 PMCID: PMC8783057 DOI: 10.1016/j.jmb.2021.167410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/12/2021] [Indexed: 12/03/2022]
Abstract
DNA polymerases maintain genomic integrity by copying DNA with high fidelity, part of which relies on the polymerase fingers opening-closing transition, a series of conformational changes during the DNA synthesis reaction cycle. Fingers opening and closing has been challenging to study, mainly due to the need to synchronise molecular ensembles. We previously studied fingers opening-closing on single polymerase-DNA complexes using single-molecule FRET; however, our work was limited to pre-chemistry reaction steps. Here, we advance our analysis to extensible substrates, and observe DNA polymerase (Pol) conformational changes across the entire DNA polymerisation reaction in real-time, gaining direct access to an elusive post-chemistry step rate-limiting for DNA synthesis. Our results showed that Pol adopts the fingers-closed conformation during polymerisation, and that the post-chemistry rate-limiting step occurs in the fingers-closed conformation. We found that fingers-opening in the Pol-DNA binary complex in the absence of polymerisation is slow (∼5.3 s-1), and comparable to the rate of fingers-opening after polymerisation (3.4 s-1); this indicates that the fingers-opening step itself could be largely responsible for the slow post-chemistry step, with the residual rate potentially accounted for by pyrophosphase release. We also observed that DNA chain-termination of the 3' end of the primer increases substantially the rate of fingers-opening in the Pol-DNA binary complex (5.3 → 29 s-1), demonstrating that the 3'-OH residue is important for the kinetics of fingers conformational changes. Our observations offer mechanistic insight and tools to offer mechanistic insight for all nucleic acid polymerases.
Collapse
Affiliation(s)
- Geraint W Evans
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom. https://twitter.com/geraintwe
| | - Timothy Craggs
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom; Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom. https://twitter.com/Craggs_Lab
| | - Achillefs N Kapanidis
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
| |
Collapse
|
6
|
Manigrasso J, De Vivo M, Palermo G. Controlled Trafficking of Multiple and Diverse Cations Prompts Nucleic Acid Hydrolysis. ACS Catal 2021; 11:8786-8797. [PMID: 35145762 DOI: 10.1021/acscatal.1c01825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent in crystallo reaction intermediates have detailed how nucleic acid hydrolysis occurs in the RNA ribonuclease H1 (RNase H1), a fundamental metalloenzyme involved in maintaining the human genome. At odds with the previous characterization, these in crystallo structures unexpectedly captured multiple metal ions (K+ and Mg2+) transiently bound in the vicinity of the two-metal-ion active site. Using multi-microsecond all-atom molecular dynamics and free-energy simulations, we investigated the functional implications of the dynamic exchange of multiple K+ and Mg2+ ions at the RNase H1 reaction center. We found that such ions are timely positioned at non-overlapping locations near the active site, at different stages of catalysis, being crucial for both reactants' alignment and leaving group departure. We also found that this cation trafficking is tightly regulated by variations of the solution's ionic strength and is aided by two conserved second-shell residues, E188 and K196, suggesting a mechanism for the cations' recruitment during catalysis. These results indicate that controlled trafficking of multi-cation dynamics, opportunely prompted by second-shell residues, is functionally essential to the complex enzymatic machinery of the RNase H1. These findings revise the current knowledge on the RNase H1 catalysis and open new catalytic possibilities for other similar metalloenzymes including, but not limited to, CRISPR-Cas9, group II intron ribozyme and the human spliceosome.
Collapse
Affiliation(s)
- Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Genoa, 16163, Italy.,Department of Bioengineering, University of California Riverside, Riverside, CA 52512, United States
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Genoa, 16163, Italy
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, Riverside, CA 52512, United States.,Department of Chemistry, University of California Riverside, Riverside, CA 52512, United States
| |
Collapse
|
7
|
Chim N, Meza RA, Trinh AM, Yang K, Chaput JC. Following replicative DNA synthesis by time-resolved X-ray crystallography. Nat Commun 2021; 12:2641. [PMID: 33976175 PMCID: PMC8113479 DOI: 10.1038/s41467-021-22937-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/06/2021] [Indexed: 11/09/2022] Open
Abstract
The mechanism of DNA synthesis has been inferred from static structures, but the absence of temporal information raises longstanding questions about the order of events in one of life's most central processes. Here we follow the reaction pathway of a replicative DNA polymerase using time-resolved X-ray crystallography to elucidate the order and transition between intermediates. In contrast to the canonical model, the structural changes observed in the time-lapsed images reveal a catalytic cycle in which translocation precedes catalysis. The translocation step appears to follow a push-pull mechanism where the O-O1 loop of the finger subdomain acts as a pawl to facilitate unidirectional movement along the template with conserved tyrosine residues 714 and 719 functioning as tandem gatekeepers of DNA synthesis. The structures capture the precise order of critical events that may be a general feature of enzymatic catalysis among replicative DNA polymerases.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Roman A Meza
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Anh M Trinh
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Kefan Yang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA. .,Department of Chemistry, University of California, Irvine, CA, USA. .,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
8
|
Geronimo I, Vidossich P, Donati E, Vivo M. Computational investigations of polymerase enzymes: Structure, function, inhibition, and biotechnology. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Elisa Donati
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Marco Vivo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| |
Collapse
|
9
|
Bocanegra R, Ismael Plaza GA, Pulido CR, Ibarra B. DNA replication machinery: Insights from in vitro single-molecule approaches. Comput Struct Biotechnol J 2021; 19:2057-2069. [PMID: 33995902 PMCID: PMC8085672 DOI: 10.1016/j.csbj.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
The replisome is the multiprotein molecular machinery that replicates DNA. The replisome components work in precise coordination to unwind the double helix of the DNA and replicate the two strands simultaneously. The study of DNA replication using in vitro single-molecule approaches provides a novel quantitative understanding of the dynamics and mechanical principles that govern the operation of the replisome and its components. ‘Classical’ ensemble-averaging methods cannot obtain this information. Here we describe the main findings obtained with in vitro single-molecule methods on the performance of individual replisome components and reconstituted prokaryotic and eukaryotic replisomes. The emerging picture from these studies is that of stochastic, versatile and highly dynamic replisome machinery in which transient protein-protein and protein-DNA associations are responsible for robust DNA replication.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - G A Ismael Plaza
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Carlos R Pulido
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Nikoomanzar A, Vallejo D, Yik EJ, Chaput JC. Programmed Allelic Mutagenesis of a DNA Polymerase with Single Amino Acid Resolution. ACS Synth Biol 2020; 9:1873-1881. [PMID: 32531152 DOI: 10.1021/acssynbio.0c00236] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most DNA polymerase libraries sample unknown portions of mutational space and are constrained by the limitations of random mutagenesis. Here we describe a programmed allelic mutagenesis (PAM) strategy to comprehensively evaluate all possible single-point mutations in the entire catalytic domain of a replicative DNA polymerase. By applying the PAM strategy with ultrafast high-throughput screening, we show how DNA polymerases can be mapped for allelic mutations that exhibit enhanced activity for unnatural nucleic acid substrates. We suggest that comprehensive missense mutational scans may aid the discovery of specificity determining residues that are necessary for reprogramming the biological functions of natural DNA polymerases.
Collapse
Affiliation(s)
- Ali Nikoomanzar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Derek Vallejo
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Eric J. Yik
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - John C. Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
- Department of Chemistry, University of California, Irvine, California 92697-3958, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
11
|
Abstract
Life on Earth depends on polymerases. These enzymes copy genetic information to produce the DNA and RNA strands at the core of the central dogma. Polymerases act by forming phosphodiester linkages to produce polynucleotide strands. While synthetic chemistry can generate a broad range of alternative genetic materials with unnatural linkages, polymerases have so far been limited to forming O-P bonds. Here, we show that, in fact, unnatural N-P bonds can also be formed by a modified DNA polymerase. This template-directed activity generates complementary strands linked by phosphoramidate (NP) esters, an alternative backbone linkage only known to exist in the laboratory. The emergence of NP-DNA polymerase activity implies the biochemical plausibility of alternative central dogmas for cellular life. All known polymerases copy genetic material by catalyzing phosphodiester bond formation. This highly conserved activity proceeds by a common mechanism, such that incorporated nucleoside analogs terminate chain elongation if the resulting primer strand lacks a terminal hydroxyl group. Even conservatively substituted 3′-amino nucleotides generally act as chain terminators, and no enzymatic pathway for their polymerization has yet been found. Although 3′-amino nucleotides can be chemically coupled to yield stable oligonucleotides containing N3′→P5′ phosphoramidate (NP) bonds, no such internucleotide linkages are known to occur in nature. Here, we report that 3′-amino terminated primers are, in fact, slowly extended by the DNA polymerase from B. stearothermophilus in a template-directed manner. When its cofactor is Ca2+ rather than Mg2+, the reaction is fivefold faster, permitting multiple turnover NP bond formation to yield NP-DNA strands from the corresponding 3′-amino-2′,3′-dideoxynucleoside 5′-triphosphates. A single active site mutation further enhances the rate of NP-DNA synthesis by an additional 21-fold. We show that DNA-dependent NP-DNA polymerase activity depends on conserved active site residues and propose a likely mechanism for this activity based on a series of crystal structures of bound complexes. Our results significantly broaden the catalytic scope of polymerase activity and suggest the feasibility of a genetic transition between native nucleic acids and NP-DNA.
Collapse
|
12
|
Marx A, Betz K. The Structural Basis for Processing of Unnatural Base Pairs by DNA Polymerases. Chemistry 2020; 26:3446-3463. [PMID: 31544987 PMCID: PMC7155079 DOI: 10.1002/chem.201903525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Indexed: 12/16/2022]
Abstract
Unnatural base pairs (UBPs) greatly increase the diversity of DNA and RNA, furthering their broad range of molecular biological and biotechnological approaches. Different candidates have been developed whereby alternative hydrogen-bonding patterns and hydrophobic and packing interactions have turned out to be the most promising base-pairing concepts to date. The key in many applications is the highly efficient and selective acceptance of artificial base pairs by DNA polymerases, which enables amplification of the modified DNA. In this Review, computational as well as experimental studies that were performed to characterize the pairing behavior of UBPs in free duplex DNA or bound to the active site of KlenTaq DNA polymerase are highlighted. The structural studies, on the one hand, elucidate how base pairs lacking hydrogen bonds are accepted by these enzymes and, on the other hand, highlight the influence of one or several consecutive UBPs on the structure of a DNA double helix. Understanding these concepts facilitates optimization of future UBPs for the manifold fields of applications.
Collapse
Affiliation(s)
- Andreas Marx
- Department of ChemistryKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| | - Karin Betz
- Department of ChemistryKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| |
Collapse
|
13
|
Roston D, Demapan D, Cui Q. Extensive free-energy simulations identify water as the base in nucleotide addition by DNA polymerase. Proc Natl Acad Sci U S A 2019; 116:25048-25056. [PMID: 31757846 PMCID: PMC6911213 DOI: 10.1073/pnas.1914613116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transphosphorylation of nucleotide triphosphates is the central reaction in DNA replication by DNA polymerase as well as many other biological processes. Despite its importance, the microscopic chemical mechanism of transphosphorylation of nucleotide triphosphates is, in most cases, unknown. Here we use extensive simulations of DNA polymerase η to test mechanistic hypotheses. We systematically survey the reactive space by calculating 2D free-energy surfaces for 10 different plausible mechanisms that have been proposed. We supplement these free-energy surfaces with calculations of pKa for a number of potentially acidic protons in different states relevant to the catalytic cycle. We find that among all of the conditions that we test, the smallest activation barrier occurs for a reaction where a Mg2+-coordinated water deprotonates the nucleophilic 3'-OH, and this deprotonation is concerted with the phosphoryl transfer. The presence of a third Mg2+ in the active site lowers the activation barrier for the water-as-base mechanism, as does protonation of the pyrophosphate leaving group, which is consistent with general acid catalysis. The results demonstrate the value of simulations, when used in conjunction with experimental data, to help establish a microscopic chemical mechanism in a complex environment.
Collapse
Affiliation(s)
- Daniel Roston
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093;
| | - Darren Demapan
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA 02215;
- Department of Physics, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
14
|
Maffeo C, Chou HY, Aksimentiev A. Molecular Mechanisms of DNA Replication and Repair Machinery: Insights from Microscopic Simulations. ADVANCED THEORY AND SIMULATIONS 2019; 2:1800191. [PMID: 31728433 PMCID: PMC6855400 DOI: 10.1002/adts.201800191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Reproduction, the hallmark of biological activity, requires making an accurate copy of the genetic material to allow the progeny to inherit parental traits. In all living cells, the process of DNA replication is carried out by a concerted action of multiple protein species forming a loose protein-nucleic acid complex, the replisome. Proofreading and error correction generally accompany replication but also occur independently, safeguarding genetic information through all phases of the cell cycle. Advances in biochemical characterization of intracellular processes, proteomics and the advent of single-molecule biophysics have brought about a treasure trove of information awaiting to be assembled into an accurate mechanistic model of the DNA replication process. In this review, we describe recent efforts to model elements of DNA replication and repair processes using computer simulations, an approach that has gained immense popularity in many areas of molecular biophysics but has yet to become mainstream in the DNA metabolism community. We highlight the use of diverse computational methods to address specific problems of the fields and discuss unexplored possibilities that lie ahead for the computational approaches in these areas.
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Han-Yi Chou
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Elisa Donati
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| |
Collapse
|
16
|
Atis M, Johnson KA, Elber R. Pyrophosphate Release in the Protein HIV Reverse Transcriptase. J Phys Chem B 2017; 121:9557-9565. [PMID: 28926712 DOI: 10.1021/acs.jpcb.7b08320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Enzymatic reactions usually occur in several steps: a step of substrate binding to the surface of the protein, a step of protein reorganization around the substrate and conduction of a chemical reaction, and a step of product release. The release of inorganic phosphate-PPi-from the matrix of the protein HIV reverse transcriptase is investigated computationally. Atomically detailed simulations with explicit solvent are analyzed to obtain the free energy profile, mean first passage time, and detailed molecular mechanisms of PPi escape. A challenge for the computations is of time scales. The experimental time scale of the process of interest is in milliseconds, and straightforward molecular dynamics simulations are in sub-microseconds. To overcome the time scale gap, we use the algorithm of Milestoning along a reaction coordinate to compute the overall free energy profile and rate. The methods of locally enhanced sampling and steered molecular dynamics determine plausible reaction coordinates. The observed molecular mechanism couples the transfer of the PPi to positively charged lysine side chains that are found on the exit pathway and to an exiting magnesium ion. In accord with experimental findings, the release rate is comparable to the chemical step, allowing for variations in substrate (DNA or RNA template) in which the release becomes rate determining.
Collapse
Affiliation(s)
- Murat Atis
- Institute for Computational Engineering and Sciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Kenneth A Johnson
- Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Ron Elber
- Institute for Computational Engineering and Sciences, The University of Texas at Austin , Austin, Texas 78712, United States.,Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
17
|
Yoon H, Warshel A. Simulating the fidelity and the three Mg mechanism of pol η and clarifying the validity of transition state theory in enzyme catalysis. Proteins 2017; 85:1446-1453. [PMID: 28383109 DOI: 10.1002/prot.25305] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/06/2022]
Abstract
Pol η belongs to the important Y family of DNA polymerases that can catalyze translesion synthesis across sites of damaged DNA. This activity involves the reduced fidelity of Pol η for 8-oxo-7,8-dhyedro-2'-deoxoguanosin(8-oxoG). The fundamental interest in Pol η has grown recently with the demonstration of the importance of a 3rd Mg2+ ion. The current work explores both the fidelity of Pol η and the role of the 3rd metal ion, by using empirical valence bond (EVB) simulations. The simulations reproduce the observed trend in fidelity and shed a new light on the role of the 3rd metal ion. It is found that this ion does not lead to a major catalytic effect, but most probably plays an important role in reducing the product release barrier. Furthermore, it is concluded, in contrast to some implications, that the effect of this metal does not violate transition state theory, and the evaluation of the catalytic effect must conserve the molecular composition upon moving from the reactant to the transition state. Proteins 2017; 85:1446-1453. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hanwool Yoon
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave, Los Angeles, California, 90089-1062
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave, Los Angeles, California, 90089-1062
| |
Collapse
|
18
|
Wang ZF, Fu YB, Wang PY, Xie P. Dynamics of bridge helix bending in RNA polymerase II. Proteins 2017; 85:614-629. [DOI: 10.1002/prot.25239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Zhan-Feng Wang
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics; Institute of Physics, Chinese Academy of Sciences; Beijing 100190 China
| | - Yi-Ben Fu
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics; Institute of Physics, Chinese Academy of Sciences; Beijing 100190 China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics; Institute of Physics, Chinese Academy of Sciences; Beijing 100190 China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics; Institute of Physics, Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
19
|
Reed AJ, Vyas R, Raper AT, Suo Z. Structural Insights into the Post-Chemistry Steps of Nucleotide Incorporation Catalyzed by a DNA Polymerase. J Am Chem Soc 2016; 139:465-471. [PMID: 27959534 DOI: 10.1021/jacs.6b11258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA polymerases are essential enzymes that faithfully and efficiently replicate genomic information.1-3 The mechanism of nucleotide incorporation by DNA polymerases has been extensively studied structurally and kinetically, but several key steps following phosphodiester bond formation remain structurally uncharacterized due to utilization of natural nucleotides. It is thought that the release of pyrophosphate (PPi) triggers reverse conformational changes in a polymerase in order to complete a full catalytic cycle as well as prepare for DNA translocation and subsequent incorporation events. Here, by using the triphosphates of chain-terminating antiviral drugs lamivudine ((-)3TC-TP) and emtricitabine ((-)FTC-TP), we structurally reveal the correct sequence of post-chemistry steps during nucleotide incorporation by human DNA polymerase β (hPolβ) and provide a structural basis for PPi release. These post-catalytic structures reveal hPolβ in an open conformation with PPi bound in the active site, thereby strongly suggesting that the reverse conformational changes occur prior to PPi release. The results also help to refine the role of the newly discovered third divalent metal ion for DNA polymerase-catalyzed nucleotide incorporation. Furthermore, a post-chemistry structure of hPolβ in the open conformation, following incorporation of (-)3TC-MP, with a second (-)3TC-TP molecule bound to the active site in the absence of PPi, suggests that nucleotide binding stimulates PPi dissociation and occurs before polymerase translocation. Our structural characterization defines the order of the elusive post-chemistry steps in the canonical mechanism of a DNA polymerase.
Collapse
Affiliation(s)
- Andrew J Reed
- Department of Chemistry and Biochemistry and ‡The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Rajan Vyas
- Department of Chemistry and Biochemistry and ‡The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Austin T Raper
- Department of Chemistry and Biochemistry and ‡The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry and ‡The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
20
|
Genna V, Vidossich P, Ippoliti E, Carloni P, De Vivo M. A Self-Activated Mechanism for Nucleic Acid Polymerization Catalyzed by DNA/RNA Polymerases. J Am Chem Soc 2016; 138:14592-14598. [PMID: 27530537 DOI: 10.1021/jacs.6b05475] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The enzymatic polymerization of DNA and RNA is the basis for genetic inheritance for all living organisms. It is catalyzed by the DNA/RNA polymerase (Pol) superfamily. Here, bioinformatics analysis reveals that the incoming nucleotide substrate always forms an H-bond between its 3'-OH and β-phosphate moieties upon formation of the Michaelis complex. This previously unrecognized H-bond implies a novel self-activated mechanism (SAM), which synergistically connects the in situ nucleophile formation with subsequent nucleotide addition and, importantly, nucleic acid translocation. Thus, SAM allows an elegant and efficient closed-loop sequence of chemical and physical steps for Pol catalysis. This is markedly different from previous mechanistic hypotheses. Our proposed mechanism is corroborated via ab initio QM/MM simulations on a specific Pol, the human DNA polymerase-η, an enzyme involved in repairing damaged DNA. The structural conservation of DNA and RNA Pols supports the possible extension of SAM to Pol enzymes from the three domains of life.
Collapse
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163, Genoa, Italy.,IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Pietro Vidossich
- IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Emiliano Ippoliti
- IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Paolo Carloni
- IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163, Genoa, Italy.,IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| |
Collapse
|
21
|
Zhang Y, Baranovskiy AG, Tahirov ET, Tahirov TH, Pavlov YI. Divalent ions attenuate DNA synthesis by human DNA polymerase α by changing the structure of the template/primer or by perturbing the polymerase reaction. DNA Repair (Amst) 2016; 43:24-33. [PMID: 27235627 DOI: 10.1016/j.dnarep.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022]
Abstract
DNA polymerases (pols) are sophisticated protein machines operating in the replication, repair and recombination of genetic material in the complex environment of the cell. DNA pol reactions require at least two divalent metal ions for the phosphodiester bond formation. We explore two understudied roles of metals in pol transactions with emphasis on polα, a crucial enzyme in the initiation of DNA synthesis. We present evidence that the combination of many factors, including the structure of the template/primer, the identity of the metal, the metal turnover in the pol active site, and the influence of the concentration of nucleoside triphosphates, affect DNA pol synthesis. On the poly-dT70 template, the increase of Mg(2+) concentration within the range typically used for pol reactions led to the severe loss of the ability of pol to extend DNA primers and led to a decline in DNA product sizes when extending RNA primers, simulating the effect of "counting" of the number of nucleotides in nascent primers by polα. We suggest that a high Mg(2+) concentration promotes the dynamic formation of unconventional DNA structure(s), thus limiting the apparent processivity of the enzyme. Next, we found that Zn(2+) supported robust polα reactions when the concentration of nucleotides was above the concentration of ions; however, there was only one nucleotide incorporation by the Klenow fragment of DNA pol I. Zn(2+) drastically inhibited polα, but had no effect on Klenow, when Mg(2+) was also present. It is possible that Zn(2+) perturbs metal-mediated transactions in pol active site, for example affecting the step of pyrophosphate removal at the end of each pol cycle necessary for continuation of polymerization.
Collapse
Affiliation(s)
- Yinbo Zhang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Emin T Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
22
|
Genna V, Gaspari R, Dal Peraro M, De Vivo M. Cooperative motion of a key positively charged residue and metal ions for DNA replication catalyzed by human DNA Polymerase-η. Nucleic Acids Res 2016; 44:2827-36. [PMID: 26935581 PMCID: PMC4824119 DOI: 10.1093/nar/gkw128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022] Open
Abstract
Trans-lesion synthesis polymerases, like DNA Polymerase-η (Pol-η), are essential for cell survival. Pol-η bypasses ultraviolet-induced DNA damages via a two-metal-ion mechanism that assures DNA strand elongation, with formation of the leaving group pyrophosphate (PPi). Recent structural and kinetics studies have shown that Pol-η function depends on the highly flexible and conserved Arg61 and, intriguingly, on a transient third ion resolved at the catalytic site, as lately observed in other nucleic acid-processing metalloenzymes. How these conserved structural features facilitate DNA replication, however, is still poorly understood. Through extended molecular dynamics and free energy simulations, we unravel a highly cooperative and dynamic mechanism for DNA elongation and repair, which is here described by an equilibrium ensemble of structures that connect the reactants to the products in Pol-η catalysis. We reveal that specific conformations of Arg61 help facilitate the recruitment of the incoming base and favor the proper formation of a pre-reactive complex in Pol-η for efficient DNA editing. Also, we show that a third transient metal ion, which acts concertedly with Arg61, serves as an exit shuttle for the leaving PPi. Finally, we discuss how this effective and cooperative mechanism for DNA repair may be shared by other DNA-repairing polymerases.
Collapse
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Roberto Gaspari
- CONCEPT Lab., Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy IAS-5 / INM-9 Computational Biomedicine Forschungszentrum Jülich, Wilhelm-Johnen-Straße 52428 Jülich, Germany
| |
Collapse
|
23
|
Boda SK, Pandit S, Garai A, Pal D, Basu B. Bacterial siderophore mimicking iron complexes as DNA targeting antimicrobials. RSC Adv 2016. [DOI: 10.1039/c6ra02603f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microbial secretion of siderophores for iron uptake can be employed as an efficient strategy to smuggle in bactericidal agents by conjugation to iron.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- Laboratory for Biomaterials – Materials Research Centre
- Indian Institute of Science
- Bangalore – 560012
- India
| | - Subhendu Pandit
- Laboratory for Biomaterials – Materials Research Centre
- Indian Institute of Science
- Bangalore – 560012
- India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore – 560012
- India
| | - Debnath Pal
- Department of Computational and Data Sciences
- Indian Institute of Science
- Bangalore – 560012
- India
| | - Bikramjit Basu
- Laboratory for Biomaterials – Materials Research Centre
- Indian Institute of Science
- Bangalore – 560012
- India
- Centre for Biosystems Science and Engineering
| |
Collapse
|
24
|
Da LT, E C, Duan B, Zhang C, Zhou X, Yu J. A Jump-from-Cavity Pyrophosphate Ion Release Assisted by a Key Lysine Residue in T7 RNA Polymerase Transcription Elongation. PLoS Comput Biol 2015; 11:e1004624. [PMID: 26599007 PMCID: PMC4658072 DOI: 10.1371/journal.pcbi.1004624] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/26/2015] [Indexed: 11/18/2022] Open
Abstract
Pyrophosphate ion (PPi) release during transcription elongation is a signature step in each nucleotide addition cycle. The kinetics and energetics of the process as well as how it proceeds with substantial conformational changes of the polymerase complex determine the mechano-chemical coupling mechanism of the transcription elongation. Here we investigated detailed dynamics of the PPi release process in a single-subunit RNA polymerase (RNAP) from bacteriophage T7, implementing all-atom molecular dynamics (MD) simulations. We obtained a jump-from-cavity kinetic model of the PPi release utilizing extensive nanosecond MD simulations. We found that the PPi release in T7 RNAP is initiated by the PPi dissociation from two catalytic aspartic acids, followed by a comparatively slow jump-from-cavity activation process. Combining with a number of microsecond long MD simulations, we also found that the activation process is hindered by charged residue associations as well as by local steric and hydrogen bond interactions. On the other hand, the activation is greatly assisted by a highly flexible lysine residue Lys472 that swings its side chain to pull PPi out. The mechanism can apply in general to single subunit RNA and DNA polymerases with similar molecular structures and conserved key residues. Remarkably, the flexible lysine or arginine residue appears to be a universal module that assists the PPi release even in multi-subunit RNAPs with charge facilitated hopping mechanisms. We also noticed that the PPi release is not tightly coupled to opening motions of an O-helix on the fingers domain of T7 RNAP according to the microsecond MD simulations. Our study thus supports the Brownian ratchet scenario of the mechano-chemical coupling in the transcription elongation of the single-subunit polymerase.
Collapse
Affiliation(s)
- Lin-Tai Da
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Chao E
- Beijing Computational Science Research Center, Beijing, China
| | - Baogen Duan
- Beijing Computational Science Research Center, Beijing, China
| | - Chuanbiao Zhang
- School of Physics, University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- School of Physics, University of the Chinese Academy of Sciences, Beijing, China
| | - Jin Yu
- Beijing Computational Science Research Center, Beijing, China
- * E-mail:
| |
Collapse
|
25
|
Duan B, Wu S, Da LT, Yu J. A critical residue selectively recruits nucleotides for t7 RNA polymerase transcription fidelity control. Biophys J 2015; 107:2130-40. [PMID: 25418098 PMCID: PMC4223216 DOI: 10.1016/j.bpj.2014.09.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 01/21/2023] Open
Abstract
Nucleotide selection is essential for fidelity control in gene replication and transcription. Recent work on T7 RNA polymerase suggested that a small posttranslocation free energy bias stabilizes Tyr(639) in the active site to aid nucleotide selection. However, it was not clear exactly how Tyr(639) assists the selection. Here we report a molecular-dynamics simulation study revealing atomistic detail of this critical selectivity. The study shows first that Tyr(639) blocks the active site at posttranslocation by marginally stacking to the end basepair of the DNA-RNA hybrid. The study then demonstrates that at the nucleotide preinsertion state, a cognate RNA nucleotide does not affect the local Tyr(639) stabilization, whereas a noncognate nucleotide substantially stabilizes Tyr(639) so that Tyr(639) keeps blocking the active site. As a result, further nucleotide insertion into the active site, which requires moving Tyr(639) out of the site, would be hindered for the noncognate nucleotide, but not for the cognate nucleotide. In particular, we note that water molecules assist the ribose recognition in the RNA nucleotide preinsertion, and help Tyr(639) stacking to the end basepair in the case of a DNA nucleotide. It was also seen that a base-mismatched nucleotide at preinsertion directly grabs Tyr(639) for the active site stabilization. We also find that in a mutant polymerase Y639F the strong stabilization of residue 639 in the active site cannot establish upon the DNA nucleotide preinsertion. The finding explains the reduced differentiation between ribo- and deoxyribonucleotides that has been recorded experimentally for the mutant polymerase.
Collapse
Affiliation(s)
- Baogen Duan
- Beijing Computational Science Research Center, Beijing, P. R. China
| | - Shaogui Wu
- Beijing Computational Science Research Center, Beijing, P. R. China
| | - Lin-Tai Da
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Jin Yu
- Beijing Computational Science Research Center, Beijing, P. R. China.
| |
Collapse
|
26
|
Miller BR, Beese LS, Parish CA, Wu EY. The Closing Mechanism of DNA Polymerase I at Atomic Resolution. Structure 2015. [PMID: 26211612 DOI: 10.1016/j.str.2015.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA polymerases must quickly and accurately distinguish between similar nucleic acids to form Watson-Crick base pairs and avoid DNA replication errors. Deoxynucleoside triphosphate (dNTP) binding to the DNA polymerase active site induces a large conformational change that is difficult to characterize experimentally on an atomic level. Here, we report an X-ray crystal structure of DNA polymerase I bound to DNA in the open conformation with a dNTP present in the active site. We use this structure to computationally simulate the open to closed transition of DNA polymerase in the presence of a Watson-Crick base pair. Our microsecond simulations allowed us to characterize the key steps involved in active site assembly, and propose the sequence of events involved in the prechemistry steps of DNA polymerase catalysis. They also reveal new features of the polymerase mechanism, such as a conserved histidine as a potential proton acceptor from the primer 3'-hydroxyl.
Collapse
Affiliation(s)
- Bill R Miller
- Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA; Department of Chemistry, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA
| | - Lorena S Beese
- Department of Biochemistry, Duke University Medical Center, 255 Nanaline H. Duke Building, Durham, NC 27710, USA
| | - Carol A Parish
- Department of Chemistry, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA.
| | - Eugene Y Wu
- Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA; Department of Biochemistry, Duke University Medical Center, 255 Nanaline H. Duke Building, Durham, NC 27710, USA.
| |
Collapse
|
27
|
Morin JA, Cao FJ, Lázaro JM, Arias-Gonzalez JR, Valpuesta JM, Carrascosa JL, Salas M, Ibarra B. Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase. Nucleic Acids Res 2015; 43:3643-52. [PMID: 25800740 PMCID: PMC4402526 DOI: 10.1093/nar/gkv204] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/14/2015] [Accepted: 02/27/2015] [Indexed: 11/25/2022] Open
Abstract
During DNA replication replicative polymerases move in discrete mechanical steps along the DNA template. To address how the chemical cycle is coupled to mechanical motion of the enzyme, here we use optical tweezers to study the translocation mechanism of individual bacteriophage Phi29 DNA polymerases during processive DNA replication. We determine the main kinetic parameters of the nucleotide incorporation cycle and their dependence on external load and nucleotide (dNTP) concentration. The data is inconsistent with power stroke models for translocation, instead supports a loose-coupling mechanism between chemical catalysis and mechanical translocation during DNA replication. According to this mechanism the DNA polymerase works by alternating between a dNTP/PPi-free state, which diffuses thermally between pre- and post-translocated states, and a dNTP/PPi-bound state where dNTP binding stabilizes the post-translocated state. We show how this thermal ratchet mechanism is used by the polymerase to generate work against large opposing loads (∼50 pN).
Collapse
Affiliation(s)
- José A Morin
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049 Madrid, Spain
| | - Francisco J Cao
- Departamento Física Atómica, Molecular y Nuclear, Universidad Complutense, 28040 Madrid, Spain
| | - José M Lázaro
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| | - José M Valpuesta
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - José L Carrascosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| |
Collapse
|
28
|
Miller BR, Parish CA, Wu EY. Molecular dynamics study of the opening mechanism for DNA polymerase I. PLoS Comput Biol 2014; 10:e1003961. [PMID: 25474643 PMCID: PMC4256020 DOI: 10.1371/journal.pcbi.1003961] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022] Open
Abstract
During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme:DNA) state to better understand its dynamics. We have applied long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening process starting from the open and ajar crystal structures, including the observation of a previously unknown key intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase using current computational methods without biasing the dynamics.
Collapse
Affiliation(s)
- Bill R. Miller
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
- Department of Chemistry, University of Richmond, Richmond, Virginia, United States of America
| | - Carol A. Parish
- Department of Chemistry, University of Richmond, Richmond, Virginia, United States of America
| | - Eugene Y. Wu
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| |
Collapse
|
29
|
Ovchinnikov V, Karplus M. Investigations of α-helix↔β-sheet transition pathways in a miniprotein using the finite-temperature string method. J Chem Phys 2014; 140:175103. [PMID: 24811667 PMCID: PMC4032436 DOI: 10.1063/1.4871685] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/07/2014] [Indexed: 12/17/2022] Open
Abstract
A parallel implementation of the finite-temperature string method is described, which takes into account the invariance of coordinates with respect to rigid-body motions. The method is applied to the complex α-helix↔β-sheet transition in a β-hairpin miniprotein in implicit solvent, which exhibits much of the complexity of conformational changes in proteins. Two transition paths are considered, one derived from a linear interpolant between the endpoint structures and the other derived from a targeted dynamics simulation. Two methods for computing the conformational free energy (FE) along the string are compared, a restrained method, and a tessellation method introduced by E. Vanden-Eijnden and M. Venturoli [J. Chem. Phys. 130, 194103 (2009)]. It is found that obtaining meaningful free energy profiles using the present atom-based coordinates requires restricting sampling to a vicinity of the converged path, where the hyperplanar approximation to the isocommittor surface is sufficiently accurate. This sampling restriction can be easily achieved using restraints or constraints. The endpoint FE differences computed from the FE profiles are validated by comparison with previous calculations using a path-independent confinement method. The FE profiles are decomposed into the enthalpic and entropic contributions, and it is shown that the entropy difference contribution can be as large as 10 kcal/mol for intermediate regions along the path, compared to 15-20 kcal/mol for the enthalpy contribution. This result demonstrates that enthalpic barriers for transitions are offset by entropic contributions arising from the existence of different paths across a barrier. The possibility of using systematically coarse-grained representations of amino acids, in the spirit of multiple interaction site residue models, is proposed as a means to avoid ad hoc sampling restrictions to narrow transition tubes.
Collapse
Affiliation(s)
- Victor Ovchinnikov
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
30
|
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
31
|
Wang J, Shao Q, Xu Z, Liu Y, Yang Z, Cossins BP, Jiang H, Chen K, Shi J, Zhu W. Exploring transition pathway and free-energy profile of large-scale protein conformational change by combining normal mode analysis and umbrella sampling molecular dynamics. J Phys Chem B 2013; 118:134-43. [PMID: 24350625 DOI: 10.1021/jp4105129] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large-scale conformational changes of proteins are usually associated with the binding of ligands. Because the conformational changes are often related to the biological functions of proteins, understanding the molecular mechanisms of these motions and the effects of ligand binding becomes very necessary. In the present study, we use the combination of normal-mode analysis and umbrella sampling molecular dynamics simulation to delineate the atomically detailed conformational transition pathways and the associated free-energy landscapes for three well-known protein systems, viz., adenylate kinase (AdK), calmodulin (CaM), and p38α kinase in the absence and presence of respective ligands. For each protein under study, the transient conformations along the conformational transition pathway and thermodynamic observables are in agreement with experimentally and computationally determined ones. The calculated free-energy profiles reveal that AdK and CaM are intrinsically flexible in structures without obvious energy barrier, and their ligand binding shifts the equilibrium from the ligand-free to ligand-bound conformation (population shift mechanism). In contrast, the ligand binding to p38α leads to a large change in free-energy barrier (ΔΔG ≈ 7 kcal/mol), promoting the transition from DFG-in to DFG-out conformation (induced fit mechanism). Moreover, the effect of the protonation of D168 on the conformational change of p38α is also studied, which reduces the free-energy difference between the two functional states of p38α and thus further facilitates the conformational interconversion. Therefore, the present study suggests that the detailed mechanism of ligand binding and the associated conformational transition is not uniform for all kinds of proteins but correlated to their respective biological functions.
Collapse
Affiliation(s)
- Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai, 201203, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wu S, Beard WA, Pedersen LG, Wilson SH. Structural comparison of DNA polymerase architecture suggests a nucleotide gateway to the polymerase active site. Chem Rev 2013; 114:2759-74. [PMID: 24359247 DOI: 10.1021/cr3005179] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sangwook Wu
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| | | | | | | |
Collapse
|
33
|
Betz K, Malyshev DA, Lavergne T, Welte W, Diederichs K, Romesberg FE, Marx A. Structural insights into DNA replication without hydrogen bonds. J Am Chem Soc 2013; 135:18637-43. [PMID: 24283923 PMCID: PMC3982147 DOI: 10.1021/ja409609j] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genetic alphabet is composed of two base pairs, and the development of a third, unnatural base pair would increase the genetic and chemical potential of DNA. d5SICS-dNaM is one of the most efficiently replicated unnatural base pairs identified to date, but its pairing is mediated by only hydrophobic and packing forces, and in free duplex DNA it forms a cross-strand intercalated structure that makes its efficient replication difficult to understand. Recent studies of the KlenTaq DNA polymerase revealed that the insertion of d5SICSTP opposite dNaM proceeds via a mutually induced-fit mechanism, where the presence of the triphosphate induces the polymerase to form the catalytically competent closed structure, which in turn induces the pairing nucleotides of the developing unnatural base pair to adopt a planar Watson-Crick-like structure. To understand the remaining steps of replication, we now report the characterization of the prechemistry complexes corresponding to the insertion of dNaMTP opposite d5SICS, as well as multiple postchemistry complexes in which the already formed unnatural base pair is positioned at the postinsertion site. Unlike with the insertion of d5SICSTP opposite dNaM, addition of dNaMTP does not fully induce the formation of the catalytically competent closed state. The data also reveal that once synthesized and translocated to the postinsertion position, the unnatural nucleobases again intercalate. Two modes of intercalation are observed, depending on the nature of the flanking nucleotides, and are each stabilized by different interactions with the polymerase, and each appear to reduce the affinity with which the next correct triphosphate binds. Thus, continued primer extension is limited by deintercalation and rearrangements with the polymerase active site that are required to populate the catalytically active, triphosphate bound conformation.
Collapse
Affiliation(s)
- Karin Betz
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany
| | - Denis A. Malyshev
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| | - Thomas Lavergne
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| | - Wolfram Welte
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany
| | - Kay Diederichs
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| | - Andreas Marx
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany
| |
Collapse
|
34
|
Wang B, Feig M, Cukier RI, Burton ZF. Computational simulation strategies for analysis of multisubunit RNA polymerases. Chem Rev 2013; 113:8546-66. [PMID: 23987500 PMCID: PMC3829680 DOI: 10.1021/cr400046x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Beibei Wang
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
| | - Michael Feig
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Robert I. Cukier
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zachary F. Burton
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
| |
Collapse
|
35
|
Moors SLC, Herdewijn P, Robben J, Ceulemans A. Cooperative dynamics of a DNA polymerase replicating complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2554-63. [PMID: 24041502 DOI: 10.1016/j.bbapap.2013.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/22/2013] [Accepted: 09/06/2013] [Indexed: 11/15/2022]
Abstract
Engineered DNA polymerases continue to be the workhorses of many applications in biotechnology, medicine and nanotechnology. However, the dynamic interplay between the enzyme and the DNA remains unclear. In this study, we performed an extensive replica exchange with flexible tempering (REFT) molecular dynamics simulation of the ternary replicating complex of the archaeal family B DNA polymerase from the thermophile Thermococcus gorgonarius, right before the chemical step. The convoluted dynamics of the enzyme are reducible to rigid-body motions of six subdomains. Upon binding to the enzyme, the DNA double helix conformation changes from a twisted state to a partially untwisted state. The twisted state displays strong bending motion, whereby the DNA oscillates between a straight and a bent conformation. The dynamics of double-stranded DNA are strongly correlated with rotations of the thumb toward the palm, which suggests an assisting role of the enzyme during DNA translocation. In the complex, the primer-template duplex displays increased preference for the B-DNA conformation at the n-2 and n-3 dinucleotide steps. Interactions at the primer 3' end indicate that Thr541 and Asp540 are the acceptors of the first proton transfer in the chemical step, whereas in the translocation step both residues hold the primer 3' terminus in the vicinity of the priming site, which is crucial for high processivity.
Collapse
Affiliation(s)
- Samuel L C Moors
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
36
|
Gouge J, Rosario S, Romain F, Beguin P, Delarue M. Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism. J Mol Biol 2013; 425:4334-52. [PMID: 23856622 DOI: 10.1016/j.jmb.2013.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 11/19/2022]
Abstract
Terminal deoxynucleotidyltransferase (Tdt) is a non-templated eukaryotic DNA polymerase of the polX family that is responsible for the random addition of nucleotides at the V(D)J junctions of immunoglobulins and T-cell receptors. Here we describe a series of high-resolution X-ray structures that mimic the pre-catalytic state, the post-catalytic state and a competent state that can be transformed into the two other ones in crystallo via the addition of dAMPcPP and Zn(2+), respectively. We examined the effect of Mn(2+), Co(2+) and Zn(2+) because they all have a marked influence on the kinetics of the reaction. We demonstrate a dynamic role of divalent transition metal ions bound to site A: (i) Zn(2+) (or Co(2+)) in Metal A site changes coordination from octahedral to tetrahedral after the chemical step, which explains the known higher affinity of Tdt for the primer strand when these ions are present, and (ii) metal A has to leave to allow the translocation of the primer strand and to clear the active site, a typical feature for a ratchet-like mechanism. Except for Zn(2+), the sugar puckering of the primer strand 3' terminus changes from C2'-endo to C3'-endo during catalysis. In addition, our data are compatible with a scheme where metal A is the last component that binds to the active site to complete its productive assembly, as already inferred in human pol beta. The new structures have potential implications for modeling pol mu, a closely related polX implicated in the repair of DNA double-strand breaks, in a complex with a DNA synapsis.
Collapse
Affiliation(s)
- Jérôme Gouge
- Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, UMR 3528 du CNRS, 25 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | |
Collapse
|
37
|
Lieberman KR, Dahl JM, Mai AH, Cox A, Akeson M, Wang H. Kinetic mechanism of translocation and dNTP binding in individual DNA polymerase complexes. J Am Chem Soc 2013; 135:9149-55. [PMID: 23705688 DOI: 10.1021/ja403640b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complexes formed between phi29 DNA polymerase (DNAP) and DNA fluctuate discretely between the pre-translocation and post-translocation states on the millisecond time scale. The translocation fluctuations can be observed in ionic current traces when individual complexes are captured atop the α-hemolysin nanopore in an electric field. The presence of complementary 2'-deoxynucleoside triphosphate (dNTP) shifts the equilibrium across the translocation step toward the post-translocation state. Here we have determined quantitatively the kinetic relationship between the phi29 DNAP translocation step and dNTP binding. We demonstrate that dNTP binds to phi29 DNAP-DNA complexes only after the transition from the pre-translocation state to the post-translocation state; dNTP binding rectifies the translocation but it does not directly drive the translocation. Based on the measured time traces of current amplitude, we developed a method for determining the forward and reverse translocation rates and the dNTP association and dissociation rates, individually at each dNTP concentration and each voltage. The translocation rates, and their response to force, match those determined for phi29 DNAP-DNA binary complexes and are unaffected by dNTP. The dNTP association and dissociation rates do not vary as a function of voltage, indicating that force does not distort the polymerase active site and that dNTP binding does not directly involve a displacement in the translocation direction. This combined experimental and theoretical approach and the results obtained provide a framework for separately evaluating the effects of biological variables on the translocation transitions and their effects on dNTP binding.
Collapse
Affiliation(s)
- Kate R Lieberman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Baskin School of Engineering, 1156 High Street, MS: SOE2, Santa Cruz, California 95064, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Gong P, Kortus MG, Nix JC, Davis RE, Peersen OB. Structures of coxsackievirus, rhinovirus, and poliovirus polymerase elongation complexes solved by engineering RNA mediated crystal contacts. PLoS One 2013; 8:e60272. [PMID: 23667424 PMCID: PMC3648537 DOI: 10.1371/journal.pone.0060272] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 02/26/2013] [Indexed: 01/03/2023] Open
Abstract
RNA-dependent RNA polymerases play a vital role in the growth of RNA viruses where they are responsible for genome replication, but do so with rather low fidelity that allows for the rapid adaptation to different host cell environments. These polymerases are also a target for antiviral drug development. However, both drug discovery efforts and our understanding of fidelity determinants have been hampered by a lack of detailed structural information about functional polymerase-RNA complexes and the structural changes that take place during the elongation cycle. Many of the molecular details associated with nucleotide selection and catalysis were revealed in our recent structure of the poliovirus polymerase-RNA complex solved by first purifying and then crystallizing stalled elongation complexes. In the work presented here we extend that basic methodology to determine nine new structures of poliovirus, coxsackievirus, and rhinovirus elongation complexes at 2.2-2.9 Å resolution. The structures highlight conserved features of picornaviral polymerases and the interactions they make with the template and product RNA strands, including a tight grip on eight basepairs of the nascent duplex, a fully pre-positioned templating nucleotide, and a conserved binding pocket for the +2 position template strand base. At the active site we see a pre-bound magnesium ion and there is conservation of a non-standard backbone conformation of the template strand in an interaction that may aid in triggering RNA translocation via contact with the conserved polymerase motif B. Moreover, by engineering plasticity into RNA-RNA contacts, we obtain crystal forms that are capable of multiple rounds of in-crystal catalysis and RNA translocation. Together, the data demonstrate that engineering flexible RNA contacts to promote crystal lattice formation is a versatile platform that can be used to solve the structures of viral RdRP elongation complexes and their catalytic cycle intermediates.
Collapse
Affiliation(s)
- Peng Gong
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Matthew G. Kortus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jay C. Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Ralph E. Davis
- Cocrystal Discovery Inc., Mountain View, California, United States of America
| | - Olve B. Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
39
|
Elber R, Kirmizialtin S. Molecular machines. Curr Opin Struct Biol 2013; 23:206-11. [PMID: 23305848 DOI: 10.1016/j.sbi.2012.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 12/12/2022]
Abstract
Molecular machines (MM) are essential components of living cells. They conduct mechanical work, transport materials into and out of cells, assist in processing enzymatic reactions, and more. Their operations are frequently combined with significant conformational transitions. Computational studies of these conformational transitions and their coupling to molecular functions are discussed. It is argued that coarse descriptions of these molecules which are based on mass density and shape provide useful information on directions of action. It is further argued that MM are likely to have well focused and narrow reaction pathways. The proposal for such pathways is supported by evolutionary analyses of homologous machines. Finally, these observations are used to build atomically detailed models of these systems that are making the link from structure to functions (kinetics and thermodynamics). For that purpose enhanced sampling techniques are required.
Collapse
Affiliation(s)
- Ron Elber
- Department of Chemistry and Biochemistry, University of Texas at Austin, 105 East 24th St., Stop A5300 Austin, TX 78712-0165, USA.
| | | |
Collapse
|
40
|
Lieberman KR, Dahl JM, Mai AH, Akeson M, Wang H. Dynamics of the translocation step measured in individual DNA polymerase complexes. J Am Chem Soc 2012; 134:18816-23. [PMID: 23101437 DOI: 10.1021/ja3090302] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Complexes formed between the bacteriophage phi29 DNA polymerase (DNAP) and DNA fluctuate between the pre-translocation and post-translocation states on the millisecond time scale. These fluctuations can be directly observed with single-nucleotide precision in real-time ionic current traces when individual complexes are captured atop the α-hemolysin nanopore in an applied electric field. We recently quantified the equilibrium across the translocation step as a function of applied force (voltage), active-site proximal DNA sequences, and the binding of complementary dNTP. To gain insight into the mechanism of this step in the DNAP catalytic cycle, in this study, we have examined the stochastic dynamics of the translocation step. The survival probability of complexes in each of the two states decayed at a single exponential rate, indicating that the observed fluctuations are between two discrete states. We used a robust mathematical formulation based on the autocorrelation function to extract the forward and reverse rates of the transitions between the pre-translocation state and the post-translocation state from ionic current traces of captured phi29 DNAP-DNA binary complexes. We evaluated each transition rate as a function of applied voltage to examine the energy landscape of the phi29 DNAP translocation step. The analysis reveals that active-site proximal DNA sequences influence the depth of the pre-translocation and post-translocation state energy wells and affect the location of the transition state along the direction of the translocation.
Collapse
Affiliation(s)
- Kate R Lieberman
- Biomolecular Engineering, University of California, Santa Cruz, 95064, United States.
| | | | | | | | | |
Collapse
|
41
|
Ovchinnikov V, Karplus M. Analysis and elimination of a bias in targeted molecular dynamics simulations of conformational transitions: application to calmodulin. J Phys Chem B 2012; 116:8584-603. [PMID: 22409258 PMCID: PMC3406239 DOI: 10.1021/jp212634z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The popular targeted molecular dynamics (TMD) method for generating transition paths in complex biomolecular systems is revisited. In a typical TMD transition path, the large-scale changes occur early and the small-scale changes tend to occur later. As a result, the order of events in the computed paths depends on the direction in which the simulations are performed. To identify the origin of this bias, and to propose a method in which the bias is absent, variants of TMD in the restraint formulation are introduced and applied to the complex open ↔ closed transition in the protein calmodulin. Due to the global best-fit rotation that is typically part of the TMD method, the simulated system is guided implicitly along the lowest-frequency normal modes, until the large spatial scales associated with these modes are near the target conformation. The remaining portion of the transition is described progressively by higher-frequency modes, which correspond to smaller-scale rearrangements. A straightforward modification of TMD that avoids the global best-fit rotation is the locally restrained TMD (LRTMD) method, in which the biasing potential is constructed from a number of TMD potentials, each acting on a small connected portion of the protein sequence. With a uniform distribution of these elements, transition paths that lack the length-scale bias are obtained. Trajectories generated by steered MD in dihedral angle space (DSMD), a method that avoids best-fit rotations altogether, also lack the length-scale bias. To examine the importance of the paths generated by TMD, LRTMD, and DSMD in the actual transition, we use the finite-temperature string method to compute the free energy profile associated with a transition tube around a path generated by each algorithm. The free energy barriers associated with the paths are comparable, suggesting that transitions can occur along each route with similar probabilities. This result indicates that a broad ensemble of paths needs to be calculated to obtain a full description of conformational changes in biomolecules. The breadth of the contributing ensemble suggests that energetic barriers for conformational transitions in proteins are offset by entropic contributions that arise from a large number of possible paths.
Collapse
|
42
|
Malinen AM, Turtola M, Parthiban M, Vainonen L, Johnson MS, Belogurov GA. Active site opening and closure control translocation of multisubunit RNA polymerase. Nucleic Acids Res 2012; 40:7442-51. [PMID: 22570421 PMCID: PMC3424550 DOI: 10.1093/nar/gks383] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multisubunit RNA polymerase (RNAP) is the central information-processing enzyme in all cellular life forms, yet its mechanism of translocation along the DNA molecule remains conjectural. Here, we report direct monitoring of bacterial RNAP translocation following the addition of a single nucleotide. Time-resolved measurements demonstrated that translocation is delayed relative to nucleotide incorporation and occurs shortly after or concurrently with pyrophosphate release. An investigation of translocation equilibrium suggested that the strength of interactions between RNA 3′ nucleotide and nucleophilic and substrate sites determines the translocation state of transcription elongation complexes, whereas active site opening and closure modulate the affinity of the substrate site, thereby favoring the post- and pre-translocated states, respectively. The RNAP translocation mechanism is exploited by the antibiotic tagetitoxin, which mimics pyrophosphate and induces backward translocation by closing the active site.
Collapse
Affiliation(s)
- Anssi M Malinen
- Department of Biochemistry and Food Chemistry, University of Turku, 20014, Turku, Finland
| | | | | | | | | | | |
Collapse
|
43
|
Larson MH, Zhou J, Kaplan CD, Palangat M, Kornberg RD, Landick R, Block SM. Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proc Natl Acad Sci U S A 2012; 109:6555-60. [PMID: 22493230 PMCID: PMC3340090 DOI: 10.1073/pnas.1200939109] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During transcription, RNA polymerase II (RNAPII) must select the correct nucleotide, catalyze its addition to the growing RNA transcript, and move stepwise along the DNA until a gene is fully transcribed. In all kingdoms of life, transcription must be finely tuned to ensure an appropriate balance between fidelity and speed. Here, we used an optical-trapping assay with high spatiotemporal resolution to probe directly the motion of individual RNAPII molecules as they pass through each of the enzymatic steps of transcript elongation. We report direct evidence that the RNAPII trigger loop, an evolutionarily conserved protein subdomain, serves as a master regulator of transcription, affecting each of the three main phases of elongation, namely: substrate selection, translocation, and catalysis. Global fits to the force-velocity relationships of RNAPII and its trigger loop mutants support a Brownian ratchet model for elongation, where the incoming NTP is able to bind in either the pre- or posttranslocated state, and movement between these two states is governed by the trigger loop. Comparison of the kinetics of pausing by WT and mutant RNAPII under conditions that promote base misincorporation indicate that the trigger loop governs fidelity in substrate selection and mismatch recognition, and thereby controls aspects of both transcriptional accuracy and rate.
Collapse
Affiliation(s)
| | | | - Craig D. Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843; and
| | - Murali Palangat
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | | | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Steven M. Block
- Biophysics Program
- Department of Applied Physics
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
44
|
Yu J, Oster G. A small post-translocation energy bias aids nucleotide selection in T7 RNA polymerase transcription. Biophys J 2012; 102:532-41. [PMID: 22325276 PMCID: PMC3274829 DOI: 10.1016/j.bpj.2011.12.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 01/22/2023] Open
Abstract
The RNA polymerase (RNAP) of bacteriophage T7 is a single subunit enzyme that can transcribe DNA to RNA in the absence of additional protein factors. In this work, we present a model of T7 RNAP translocation during elongation. Based on structural information and experimental data from single-molecule force measurements, we show that a small component of facilitated translocation or power stroke coexists with the Brownian-ratchet-driven motions, and plays a crucial role in nucleotide selection at pre-insertion. The facilitated translocation is carried out by the conserved Tyr(639) that moves its side chain into the active site, pushing aside the 3'-end of the RNA, and forming a locally stabilized post-translocation intermediate. Pre-insertion of an incoming nucleotide into this stabilized intermediate state ensures that Tyr(639) closely participates in selecting correct nucleotides. A similar translocation mechanism has been suggested for multi-subunit RNAPs involving the bridge-helix bending. Nevertheless, the bent bridge-helix sterically prohibits nucleotide binding in the post-transolocation intermediate analog; moreover, the analog is not stabilized unless an inhibitory protein factor binds to the enzyme. Using our scheme, we also compared the efficiencies of different strategies for nucleotide selection, and examined effects of facilitated translocation on forward tracking.
Collapse
Affiliation(s)
- Jin Yu
- Departments of Molecular and Cell Biology, and Environmental Science, Policy and Management, University of California, Berkeley, California
| | - George Oster
- Departments of Molecular and Cell Biology, and Environmental Science, Policy and Management, University of California, Berkeley, California
| |
Collapse
|
45
|
Da LT, Wang D, Huang X. Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase II. J Am Chem Soc 2012; 134:2399-406. [PMID: 22206270 PMCID: PMC3273452 DOI: 10.1021/ja210656k] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pyrophosphate ion (PP(i)) release after nucleotide incorporation is a necessary step for RNA polymerase II (pol II) to enter the next nucleotide addition cycle during transcription elongation. However, the role of pol II residues in PP(i) release and the mechanistic relationship between PP(i) release and the conformational change of the trigger loop remain unclear. In this study, we constructed a Markov state model (MSM) from extensive all-atom molecular dynamics (MD) simulations in the explicit solvent to simulate the PP(i) release process along the pol II secondary channel. Our results show that the trigger loop has significantly larger intrinsic motion after catalysis and formation of PP(i), which in turn aids PP(i) release mainly through the hydrogen bonding between the trigger loop residue H1085 and the (Mg-PP(i))(2-) group. Once PP(i) leaves the active site, it adopts a hopping model through several highly conserved positively charged residues such as K752 and K619 to release from the pol II pore region of the secondary channel. These positive hopping sites form favorable interactions with PP(i) and generate four kinetically metastable states as identified by our MSM. Furthermore, our single-mutant simulations suggest that H1085 and K752 aid PP(i) exit from the active site after catalysis, whereas K619 facilitates its passage through the secondary channel. Finally, we suggest that PP(i) release could help the opening motion of the trigger loop, even though PP(i) release precedes full opening of the trigger loop due to faster PP(i) dynamics. Our simulations provide predictions to guide future experimental tests.
Collapse
Affiliation(s)
- Lin-Tai Da
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0625, USA
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
46
|
Nakane S, Ishikawa H, Nakagawa N, Kuramitsu S, Masui R. The structural basis of the kinetic mechanism of a gap-filling X-family DNA polymerase that binds Mg(2+)-dNTP before binding to DNA. J Mol Biol 2012; 417:179-96. [PMID: 22306405 DOI: 10.1016/j.jmb.2012.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/09/2012] [Accepted: 01/17/2012] [Indexed: 11/30/2022]
Abstract
DNA with single-nucleotide (1-nt) gaps can arise during various DNA processing events. These lesions are repaired by X-family DNA polymerases (PolXs) with high gap-filling activity. Some PolXs can bind productively to dNTPs in the absence of DNA and fill these 1-nt gaps. Although PolXs have a crucial role in efficient gap filling, currently, little is known of the kinetic and structural details of their productive dNTP binding. Here, we show that Thermus thermophilus HB8 PolX (ttPolX) had strong binding affinity for Mg(2+)-dNTPs in the absence of DNA and that it follows a Theorell-Chance (hit-and-run) mechanism with nucleotide binding first. Comparison of the intermediate crystal structures of ttPolX in a binary complex with dGTP and in a ternary complex with 1-nt gapped DNA and Mg(2+)-ddGTP revealed that the conformation of the incoming nucleotide depended on whether or not DNA was present. Furthermore, the Lys263 residue located between two guanosine conformations was essential to the strong binding affinity of the enzyme. The ability to bind to either syn-dNTP or anti-dNTP and the involvement of a Theorell-Chance mechanism are key aspects of the strong nucleotide-binding and efficient gap-filling activities of ttPolX.
Collapse
Affiliation(s)
- Shuhei Nakane
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
47
|
Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proc Natl Acad Sci U S A 2011; 108:17644-8. [PMID: 22006298 DOI: 10.1073/pnas.1114496108] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Even though high-fidelity polymerases copy DNA with remarkable accuracy, some base-pair mismatches are incorporated at low frequency, leading to spontaneous mutagenesis. Using high-resolution X-ray crystallographic analysis of a DNA polymerase that catalyzes replication in crystals, we observe that a C • A mismatch can mimic the shape of cognate base pairs at the site of incorporation. This shape mimicry enables the mismatch to evade the error detection mechanisms of the polymerase, which would normally either prevent mismatch incorporation or promote its nucleolytic excision. Movement of a single proton on one of the mismatched bases alters the hydrogen-bonding pattern such that a base pair forms with an overall shape that is virtually indistinguishable from a canonical, Watson-Crick base pair in double-stranded DNA. These observations provide structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis, a long-standing concept that has been difficult to demonstrate directly.
Collapse
|
48
|
Schlick T, Collepardo-Guevara R, Halvorsen LA, Jung S, Xiao X. Biomolecularmodeling and simulation: a field coming of age. Q Rev Biophys 2011; 44:191-228. [PMID: 21226976 PMCID: PMC3700731 DOI: 10.1017/s0033583510000284] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We assess the progress in biomolecular modeling and simulation, focusing on structure prediction and dynamics, by presenting the field’s history, metrics for its rise in popularity, early expressed expectations, and current significant applications. The increases in computational power combined with improvements in algorithms and force fields have led to considerable success, especially in protein folding, specificity of ligand/biomolecule interactions, and interpretation of complex experimental phenomena (e.g. NMR relaxation, protein-folding kinetics and multiple conformational states) through the generation of structural hypotheses and pathway mechanisms. Although far from a general automated tool, structure prediction is notable for proteins and RNA that preceded the experiment, especially by knowledge-based approaches. Thus, despite early unrealistic expectations and the realization that computer technology alone will not quickly bridge the gap between experimental and theoretical time frames, ongoing improvements to enhance the accuracy and scope of modeling and simulation are propelling the field onto a productive trajectory to become full partner with experiment and a field on its own right.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA.
| | | | | | | | | |
Collapse
|
49
|
Wu EY, Beese LS. The structure of a high fidelity DNA polymerase bound to a mismatched nucleotide reveals an "ajar" intermediate conformation in the nucleotide selection mechanism. J Biol Chem 2011; 286:19758-67. [PMID: 21454515 DOI: 10.1074/jbc.m110.191130] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To achieve accurate DNA synthesis, DNA polymerases must rapidly sample and discriminate against incorrect nucleotides. Here we report the crystal structure of a high fidelity DNA polymerase I bound to DNA primer-template caught in the act of binding a mismatched (dG:dTTP) nucleoside triphosphate. The polymerase adopts a conformation in between the previously established "open" and "closed" states. In this "ajar" conformation, the template base has moved into the insertion site but misaligns an incorrect nucleotide relative to the primer terminus. The displacement of a conserved active site tyrosine in the insertion site by the template base is accommodated by a distinctive kink in the polymerase O helix, resulting in a partially open ternary complex. We suggest that the ajar conformation allows the template to probe incoming nucleotides for complementarity before closure of the enzyme around the substrate. Based on solution fluorescence, kinetics, and crystallographic analyses of wild-type and mutant polymerases reported here, we present a three-state reaction pathway in which nucleotides either pass through this intermediate conformation to the closed conformation and catalysis or are misaligned within the intermediate, leading to destabilization of the closed conformation.
Collapse
Affiliation(s)
- Eugene Y Wu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
50
|
In silico study of the inhibition of DNA polymerase by a novel catalpol derivative. J Mol Model 2011; 17:2717-23. [PMID: 21229371 DOI: 10.1007/s00894-010-0938-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 12/16/2010] [Indexed: 10/18/2022]
Abstract
In this work, a novel catalpol derivative (6,10,2',6'-tetraacetyl-O-catalpol), which was previously obtained by our group and shown experimentally to inhibit a type of Taq DNA polymerase, was studied in silico. Studies of the interaction of 6,10,2',6'-tetraacetyl-O-catalpol with the Klentaq fragment of the Taq DNA polymerase I from Thermus aquaticus helped to elucidate the mechanism of inhibition of the enzyme, and offered valuable information that can be used to propose substrate structural modifications aimed at increasing the binding affinity. Classical and semi-empirical methods were used to characterize the conformational preferences of this organic compound in solution. Using docking simulations, the most probable binding mode was found, and the stabilities of the docked solutions were tested in a series of molecular dynamics experiments. Results indicated that the mechanism of inhibition may be competitive, which agrees with previous binding experiments done with 6,10,2',6'-tetraacetyl-O-catalpol.
Collapse
|