1
|
Stauberová V, Kubeša B, Joseph M, Benedet M, Furlan B, Buriánková K, Ulrych A, Kupčík R, Vomastek T, Massidda O, Tsui HCT, Winkler ME, Branny P, Doubravová L. GpsB Coordinates StkP Signaling as a PASTA Kinase Adaptor in Streptococcus pneumoniae Cell Division. J Mol Biol 2024; 436:168797. [PMID: 39303764 DOI: 10.1016/j.jmb.2024.168797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
StkP, the Ser/Thr protein kinase of the major human pathogen Streptococcus pneumoniae, monitors cell wall signals and regulates growth and division in response. In vivo, StkP interacts with GpsB, a cell division protein required for septal ring formation and closure, that affects StkP-dependent phosphorylation. Here, we report that although StkP has basal intrinsic kinase activity, GpsB promotes efficient autophosphorylation of StkP and phosphorylation of StkP substrates. Phosphoproteomic analyzes showed that GpsB is phosphorylated at several Ser and Thr residues. We confirmed that StkP directly phosphorylates GpsB in vitro and in vivo, with T79 and T83 being the major phosphorylation sites. In vitro, phosphoablative GpsB substitutions had a lower potential to stimulate StkP activity, whereas phosphomimetic substitutions were functional in terms of StkP activation. In vivo, substitutions of GpsB phosphoacceptor residues, either phosphoablative or mimetic, had a negative effect on GpsB function, resulting in reduced StkP-dependent phosphorylation and impaired cell division. The bacterial two-hybrid assay and co-immunoprecipitation of GpsB from cells with differentially active StkP indicated that increased phosphorylation of GpsB resulted in a more efficient interaction of GpsB with StkP. Our data suggest that GpsB acts as an adaptor that directly promotes StkP activity by mediating interactions within the StkP signaling hub, ensuring StkP recruitment into the complex and substrate specificity. We present a model that interaction of StkP with GpsB and its phosphorylation and dephosphorylation dynamically modulate kinase activity during exponential growth and under cell wall stress of S. pneumoniae, ensuring the proper functioning of the StkP signaling pathway.
Collapse
Affiliation(s)
- Václava Stauberová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Bohumil Kubeša
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Merrin Joseph
- Department of Biology, Indiana University Bloomington, 1001 E 3rd Street, Bloomington, IN 47405-7005, USA
| | - Mattia Benedet
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Berenice Furlan
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Karolína Buriánková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Aleš Ulrych
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Rudolf Kupčík
- Biomedical Research Centre, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Tomáš Vomastek
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Ho-Ching T Tsui
- Department of Biology, Indiana University Bloomington, 1001 E 3rd Street, Bloomington, IN 47405-7005, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, 1001 E 3rd Street, Bloomington, IN 47405-7005, USA
| | - Pavel Branny
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Linda Doubravová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
2
|
Parsons M, Parsons B, Dean M, DeRocher AE, Islam Z, Maly DJ, Jensen BC. An essential Trypanosoma brucei protein kinase: a functional analysis of regulation and the identification of inhibitors. FRONTIERS IN PARASITOLOGY 2023; 2:1272378. [PMID: 38099268 PMCID: PMC10720658 DOI: 10.3389/fpara.2023.1272378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Introduction The protein serine/threonine kinase AEK1 is essential in the pathogenic stage of Trypanosoma brucei, the causative agent of African trypanosomiasis. AEK1 is a member of the AGC protein kinase family, although it is not closely related to a specific human AGC kinase. Our previous chemical genetic studies showed that targeted inhibition of AEK1 in parasites expressing analog-sensitive AEK1 blocked parasite growth and enhanced survival of infected mice. Methods To further validate AEK1 as a drug target, we used the chemical genetic system to determine the effect of a 24 hour loss of AEK1 activity on cell viability at the clonal level. A panel of 429 protein kinase inhibitors were screened against the wild-type protein for binding, using time-resolved fluorescence energy transfer (TR-FRET). The role of phosphorylation sites and motifs was probed by determining whether expression of proteins harboring mutations in these sequences could rescue AEK1 conditional knockout parasites. To determine the effect that mutations in the phosphosites have on the kinase activity of cellular AEK1 we compared the in vitro kinase activity of mutant and wild-type proteins immunoprecipitated from parasite lysates using the exogenous substrate MBP. Finally, the tagged AEK1 protein was localized by deconvolution microscopy. Results After a 24 hour exposure to an AEK1 inhibitory analog in the chemical genetic system, less than five percent of the remaining live cells can clonally expand, further validating AEK1 as a drug target. In the AEK1 inhibitor screening assay, we identified 17 hit compounds. Complementation studies showed that of the two known phosphorylation sites in the activation loop; mutation of one abolished function while mutation of the other had no discernable effect. Mutation of the other two AEK1 phosphosites gave intermediate phenotypes. Mutations in either the hydrophobic motif at the C-terminus of the protein or in the region of AEK1 predicted to bind the hydrophobic motif were also required for function. All parasites with defective AEK1 showed reduced proliferation and defects in cytokinesis, although the tested mutations differed in terms of the extent of cell death. Kinase activity of immunoprecipitated AEK1 phosphosite mutants largely paralleled the effects seen in complementation studies, although the mutation of the phosphosite adjacent to the hydrophobic motif had a greater impact on activity than predicted by the complementation studies. AEK1 was localized to cytoplasmic puncta distinct from glycosomes and acidocalcisomes. Discussion The rapid loss of viability of cells inhibited for AEK1 supports the idea that a short course of treatment that target AEK1 may be sufficient for treatment of people or animals infected with T. brucei. Key regulatory elements between AEK1 and its closest mammalian homolog appear to be largely conserved despite the vast evolutionary distance between mammals and T. brucei. The presence of AEK1 in cytoplasmic puncta raises the possibility that its localization may also play a role in functional activity.
Collapse
Affiliation(s)
- Marilyn Parsons
- Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA
| | - Ben Parsons
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Marissa Dean
- Seattle Children’s Research Institute, Seattle, WA, USA
| | | | - Zeba Islam
- Department of Chemistry, University of Washington, Seattle, WA
| | - Dustin J. Maly
- Department of Chemistry, University of Washington, Seattle, WA
| | | |
Collapse
|
3
|
Vargas B, Boslett J, Yates N, Sluis-Cremer N. Mechanism by Which PF-3758309, a Pan Isoform Inhibitor of p21-Activated Kinases, Blocks Reactivation of HIV-1 Latency. Biomolecules 2023; 13:100. [PMID: 36671485 PMCID: PMC9855626 DOI: 10.3390/biom13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
The "block and lock" strategy is one approach that might elicit a sterilizing cure for HIV-1 infection. The "block" refers to a compound's ability to inhibit latent HIV-1 proviral transcription, while the "lock" refers to its capacity to induce permanent proviral silencing. We previously identified PF-3758309, a pan-isoform inhibitor of p21-activated kinases (PAKs), as a potent inhibitor of HIV-1 latency reversal. The goal of this study was to define the mechanism(s) involved. We found that both 24ST1NLESG cells (a cell line model of HIV-1 latency) and purified CD4+ naïve and central memory T cells express high levels of PAK2 and lower levels of PAK1 and PAK4. Knockdown of PAK1 or PAK2, but not PAK4, in 24ST1NLESG cells resulted in a modest, but statistically significant, decrease in the magnitude of HIV-1 latency reversal. Overexpression of PAK1 significantly increased the magnitude of latency reversal. A phospho-protein array analysis revealed that PF-3758309 down-regulates the NF-κB signaling pathway, which provides the most likely mechanism by which PF-3758309 inhibits latency reversal. Finally, we used cellular thermal shift assays combined with liquid chromatography and mass spectrometry to ascertain whether PF-3758309 off-target binding contributed to its activity. In 24ST1NLESG cells and in peripheral blood mononuclear cells, PF-3758309 bound to mitogen-activated protein kinase 1 and protein kinase A; however, knockdown of either of these kinases did not impact HIV-1 latency reversal. Collectively, our study suggests that PAK1 and PAK2 play a key role in the maintenance of HIV-1 latency.
Collapse
Affiliation(s)
- Benni Vargas
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - James Boslett
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nathan Yates
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Chemistry, University of Pittsburgh School of Medicine; Pittsburgh, PA 15260, USA
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
4
|
Nicolaou ST, Kannan S, Warwicker J, Verma CS. Activation of p53: How phosphorylated Ser15 triggers sequential phosphorylation of p53 at Thr18 by CK1δ. Proteins 2022; 90:2009-2022. [PMID: 35752942 PMCID: PMC9796392 DOI: 10.1002/prot.26393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 01/01/2023]
Abstract
The N-terminal transactivation domain (TAD) of p53 is a disordered region with multiple phosphorylation sites. Phosphorylation at Thr18 is crucial for the release of p53 from its negative regulator, MDM2. In stressed cells, CK1δ is responsible for phosphorylating Thr18, but requires Ser15 to be phosphorylated. To understand the mechanistic underpinnings of this sequential phosphorylation, molecular modeling and molecular dynamics simulation studies of these phosphorylation events were carried out. Our models suggest that a positively charged region on CK1δ near the adenosine triphosphate (ATP) binding pocket, which is conserved across species, sequesters the negatively charged pSer15, thereby constraining the positioning of the rest of the peptide, such that the side chain of Thr18 is positioned close to the γ-phosphate of ATP. Furthermore, our studies show that the phosphorylated p53 TAD1 (p53pSer15) peptide binds more strongly to CK1δ than does p53. p53 adopts a helical structure when bound to CK1δ, which is lost upon phosphorylation at Ser15, thus gaining higher flexibility and ability to morph into the binding site. We propose that upon phosphorylation at Ser15 the p53 TAD1 peptide binds to CK1δ through an electrostatically driven induced fit mechanism resulting in a flanking fuzzy complex.
Collapse
Affiliation(s)
- Sonia T. Nicolaou
- Faculty of Biology, Medicine and Health, School of Biological SciencesManchester Institute of Biotechnology, University of ManchesterManchesterUK,Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR)SingaporeSingapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR)SingaporeSingapore
| | - Jim Warwicker
- Faculty of Biology, Medicine and Health, School of Biological SciencesManchester Institute of Biotechnology, University of ManchesterManchesterUK
| | - Chandra S. Verma
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR)SingaporeSingapore,School of Biological SciencesNanyang Technological UniversitySingaporeSingapore,Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
5
|
Inka2, a novel Pak4 inhibitor, regulates actin dynamics in neuronal development. PLoS Genet 2022; 18:e1010438. [PMID: 36301793 PMCID: PMC9612522 DOI: 10.1371/journal.pgen.1010438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
The actin filament is a fundamental part of the cytoskeleton defining cell morphology and regulating various physiological processes, including filopodia formation and dendritic spinogenesis of neurons. Serine/threonine-protein kinase Pak4, an essential effector, links Rho GTPases to control actin polymerization. Previously, we identified the Inka2 gene, a novel mammalian protein exhibiting sequence similarity to Inka1, which serves as a possible inhibitor for Pak4. Although Inka2 is dominantly expressed in the nervous system and involved in focal-adhesion dynamics, its molecular role remains unclear. Here, we found that Inka2-iBox directly binds to Pak4 catalytic domain to suppress actin polymerization. Inka2 promoted actin depolymerization and inhibited the formation of cellular protrusion caused by Pak4 activation. We further generated the conditional knockout mice of the Inka2 gene. The beta-galactosidase reporter indicated the preferential Inka2 expression in the dorsal forebrain neurons. Cortical pyramidal neurons of Inka2-/- mice exhibited decreased density and aberrant morphology of dendritic spines with marked activation/phosphorylation of downstream molecules of Pak4 signal cascade, including LIMK and Cofilin. These results uncovered the unexpected function of endogenous Pak4 inhibitor in neurons. Unlike Inka1, Inka2 is a critical mediator for actin reorganization required for dendritic spine development. Actin filaments are an essential part of the cytoskeleton defining cell morphology and regulating various cellular processes, such as cell migration and synapse formation in the brain. Actin polymerization is controlled by the kinase activity of the Pak4 signaling cascade, including LIMK and Cofilin. Previously, we identified the Inka2 gene, which is strongly expressed in the mammalian central nervous system and a similar sequence as Inka1. Inka1 was reported to serve as a Pak4 inhibitor in cancer cell lines; however, the physiological function of Inka2 is unclear. In this study, we found that (i) Inka2 overexpression inhibits the formation of cell-protrusion caused by Pak4 activation; (ii) Inka2 directly binds to the catalytic domain of Pak4 to inhibit intracellular actin polymerization; (iii) Inka2 is specifically expressed in neurons in the forebrain region, including the cerebral cortex and hippocampus that are known to be essential for brain plasticity, such as learning and memory; and (iv) cortical neurons of Inka2-deficient mice showed decreased synapse formation and abnormal spine morphology, probably due to the marked phosphorylation of LIMK and Cofilin. These results indicate that Inka2 is an endogenous Pak4 inhibitor in neurons required for normal synapse formation through the modulation of actin reorganization.
Collapse
|
6
|
Baskaran Y, Tay FPL, Ng EYW, Swa CLF, Wee S, Gunaratne J, Manser E. Proximity proteomics identifies PAK4 as a component of Afadin-Nectin junctions. Nat Commun 2021; 12:5315. [PMID: 34493720 PMCID: PMC8423818 DOI: 10.1038/s41467-021-25011-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Human PAK4 is an ubiquitously expressed p21-activated kinase which acts downstream of Cdc42. Since PAK4 is enriched in cell-cell junctions, we probed the local protein environment around the kinase with a view to understanding its location and substrates. We report that U2OS cells expressing PAK4-BirA-GFP identify a subset of 27 PAK4-proximal proteins that are primarily cell-cell junction components. Afadin/AF6 showed the highest relative biotin labelling and links to the nectin family of homophilic junctional proteins. Reciprocally >50% of the PAK4-proximal proteins were identified by Afadin BioID. Co-precipitation experiments failed to identify junctional proteins, emphasizing the advantage of the BioID method. Mechanistically PAK4 depended on Afadin for its junctional localization, which is similar to the situation in Drosophila. A highly ranked PAK4-proximal protein LZTS2 was immuno-localized with Afadin at cell-cell junctions. Though PAK4 and Cdc42 are junctional, BioID analysis did not yield conventional cadherins, indicating their spatial segregation. To identify cellular PAK4 substrates we then assessed rapid changes (12') in phospho-proteome after treatment with two PAK inhibitors. Among the PAK4-proximal junctional proteins seventeen PAK4 sites were identified. We anticipate mammalian group II PAKs are selective for the Afadin/nectin sub-compartment, with a demonstrably distinct localization from tight and cadherin junctions.
Collapse
Affiliation(s)
- Yohendran Baskaran
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Felicia Pei-Ling Tay
- FB Laboratory, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Elsa Yuen Wai Ng
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Claire Lee Foon Swa
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Sheena Wee
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Edward Manser
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore.
- Department of Pharmacology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Märker R, Blank-Landeshammer B, Beier-Rosberger A, Sickmann A, Kück U. Phosphoproteomic analysis of STRIPAK mutants identifies a conserved serine phosphorylation site in PAK kinase CLA4 to be important in fungal sexual development and polarized growth. Mol Microbiol 2020; 113:1053-1069. [PMID: 32022307 DOI: 10.1111/mmi.14475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
The highly conserved striatin-interacting phosphatases and kinases (STRIPAK) complex regulates phosphorylation/dephosphorylation of developmental proteins in eukaryotic microorganisms, animals and humans. To first identify potential targets of STRIPAK, we performed extensive isobaric tags for relative and absolute quantification-based proteomic and phosphoproteomic analyses in the filamentous fungus Sordaria macrospora. In total, we identified 4,193 proteins and 2,489 phosphoproteins, which are represented by 10,635 phosphopeptides. By comparing phosphorylation data from wild type and mutants, we identified 228 phosphoproteins to be regulated in all three STRIPAK mutants, thus representing potential targets of STRIPAK. To provide an exemplarily functional analysis of a STRIPAK-dependent phosphorylated protein, we selected CLA4, a member of the conserved p21-activated kinase family. Functional characterization of the ∆cla4 deletion strain showed that CLA4 controls sexual development and polarized growth. To determine the functional relevance of CLA4 phosphorylation and the impact of specific phosphorylation sites on development, we next generated phosphomimetic and -deficient variants of CLA4. This analysis identified (de)phosphorylation of a highly conserved serine (S685) residue in the catalytic domain of CLA4 as being important for fungal cellular development. Collectively, these analyses significantly contribute to the understanding of the mechanistic function of STRIPAK as a phosphatase and kinase signaling complex.
Collapse
Affiliation(s)
- Ramona Märker
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | | | - Anna Beier-Rosberger
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| |
Collapse
|
8
|
Activation of RSK by phosphomimetic substitution in the activation loop is prevented by structural constraints. Sci Rep 2020; 10:591. [PMID: 31953410 PMCID: PMC6969211 DOI: 10.1038/s41598-019-56937-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/19/2019] [Indexed: 11/08/2022] Open
Abstract
The activation of the majority of AGC kinases is regulated by two phosphorylation events on two conserved serine/threonine residues located on the activation loop and on the hydrophobic motif, respectively. In AGC kinase family, phosphomimetic substitutions with aspartate or glutamate, leading to constitutive activation, have frequently occurred at the hydrophobic motif site. On the contrary, phosphomimetic substitutions in the activation loop are absent across the evolution of AGC kinases. This observation is explained by the failure of aspartate and glutamate to mimic phosphorylatable serine/threonine in this regulatory site. By detailed 3D structural simulations of RSK2 and further biochemical evaluation in cells, we show that the phosphomimetic residue on the activation loop fails to form a critical salt bridge with R114, necessary to reorient the αC-helix and to activate the protein. By a phylogenetic analysis, we point at a possible coevolution of a phosphorylatable activation loop and the presence of a conserved positively charged amino acid on the αC-helix. In sum, our analysis leads to the unfeasibility of phosphomimetic substitution in the activation loop of RSK and, at the same time, highlights the peculiar structural role of activation loop phosphorylation.
Collapse
|
9
|
Biswal J, Jayaprakash P, Suresh Kumar R, Venkatraman G, Poopandi S, Rangasamy R, Jeyaraman J. Identification of Pak1 inhibitors using water thermodynamic analysis. J Biomol Struct Dyn 2019; 38:13-31. [PMID: 30661460 DOI: 10.1080/07391102.2019.1567393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
p21-activated kinases (Paks) play an integral component in various cellular diverse processes. The full activation of Pak is dependent upon several serine residues present in the N-terminal region, a threonine present at the activation loop, and finally the phosphorylation of these residues ensure the complete activation of Pak1. The present study deals with the identification of novel potent candidates of Pak1 using computational methods as anti-cancer compounds. A diverse energy based pharmacophore (e-pharmacophore) was developed using four co-crystal inhibitors of Pak1 having pharmacophore features of 5 (DRDRR), 6 (DRHADR), and 7 (RRARDRP and DRRDADH) hypotheses. These models were used for rigorous screening against e-molecule database. The obtained hits were filtered using ADME/T and molecular docking to identify the high affinity binders. These hits were subjected to hierarchical clustering using dendritic fingerprint inorder to identify structurally diverse molecules. The diverse hits were scored against generated water maps to obtain WM/MM ΔG binding energy. Furthermore, molecular dynamics simulation and density functional theory calculations were performed on the final hits to understand the stability of the complexes. Five structurally diverse novel Pak1 inhibitors (4835785, 32198676, 32407813, 76038049, and 32945545) were obtained from virtual screening, water thermodynamics and WM/MM ΔG binding energy. All hits revealed similar mode of binding pattern with the hinge region residues replacing the unstable water molecules in the binding site. The obtained novel hits could be used as a platform to design potent drugs that could be experimentally tested against cancer patients having increased Pak1 expression.
Collapse
Affiliation(s)
- Jayashree Biswal
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| | - Prajisha Jayaprakash
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| | - Rayala Suresh Kumar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Human Genetics College of Biomedical Sciences, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Saritha Poopandi
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| | - Raghu Rangasamy
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| |
Collapse
|
10
|
Activating Mutations in PAK1, Encoding p21-Activated Kinase 1, Cause a Neurodevelopmental Disorder. Am J Hum Genet 2018; 103:579-591. [PMID: 30290153 DOI: 10.1016/j.ajhg.2018.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
p21-activated kinases (PAKs) are serine/threonine protein kinases acting as effectors of CDC42 and RAC, which are members of the RHO family of small GTPases. PAK1's kinase activity is autoinhibited by homodimerization, whereas CDC42 or RAC1 binding causes PAK1 activation by dimer dissociation. Major functions of the PAKs include actin cytoskeleton reorganization, for example regulation of the cellular protruding activity during cell spreading. We report the de novo PAK1 mutations c.392A>G (p.Tyr131Cys) and c.1286A>G (p.Tyr429Cys) in two unrelated subjects with developmental delay, secondary macrocephaly, seizures, and ataxic gait. We identified enhanced phosphorylation of the PAK1 targets JNK and AKT in fibroblasts of one subject and of c-JUN in those of both subjects compared with control subjects. In fibroblasts of the two affected individuals, we observed a trend toward enhanced PAK1 kinase activity. By using co-immunoprecipitation and size-exclusion chromatography, we observed a significantly reduced dimerization for both PAK1 mutants compared with wild-type PAK1. These data demonstrate that the two PAK1 variants function as activating alleles. In a cell spreading assay, subject-derived fibroblasts showed significant enrichment in cells occupied by filopodia. Interestingly, application of the PAK1 inhibitor FRAX486 completely reversed this cellular phenotype. Together, our data reveal that dominantly acting, gain-of-function PAK1 mutations cause a neurodevelopmental phenotype with increased head circumference, possibly by a combined effect of defective homodimerization and enhanced kinase activity of PAK1. This condition, along with the developmental disorders associated with RAC1 and CDC42 missense mutations, highlight the importance of RHO GTPase members and effectors in neuronal development.
Collapse
|
11
|
Lei R, Lee JP, Francis MB, Kumar S. Structural Regulation of a Neurofilament-Inspired Intrinsically Disordered Protein Brush by Multisite Phosphorylation. Biochemistry 2018; 57:4019-4028. [PMID: 29557644 DOI: 10.1021/acs.biochem.8b00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intrinsically disordered proteins (IDPs) play central roles in numerous cellular processes. While IDP structure and function are often regulated by multisite phosphorylation, the biophysical mechanisms linking these post-translational modifications to IDP structure remain elusive. For example, the intrinsically disordered C-terminal sidearm domain of the neurofilament heavy subunit (NFH-SA) forms a dense brush along axonal NF backbones and is subject to extensive serine phosphorylation. Yet, biophysical insight into the relationship between phosphorylation and structure has been limited by the lack of paradigms in which NF brush conformational responses can be measured in the setting of controlled phosphorylation. Here, we approach this question by immobilizing a recombinant NFH-SA (rNFH-SA) as IDP brushes onto glass, and controllably phosphorylating the sequence in situ with mitogen-activated protein kinase 1 (ERK2) preactivated by mitogen-activated protein kinase kinase (MKK). We then monitor brush height changes using atomic force microscopy, which shows that phosphorylation induces significant brush swelling to an extent that strongly depends upon pH and ionic strength, consistent with a mechanism in which phosphorylation regulates brush structure through local electrostatic interactions. Further consistent with this mechanism, the phosphorylated rNFH-SA brush may be dramatically condensed with micromolar concentrations of divalent cations. Phosphorylation-induced height changes are qualitatively reversible via alkaline phosphatase-mediated dephosphorylation. Our study demonstrates that multisite phosphorylation controls NFH-SA structure through modulation of chain electrostatics and points to a general strategy for engineering IDP-based interfaces that can be reversibly and dynamically modulated by enzymes.
Collapse
Affiliation(s)
| | | | - Matthew B Francis
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | | |
Collapse
|
12
|
Komuro Y, Re S, Kobayashi C, Muneyuki E, Sugita Y. CHARMM Force-Fields with Modified Polyphosphate Parameters Allow Stable Simulation of the ATP-Bound Structure of Ca(2+)-ATPase. J Chem Theory Comput 2015; 10:4133-42. [PMID: 26588553 DOI: 10.1021/ct5004143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adenosine triphosphate (ATP) is an indispensable energy source in cells. In a wide variety of biological phenomena like glycolysis, muscle contraction/relaxation, and active ion transport, chemical energy released from ATP hydrolysis is converted to mechanical forces to bring about large-scale conformational changes in proteins. Investigation of structure-function relationships in these proteins by molecular dynamics (MD) simulations requires modeling of ATP in solution and ATP bound to proteins with accurate force-field parameters. In this study, we derived new force-field parameters for the triphosphate moiety of ATP based on the high-precision quantum calculations of methyl triphosphate. We tested our new parameters on membrane-embedded sarcoplasmic reticulum Ca(2+)-ATPase and four soluble proteins. The ATP-bound structure of Ca(2+)-ATPase remains stable during MD simulations, contrary to the outcome in shorter simulations using original parameters. Similar results were obtained with the four ATP-bound soluble proteins. The new force-field parameters were also tested by investigating the range of conformations sampled during replica-exchange MD simulations of ATP in explicit water. Modified parameters allowed a much wider range of conformational sampling compared with the bias toward extended forms with original parameters. A diverse range of structures agrees with the broad distribution of ATP conformations in proteins deposited in the Protein Data Bank. These simulations suggest that the modified parameters will be useful in studies of ATP in solution and of the many ATP-utilizing proteins.
Collapse
Affiliation(s)
- Yasuaki Komuro
- Graduate School of Science and Engineering, Chuo University , 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.,RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan.,RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Suyong Re
- RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Chigusa Kobayashi
- RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Eiro Muneyuki
- Graduate School of Science and Engineering, Chuo University , 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuji Sugita
- RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan.,RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Quantitative Biology Center, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN iTHES , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
13
|
An in cellulo-derived structure of PAK4 in complex with its inhibitor Inka1. Nat Commun 2015; 6:8681. [PMID: 26607847 PMCID: PMC4674680 DOI: 10.1038/ncomms9681] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/21/2015] [Indexed: 01/09/2023] Open
Abstract
PAK4 is a metazoan-specific kinase acting downstream of Cdc42. Here we describe the structure of human PAK4 in complex with Inka1, a potent endogenous kinase inhibitor. Using single mammalian cells containing crystals 50 μm in length, we have determined the in cellulo crystal structure at 2.95 Å resolution, which reveals the details of how the PAK4 catalytic domain binds cellular ATP and the Inka1 inhibitor. The crystal lattice consists only of PAK4–PAK4 contacts, which form a hexagonal array with channels of 80 Å in diameter that run the length of the crystal. The crystal accommodates a variety of other proteins when fused to the kinase inhibitor. Inka1–GFP was used to monitor the process crystal formation in living cells. Similar derivatives of Inka1 will allow us to study the effects of PAK4 inhibition in cells and model organisms, to allow better validation of therapeutic agents targeting PAK4. PAK4 is a metazoan-specific kinase, which acts downstream of the cell polarity regulator Cdc42. Here, Baskaran et al. determine the structure of PAK4 bound to the endogenous inhibitor Inka1 from crystals that form spontaneously in mammalian cells overexpressing both proteins.
Collapse
|
14
|
Selamat W, Tay PLF, Baskaran Y, Manser E. The Cdc42 Effector Kinase PAK4 Localizes to Cell-Cell Junctions and Contributes to Establishing Cell Polarity. PLoS One 2015; 10:e0129634. [PMID: 26068882 PMCID: PMC4466050 DOI: 10.1371/journal.pone.0129634] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/11/2015] [Indexed: 01/22/2023] Open
Abstract
The serine/threonine kinase PAK4 is a Cdc42 effector whose role is not well understood; overexpression of PAK4 has been associated with some cancers, and there are reports that correlate kinase level with increased cell migration in vitro. Here we report that PAK4 is primarily associated with cell-cell junctions in all the cell lines we tested, and fails to accumulate at focal adhesions or at the leading edge of migrating cells. In U2OS osteosarcoma and MCF-7 breast cancer cell lines, PAK4 depletion did not affect collective cell migration, but affected cell polarization. By contrast, Cdc42 depletion (as reported by many studies) caused a strong defect in junctional assembly in multiple cells lines. We also report that the depletion of PAK4 protein or treatment of cells with the PAK4 inhibitor PF-3758309 can lead to defects in centrosome reorientation (polarization) after cell monolayer wounding. These experiments are consistent with PAK4 forming part of a conserved cell-cell junctional polarity Cdc42 complex. We also confirm β-catenin as a target for PAK4 in these cells. Treatment of cells with PF-3758309 caused inhibition of β-catenin Ser-675 phosphorylation, which is located predominantly at cell-cell junctions.
Collapse
Affiliation(s)
- Widyawilis Selamat
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei-Ling Felicia Tay
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yohendran Baskaran
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ed Manser
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
15
|
Field J, Manser E. The PAKs come of age: Celebrating 18 years of discovery. CELLULAR LOGISTICS 2014; 2:54-58. [PMID: 23125949 PMCID: PMC3485743 DOI: 10.4161/cl.22084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein kinases are versatile signaling molecules that are involved in the regulation most physiological responses. The p21-activated kinases (PAKs) can be activated directly by the small GTPases Rac and Cdc42 and are among the best characterized downstream effectors of these Rho proteins. The structure, substrate specificity and functional role of PAKS are evolutionarily conserved from protozoa to mammals. Vertebrate PAKs are particularly important for cytoskeletal remodeling and focal adhesion assembly, thereby contributing to dynamic processes such as cell migration and synaptic plasticity. This issue of Cellular Logistics focuses on the PAK family of kinases, with ten reviews written by researchers currently working in the field. Here in this introductory overview we highlight some of the most interesting recent discoveries regarding PAK biochemistry and biology. The reviews in this issue cover a range of topics including the atomic structures of PAK1 and PAK4, their role in animals as assessed by knockout studies, and how PAKs are likely to contribute to cancer and neurodegenerative diseases. The promise remains that PAK inhibitors will emerge that validate current pre-clinical studies suggesting that blocking PAK activity will positively contribute to human health.
Collapse
Affiliation(s)
- Jeffrey Field
- Department of Pharmacology; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | | |
Collapse
|
16
|
Zhao ZS, Manser E. PAK family kinases: Physiological roles and regulation. CELLULAR LOGISTICS 2014; 2:59-68. [PMID: 23162738 PMCID: PMC3490964 DOI: 10.4161/cl.21912] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The p21-activated kinases (PAKs) are a family of Ser/Thr protein kinases that are represented by six genes in humans (PAK 1-6), and are found in all eukaryotes sequenced to date. Genetic and knockdown experiments in frogs, fish and mice indicate group I PAKs are widely expressed, required for multiple tissue development, and particularly important for immune and nervous system function in the adult. The group II PAKs (human PAKs 4-6) are more enigmatic, but their restriction to metazoans and presence at cell-cell junctions suggests these kinases emerged to regulate junctional signaling. Studies of protozoa and fungal PAKs show that they regulate cell shape and polarity through phosphorylation of multiple cytoskeletal proteins, including microtubule binding proteins, myosins and septins. This chapter discusses what we know about the regulation of PAKs and their physiological role in different model organisms, based primarily on gene knockout studies.
Collapse
Affiliation(s)
- Zhuo-Shen Zhao
- sGSK Group; Astar Neuroscience Research Partnership; Singapore
| | | |
Collapse
|
17
|
Kim E, Youn H, Kwon T, Son B, Kang J, Yang HJ, Seong KM, Kim W, Youn B. PAK1 Tyrosine Phosphorylation Is Required to Induce Epithelial–Mesenchymal Transition and Radioresistance in Lung Cancer Cells. Cancer Res 2014; 74:5520-31. [DOI: 10.1158/0008-5472.can-14-0735] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Qian W, Park JE, Liu F, Lee KS, Burke TR. Effects on polo-like kinase 1 polo-box domain binding affinities of peptides incurred by structural variation at the phosphoamino acid position. Bioorg Med Chem 2013; 21:3996-4003. [PMID: 22743087 PMCID: PMC3462889 DOI: 10.1016/j.bmc.2012.05.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/03/2012] [Accepted: 05/15/2012] [Indexed: 01/31/2023]
Abstract
Protein-protein interactions (PPIs) mediated by the polo-box domain (PBD) of polo-like kinase 1 (Plk1) serve important roles in cell proliferation. Critical elements in the high affinity recognition of peptides and proteins by PBD are derived from pThr/pSer-residues in the binding ligands. However, there has been little examination of pThr/pSer mimetics within a PBD context. Our current paper compares the abilities of a variety of amino acid residues and derivatives to serve as pThr/pSer replacements by exploring the role of methyl functionality at the pThr β-position and by replacing the phosphoryl group by phosphonic acid, sulfonic acid and carboxylic acids. This work sheds new light on structure activity relationships for PBD recognition of phosphoamino acid mimetics.
Collapse
Affiliation(s)
- Wenjian Qian
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, U. S. A
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U. S. A
| | - Fa Liu
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, U. S. A
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U. S. A
| | - Terrence R. Burke
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, U. S. A
| |
Collapse
|
19
|
Simonson T, Satpati P. Simulating GTP:Mg and GDP:Mg with a simple force field: a structural and thermodynamic analysis. J Comput Chem 2012; 34:836-46. [PMID: 23280996 DOI: 10.1002/jcc.23207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/12/2012] [Accepted: 11/28/2012] [Indexed: 11/06/2022]
Abstract
Di- and tri-phosphate nucleotides are essential cofactors for many proteins, usually in an Mg(2+) -bound form. Proteins like GTPases often detect the difference between NDP and NTP and respond by changing conformations. To study such complexes, simple, fixed charge force fields have been used, which allow long simulations and precise free energy calculations. The preference for NTP or NDP binding depends on many factors, including ligand structure and Mg(2+) coordination and the changes they undergo upon binding. Here, we use a simple force field to examine two Mg(2+) coordination modes for the unbound GDP and GTP: direct, or "Inner Sphere" (IS) coordination by one or more phosphate oxygens and indirect, "Outer Sphere" (OS) coordination involving one or more bridging waters. We compare GTP: and GDP:Mg binding with OS and IS coordination; combining the results with experimental data then indicates that GTP prefers the latter. We also examine different kinds of IS coordination and their sensitivity to a key force field parameter: the optimal Mg:oxygen van der Waals distance Rmin . Increasing Rmin improves the Mg:oxygen distances, the GTP: and GDP:Mg binding affinities, and the fraction of GTP:Mg with β + γ phosphate coordination, but does not improve or change the GTP/GDP affinity difference, which remains much larger than experiment. It has no effect on the free energy of GDP binding to a GTPase.
Collapse
Affiliation(s)
- Thomas Simonson
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France.
| | | |
Collapse
|
20
|
Joseph TL, Lane DP, Verma CS. Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations. PLoS One 2012; 7:e43985. [PMID: 22952838 PMCID: PMC3432064 DOI: 10.1371/journal.pone.0043985] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/27/2012] [Indexed: 11/26/2022] Open
Abstract
Atomistic simulations of a set of stapled alpha helical peptides derived from the BH3 helix of MCL-1 (Stewart et al. (2010) Nat Chem Biol 6: 595–601) complexed to a fragment (residues 172–320) of MCL-1 revealed that the highest affinity is achieved when the staples engage the surface of MCL-1 as has also been demonstrated for p53-MDM2 (Joseph et al. (2010) Cell Cycle 9: 4560–4568; Baek et al. (2012) J Am Chem Soc 134: 103–106). Affinity is also modulated by the ability of the staples to pre-organize the peptides as helices. Molecular dynamics simulations of these stapled BH3 peptides were carried out followed by determination of the energies of interactions using MM/GBSA methods. These show that the location of the staple is a key determinant of a good binding stapled peptide from a bad binder. The good binder derives binding affinity from interactions between the hydrophobic staple and a hydrophobic patch on MCL-1. The position of the staple was varied, guiding the design of new stapled peptides with higher affinities.
Collapse
Affiliation(s)
- Thomas L. Joseph
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore, Singapore
| | - David P. Lane
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Chandra S. Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
21
|
deLeon O, Puglise JM, Liu F, Smits J, ter Beest MB, Zegers MM. Pak1 regulates the orientation of apical polarization and lumen formation by distinct pathways. PLoS One 2012; 7:e41039. [PMID: 22815903 PMCID: PMC3399788 DOI: 10.1371/journal.pone.0041039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/21/2012] [Indexed: 02/06/2023] Open
Abstract
The development of the basic architecture of branching tubules enclosing a central lumen that characterizes most epithelial organs crucially depends on the apico-basolateral polarization of epithelial cells. Signals from the extracellular matrix control the orientation of the apical surface, so that it faces the lumen interior, opposite to cell-matrix adhesion sites. This orientation of the apical surface is thought to be intrinsically linked to the formation of single lumens. We previously demonstrated in three-dimensional cyst cultures of Madin-Darby canine kidney (MDCK) cells that signaling by β1 integrins regulates the orientation of the apical surface, via a mechanism that depends on the activity of the small GTPase Rac1. Here, we investigated whether the Rac1 effector Pak1 is a downstream effector in this pathway. Expression of constitutive active Pak1 phenocopies the effect of β1 integrin inhibition in that it misorients the apical surface and induces a multilumen phenotype. The misorientation of apical surfaces depends on the interaction of active Pak1 with PIX proteins and is linked to defects in basement membrane assembly. In contrast, the multilumen phenotype was independent of PIX and the basement membrane. Therefore, Pak1 likely regulates apical polarization and lumen formation by two distinct pathways.
Collapse
Affiliation(s)
- Orlando deLeon
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Jason M. Puglise
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Fengming Liu
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Jos Smits
- Department of Cell Biology, NCMLS, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martin B. ter Beest
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Mirjam M. Zegers
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
- Genitourinary Medical Oncology UT MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cell Biology, NCMLS, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
22
|
Baskaran Y, Ng YW, Selamat W, Ling FTP, Manser E. Group I and II mammalian PAKs have different modes of activation by Cdc42. EMBO Rep 2012; 13:653-9. [PMID: 22653441 DOI: 10.1038/embor.2012.75] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/25/2012] [Accepted: 05/07/2012] [Indexed: 12/15/2022] Open
Abstract
p21-activated kinases (PAKs) are Cdc42 effectors found in metazoans, fungi and protozoa. They are subdivided into PAK1-like (group I) or PAK4-like (group II) kinases. Human PAK4 is widely expressed and its regulatory mechanism is unknown. We show that PAK4 is strongly inhibited by a newly identified auto-inhibitory domain (AID) formed by amino acids 20 to 68, which is evolutionarily related to that of other PAKs. In contrast to group I kinases, PAK4 is constitutively phosphorylated on Ser 474 in the activation loop, but held in an inactive state until Cdc42 binding. Thus, group II PAKs are regulated through conformational changes in the AID rather than A-loop phosphorylation.
Collapse
Affiliation(s)
- Yohendran Baskaran
- sGSK group, Astar Neuroscience Research Partnership, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | |
Collapse
|
23
|
Crawford JJ, Hoeflich KP, Rudolph J. p21-Activated kinase inhibitors: a patent review. Expert Opin Ther Pat 2012; 22:293-310. [PMID: 22404134 DOI: 10.1517/13543776.2012.668758] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The p21-activated kinase (PAK) family of serine/threonine protein kinases is activated by binding to the small (p21) GTP-binding proteins Cdc42 and Rac. The PAK family plays important roles in cytoskeletal organisation, cellular morphogenesis and survival, and members of this family have been implicated in a wide range of diseases including cancer, infectious diseases, neurological disorders and arthritis. AREAS COVERED The present review seeks to summarise recent (up to 2011) reports of small-molecule inhibitors of p21-activated kinases. Where patent applications describe activity against a broad range of kinases and no information was provided specifically on PAK inhibition, these are excluded from this review. In patents considered to be relevant, exemplary compounds were selected and highlighted based on their representation of the chemical matter claimed, potencies, structural features and subsequent disclosure of their properties. Selected information from non-patent literature was also included. EXPERT OPINION A considerable amount of research has been devoted over the past 15 years to exploring the role of PAKs in a wide range of diseases, with a focus on oncology. Published PAK inhibitors are still comparatively rare and few exhibit satisfactory kinase selectivity and 'drug-like' properties. A key question is which profile, pan-PAK, group selective or isoform selective, holds the most promise from both therapeutic and safety standpoints. To investigate this question, isoform-selective, as well as kinome-selective, PAK inhibitor tool compounds will be needed. Pfizer was the first company to progress a PAK inhibitor (pan-PAK) to clinical development; it is expected that, despite the difficulties, other PAK inhibitors will soon follow.
Collapse
Affiliation(s)
- James J Crawford
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
24
|
Satpati P, Simonson T. Conformational selection through electrostatics: Free energy simulations of GTP and GDP binding to archaeal initiation factor 2. Proteins 2012; 80:1264-82. [PMID: 22275120 DOI: 10.1002/prot.24023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/29/2011] [Accepted: 12/13/2011] [Indexed: 11/05/2022]
Abstract
Archaeal Initiation Factor 2 is a GTPase involved in protein biosynthesis. In its GTP-bound, "ON" conformation, it binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, "OFF" conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and their dependence on the conformational state, molecular dynamics free energy simulations were performed. The ON state specificity was predicted to be weak, with a GTP/GDP binding free energy difference of -1 kcal/mol, favoring GTP. The OFF state specificity is larger, 4 kcal/mol, favoring GDP. The overall effects result from a competition among many interactions in several complexes. To interpret them, we use a simpler, dielectric continuum model. Several effects are robust with respect to the model details. Both nucleotides have a net negative charge, so that removing them from solvent into the binding pocket carries a desolvation penalty, which is large for the ON state, and strongly disfavors GTP binding compared to GDP. Short-range interactions between the additional GTP phosphate group and ionized sidechains in the binding pocket offset most, but not all of the desolvation penalty; more distant groups also contribute significantly, and the switch 1 loop only slightly. The desolvation penalty is lower for the more open, wetter OFF state, and the GTP/GDP difference much smaller. Short-range interactions in the binding pocket and with more distant groups again make a significant contribution. Overall, the simulations help explain how conformational selection is achieved with a single phosphate group.
Collapse
Affiliation(s)
- Priyadarshi Satpati
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
| | | |
Collapse
|
25
|
Chan PM, Manser E. PAKs in Human Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:171-87. [DOI: 10.1016/b978-0-12-396456-4.00011-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Seco J, Ferrer-Costa C, Campanera JM, Soliva R, Barril X. Allosteric regulation of PKCθ: understanding multistep phosphorylation and priming by ligands in AGC kinases. Proteins 2011; 80:269-80. [PMID: 22072623 DOI: 10.1002/prot.23205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 09/12/2011] [Accepted: 09/18/2011] [Indexed: 01/13/2023]
Abstract
Protein kinases play critical roles in cellular activation and differentiation, and are involved in numerous pathophysiological processes. As a critical component of the regulatory circuitry of the cell, the kinase domain has the ability to integrate multiple signals, yielding a predetermined output. In PKC and other protein kinases of the AGC family, several phosphorylation sites control the activity, but these are in turn influenced by the presence of ligands in the binding pocket, which promotes phosphorylation. Here, we take PKC-theta as a prototypical member of the family and use molecular dynamics simulations to investigate the cross-talk that exists between regulatory and functional sites. We first show how the apo-unphosphorylated form of the kinase is populating a conformational space in which access to the ATP binding site and to the activation loop (AL) are simultaneously hindered. This could explain why the inactive state is not only catalytically incompetent but also resistant to activation. AL phosphorylation induces ATP binding site opening, which can then readily accept the cofactor. But the signal transmission mechanism works both ways, and if ligand binding to the unphosphorylated form occurs first, the AL is de-protected and becomes exposed to phosphorylation, thus providing an explanation for the paradoxical activation of PKCs by their inhibitors.
Collapse
Affiliation(s)
- Jesus Seco
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
27
|
Yunta C, Martínez-Ripoll M, Zhu JK, Albert A. The structure of Arabidopsis thaliana OST1 provides insights into the kinase regulation mechanism in response to osmotic stress. J Mol Biol 2011; 414:135-44. [PMID: 21983340 DOI: 10.1016/j.jmb.2011.09.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 11/16/2022]
Abstract
SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases.
Collapse
Affiliation(s)
- Cristina Yunta
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, Madrid E-28006, Spain
| | | | | | | |
Collapse
|
28
|
Delorme-Walker VD, Peterson JR, Chernoff J, Waterman CM, Danuser G, DerMardirossian C, Bokoch GM. Pak1 regulates focal adhesion strength, myosin IIA distribution, and actin dynamics to optimize cell migration. ACTA ACUST UNITED AC 2011; 193:1289-303. [PMID: 21708980 PMCID: PMC3216326 DOI: 10.1083/jcb.201010059] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
p21-activated kinases are essential for spatial and temporal coordination of cytoskeletal dynamics with cellular adhesion during cell migration. Cell motility requires the spatial and temporal coordination of forces in the actomyosin cytoskeleton with extracellular adhesion. The biochemical mechanism that coordinates filamentous actin (F-actin) assembly, myosin contractility, adhesion dynamics, and motility to maintain the balance between adhesion and contraction remains unknown. In this paper, we show that p21-activated kinases (Paks), downstream effectors of the small guanosine triphosphatases Rac and Cdc42, biochemically couple leading-edge actin dynamics to focal adhesion (FA) dynamics. Quantitative live cell microscopy assays revealed that the inhibition of Paks abolished F-actin flow in the lamella, displaced myosin IIA from the cell edge, and decreased FA turnover. We show that, by controlling the dynamics of these three systems, Paks regulate the protrusive activity and migration of epithelial cells. Furthermore, we found that expressing Pak1 was sufficient to overcome the inhibitory effects of excess adhesion strength on cell motility. These findings establish Paks as critical molecules coordinating cytoskeletal systems for efficient cell migration.
Collapse
Affiliation(s)
- Violaine D Delorme-Walker
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Satpati P, Clavaguéra C, Ohanessian G, Simonson T. Free energy simulations of a GTPase: GTP and GDP binding to archaeal initiation factor 2. J Phys Chem B 2011; 115:6749-63. [PMID: 21534562 PMCID: PMC3097523 DOI: 10.1021/jp201934p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/13/2011] [Indexed: 12/16/2022]
Abstract
Archaeal initiation factor 2 (aIF2) is a protein involved in the initiation of protein biosynthesis. In its GTP-bound, "ON" conformation, aIF2 binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, "OFF" conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and its dependence on the ON or OFF conformational state of aIF2, molecular dynamics free energy simulations (MDFE) are a tool of choice. However, the validity of the computed free energies depends on the simulation model, including the force field and the boundary conditions, and on the extent of conformational sampling in the simulations. aIF2 and other GTPases present specific difficulties; in particular, the nucleotide ligand coordinates a divalent Mg(2+) ion, which can polarize the electronic distribution of its environment. Thus, a force field with an explicit treatment of electronic polarizability could be necessary, rather than a simpler, fixed charge force field. Here, we begin by comparing a fixed charge force field to quantum chemical calculations and experiment for Mg(2+):phosphate binding in solution, with the force field giving large errors. Next, we consider GTP and GDP bound to aIF2 and we compare two fixed charge force fields to the recent, polarizable, AMOEBA force field, extended here in a simple, approximate manner to include GTP. We focus on a quantity that approximates the free energy to change GTP into GDP. Despite the errors seen for Mg(2+):phosphate binding in solution, we observe a substantial cancellation of errors when we compare the free energy change in the protein to that in solution, or when we compare the protein ON and OFF states. Finally, we have used the fixed charge force field to perform MDFE simulations and alchemically transform GTP into GDP in the protein and in solution. With a total of about 200 ns of molecular dynamics, we obtain good convergence and a reasonable statistical uncertainty, comparable to the force field uncertainty, and somewhat lower than the predicted GTP/GDP binding free energy differences. The sign and magnitudes of the differences can thus be interpreted at a semiquantitative level, and are found to be consistent with the experimental binding preferences of ON- and OFF-aIF2.
Collapse
Affiliation(s)
- Priyadarshi Satpati
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex (France)
| | - Carine Clavaguéra
- Laboratoire des Mécanismes Réactionnels (CNRS), Department of Chemistry, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex (France)
| | - Gilles Ohanessian
- Laboratoire des Mécanismes Réactionnels (CNRS), Department of Chemistry, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex (France)
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex (France)
| |
Collapse
|
30
|
Lu SY, Jiang YJ, Zou JW, Wu TX. Molecular modeling and molecular dynamics simulation studies of the GSK3β/ATP/substrate complex: understanding the unique P+4 primed phosphorylation specificity for GSK3β substrates. J Chem Inf Model 2011; 51:1025-36. [PMID: 21495724 DOI: 10.1021/ci100493j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Substrate specificity of protein kinases is of fundamental importance for the integrity and fidelity of signaling pathways. Glycogen synthase kinase 3β (GSK3β) has a unique substrate specificity that prefers phosphorylation of its substrates at the P+4 serine before it can further phosphorylate the substrate at the P0 serine in the canonical motif SXXXS(p), where S(p) is the primed phosphorylation site. The detailed phosphorylation mechanism, however, is not clearly understood. In this study, a three-dimensional (3D) model of the ternary complex of GSK3β, ATP, and the phosphorylated glycogen synthase (pGS), termed GSK3β/ATP/pGS, is constructed using a hierarchical approach and by integrating molecular modeling and molecular dynamics (MD) simulations. Based on the 3D model, the substrate primed phosphorylation mechanism is investigated via two 12 ns comparative MD simulations of the GSK3β/ATP/pGS and GSK3β/ATP/GS systems, which differ in the phosphate group bound to the P+4 serine of GS. In agreement with structural analysis, computed binding free energies reveal that the binding of pGS to GSK3β is favored in the prephosphorylated state compared with the GS native state. More importantly, comparison with the system simulated without primed phosphorylation in the GSK3β/ATP/GS complex shows that for an optimal phosphorylation reaction to occur, the pGS priming phosphate in the GSK3β/ATP/pGS system optimizes the proper orientation of the GSK3β N- and C-terminal domains and clamps the P0 serine of pGS in the appropriate configuration for interaction with the ATP γ-phosphate within the catalytic groove.
Collapse
Affiliation(s)
- Shao-Yong Lu
- Department of Chemistry, Zhejiang University , Hangzhou, Zhejiang 310027, China
| | | | | | | |
Collapse
|
31
|
Abstract
p21-activated kinases (PAKs) act downstream of Rho-family GTPase and are linked to steps in both cancer initiation and progression. There are six mammalian PAK isoforms that are divided into two groups, and for different reasons both groups are attractive targets for cancer therapy. We describe the background and recent development of a PAK inhibitor, PF-3758309, which exhibits relatively good selectivity and high potency for PAKs. Experiments using PF-3758309 confirm that inhibiting PAK is a beneficial strategy to combat some tumors, and this activity is likely related to modulation of both cell proliferation and survival. The genetic loss of NF2 (neurofibromatosis type 2) leading to increased cell proliferation through a Ras-Rac-PAK pathway may represent a good test system to analyze this new PAK inhibitor.
Collapse
Affiliation(s)
- Zhuo-shen Zhao
- Small G-Protein Signalling and Kinases (sGSK) Group at Institute of Molecular and Cell Biology (IMCB), Neuroscience Research PartnershipProteos BuildingSingapore 138673
| | - Ed Manser
- Small G-Protein Signalling and Kinases (sGSK) Group at Institute of Molecular and Cell Biology (IMCB), Neuroscience Research PartnershipProteos BuildingSingapore 138673
- Institute of Medical Biology (IMB), A*STAR#06-34 Immunos BuildingSingapore 138648
| |
Collapse
|