1
|
Zhang H, Liu X, Shi J, Su X, Xie J, Meng Q, Dong H. Research progress on the mechanism of exosome-mediated virus infection. Front Cell Infect Microbiol 2024; 14:1418168. [PMID: 38988816 PMCID: PMC11233549 DOI: 10.3389/fcimb.2024.1418168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Exosomes are extracelluar vesicles that facilitate intercellular communication and are pivotal in post-transcriptional regulation within cellular gene regulatory networks, impacting pathogen dynamics. These vesicles serve as crucial regulators of immune responses, mediating cellular interactions and enabling the introduction of viral pathogenic regions into host cells. Exosomes released from virus-infected cells harbor diverse microRNAs (miRNAs), which can be transferred to recipient cells, thereby modulating virus infection. This transfer is a critical element in the molecular interplay mediated by exosomes. Additionally, the endosomal sorting complex required for transport (ESCRT) within exosomes plays a vital role in virus infection, with ESCRT components binding to viral proteins to facilitate virus budding. This review elucidates the roles of exosomes and their constituents in the invasion of host cells by viruses, aiming to shed new light on the regulation of viral transmission via exosomes.
Collapse
Affiliation(s)
- Hanjia Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuanyi Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiuming Shi
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuan Su
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiayuan Xie
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Qingfeng Meng
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Spada SJ, Rose KM, Sette P, O'Connor SK, Dussupt V, Siddartha Yerramilli V, Nagashima K, Sjoelund VH, Cruz P, Kabat J, Ganesan S, Smelkinson M, Nita-Lazar A, Hoyt F, Scarlata S, Hirsch V, Best SM, Grigg ME, Bouamr F. Human ESCRT-I and ALIX function as scaffolding helical filaments in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592080. [PMID: 38903125 PMCID: PMC11188096 DOI: 10.1101/2024.05.01.592080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) is an evolutionarily conserved machinery that performs reverse-topology membrane scission in cells universally required from cytokinesis to budding of enveloped viruses. Upstream acting ESCRT-I and ALIX control these events and link recruitment of viral and cellular partners to late-acting ESCRT-III CHMP4 through incompletely understood mechanisms. Using structure-function analyses combined with super-resolution imaging, we show that ESCRT-I and ALIX function as distinct helical filaments in vivo . Together, they are essential for optimal structural scaffolding of HIV-1 nascent virions, the retention of viral and human genomes through defined functional interfaces, and recruitment of CHMP4 that itself assembles into corkscrew-like filaments intertwined with ESCRT-I or ALIX helices. Disruption of filament assembly or their conformationally clustered RNA binding interfaces in human cells impaired membrane abscission, resulted in major structural instability and leaked nucleic acid from nascent virions and nuclear envelopes. Thus, ESCRT-I and ALIX function as helical filaments in vivo and serve as both nucleic acid-dependent structural scaffolds as well as ESCRT-III assembly templates. Significance statement When cellular membranes are dissolved or breached, ESCRT is rapidly deployed to repair membranes to restore the integrity of intracellular compartments. Membrane sealing is ensured by ESCRT-III filaments assembled on the inner face of membrane; a mechanism termed inverse topology membrane scission. This mechanism, initiated by ESCRT-I and ALIX, is universally necessary for cytokinesis, wound repair, budding of enveloped viruses, and more. We show ESCRT-I and ALIX individually oligomerize into helical filaments that cluster newly discovered nucleic acid-binding interfaces and scaffold-in genomes within nascent virions and nuclear envelopes. These oligomers additionally appear to serve as ideal templates for ESCRT-III polymerization, as helical filaments of CHMP4B were found intertwined ESCRT-I or ALIX filaments in vivo . Similarly, corkscrew-like filaments of ALIX are also interwoven with ESCRT-I, supporting a model of inverse topology membrane scission that is synergistically reinforced by inward double filament scaffolding.
Collapse
|
3
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. ESCRT machinery and virus infection. Antiviral Res 2024; 221:105786. [PMID: 38147902 DOI: 10.1016/j.antiviral.2023.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery plays a significant role in the spread of human viruses. However, our understanding of how the host ESCRT machinery responds to viral infection remains limited. Emerging evidence suggests that the ESCRT machinery can be hijacked by viruses of different families to enhance their replication. Throughout their life cycle, these viruses can interfere with or exploit ESCRT-mediated physiological processes to increase their chances of infecting the host. In contrast, to counteract virus infection, the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) system within the infected cells is activated to degrade the ESCRT proteins. Many retroviral and RNA viral proteins have evolved "late (L) domain" motifs, which enable them to recruit host ESCRT subunit proteins to facilitate virus transport, replication, budding, mature, and even endocytosis, Therefore, the L domain motifs and ESCRT subunit proteins could serve as promising drug targets for antiviral therapy. This review investigated the composition and essential functions of the ESCRT, shedding light on the impact of ESCRT subunits and viral L domain motifs on the replication of viruses. Furthermore, the antiviral effects facilitated by the ESCRT machinery have been investigated, aiming to provide valuable insights to guide the development and utilization of antiviral drugs.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yiyi Feng
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Morris-Love J, Atwood WJ. Complexities of JC Polyomavirus Receptor-Dependent and -Independent Mechanisms of Infection. Viruses 2022; 14:1130. [PMID: 35746603 PMCID: PMC9228512 DOI: 10.3390/v14061130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
JC polyomavirus (JCPyV) is a small non-enveloped virus that establishes lifelong, persistent infection in most of the adult population. Immune-competent patients are generally asymptomatic, but immune-compromised and immune-suppressed patients are at risk for the neurodegenerative disease progressive multifocal leukoencephalopathy (PML). Studies with purified JCPyV found it undergoes receptor-dependent infectious entry requiring both lactoseries tetrasaccharide C (LSTc) attachment and 5-hydroxytryptamine type 2 entry receptors. Subsequent work discovered the major targets of JCPyV infection in the central nervous system (oligodendrocytes and astrocytes) do not express the required attachment receptor at detectable levels, virus could not bind these cells in tissue sections, and viral quasi-species harboring recurrent mutations in the binding pocket for attachment. While several research groups found evidence JCPyV can use novel receptors for infection, it was also discovered that extracellular vesicles (EVs) can mediate receptor independent JCPyV infection. Recent work also found JCPyV associated EVs include both exosomes and secretory autophagosomes. EVs effectively present a means of immune evasion and increased tissue tropism that complicates viral studies and anti-viral therapeutics. This review focuses on JCPyV infection mechanisms and EV associated and outlines key areas of study necessary to understand the interplay between virus and extracellular vesicles.
Collapse
Affiliation(s)
- Jenna Morris-Love
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA;
- Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
| | - Walter J. Atwood
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA;
| |
Collapse
|
5
|
Structural Insight into the Interaction of Sendai Virus C Protein with Alix To Stimulate Viral Budding. J Virol 2021; 95:e0081521. [PMID: 34287046 DOI: 10.1128/jvi.00815-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sendai virus (SeV), belonging to the Respirovirus genus of the family Paramyxoviridae, harbors an accessory protein, named C protein, which facilitates the viral pathogenicity in mice. In addition, the C protein is known to stimulate the budding of virus-like particles through the binding to the host ALG-2 interacting protein X (Alix), a component of the endosomal sorting complexes required for transport (ESCRT) machinery. However, siRNA-mediated gene knockdown studies suggested that neither Alix nor C protein are related to the SeV budding. In the present study, we determined the crystal structure of a complex comprising of the C-terminal half of the C protein (Y3) and the Bro1 domain of Alix at a resolution of 2.2 Å, to investigate the role of the association in the SeV budding. The structure revealed that a novel consensus sequence, LxxW, which is conserved among the Respirovirus C proteins, is important for the Alix-binding. SeV possessing a mutated C protein with a reduced Alix-binding affinity showed impaired virus production, which correlated with the binding affinity. Infectivity analysis showed a 160-fold reduction at 12 h post-infection compared with non-mutated virus, while C protein competes with CHMP4, one subunit of the ESCRT-III complex, on the binding to Alix. Altogether, these results highlight the critical role of C protein in the SeV budding. IMPORTANCE Human parainfluenza virus type I (hPIV1) is a respiratory pathogen affecting in young children, immunocompromised patients, and the elderly, with no available vaccines or antiviral drugs. Sendai virus (SeV), a murine counterpart of hPIV1, has been extensively studied to determine the molecular and biological properties of hPIV1. These viruses possess a multifunctional accessory protein, C protein, which is essential for stimulating the viral reproduction, however, its role in budding remains controversial. In the present study, the crystal structure of the C-terminal half of the SeV C protein associated with the Bro1 domain of Alix, a component of a cell membrane modulating machinery ESCRT, was elucidated. Based on the structure, we designed mutated C proteins with different binding affinity to Alix, and showed that the interaction between C and Alix is vital for the viral budding. These findings provide new insights into the development of a new antiviral drugs against hPIV1.
Collapse
|
6
|
Heaven G, Hollas MA, Tabernero L, Fielding AJ. Spin Labeling of Surface Cysteines Using a Bromoacrylaldehyde Spin Label. APPLIED MAGNETIC RESONANCE 2021; 52:959-970. [PMID: 34776648 PMCID: PMC8550513 DOI: 10.1007/s00723-021-01350-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Structural investigations of proteins and their biological complexes are now frequently complemented by distance constraints between spin labeled cysteines generated using double electron-electron resonance (DEER) spectroscopy, via site directed spin labeling (SDSL). Methanethiosulfonate spin label (MTSSL), has become ubiquitous in the SDSL of proteins, however, has limitations owing to its high number of rotamers, and reducibility. In this article we introduce the use of bromoacrylaldehyde spin label (BASL) as a cysteine spin label, demonstrating an advantage over MTSSL due to its increased selectivity for surface cysteines, eliminating the need to 'knock out' superfluous cysteine residues. Applied to the multidomain protein, His domain protein tyrosine phosphatase (HD-PTP), we show that BASL can be easily added in excess with selective labeling, whereas MTSSL causes protein precipitation. Furthermore, using DEER, we were able to measure a single cysteine pair distance in a three cysteine domain within HD-PTP. The label has a further advantage of comprising a sulfide in a three-bond tether, making it a candidate for protein binding and in-cell studies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00723-021-01350-1.
Collapse
Affiliation(s)
- Graham Heaven
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL UK
| | - Michael A. Hollas
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL UK
| | - Lydia Tabernero
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PL UK
| | - Alistair J. Fielding
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF UK
| |
Collapse
|
7
|
Budding of a Retrovirus: Some Assemblies Required. Viruses 2020; 12:v12101188. [PMID: 33092109 PMCID: PMC7589157 DOI: 10.3390/v12101188] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
One of the most important steps in any viral lifecycle is the production of progeny virions. For retroviruses as well as other viruses, this step is a highly organized process that occurs with exquisite spatial and temporal specificity on the cellular plasma membrane. To facilitate this process, retroviruses encode short peptide motifs, or L domains, that hijack host factors to ensure completion of this critical step. One such cellular machinery targeted by viruses is known as the Endosomal Sorting Complex Required for Transport (ESCRTs). Typically responsible for vesicular trafficking within the cell, ESCRTs are co-opted by the retroviral Gag polyprotein to assist in viral particle assembly and release of infectious virions. This review in the Viruses Special Issue “The 11th International Retroviral Nucleocapsid and Assembly Symposium”, details recent findings that shed light on the molecular details of how ESCRTs and the ESCRT adaptor protein ALIX, facilitate retroviral dissemination at sites of viral assembly.
Collapse
|
8
|
Flower TG, Takahashi Y, Hudait A, Rose K, Tjahjono N, Pak AJ, Yokom AL, Liang X, Wang HG, Bouamr F, Voth GA, Hurley JH. A helical assembly of human ESCRT-I scaffolds reverse-topology membrane scission. Nat Struct Mol Biol 2020; 27:570-580. [PMID: 32424346 PMCID: PMC7339825 DOI: 10.1038/s41594-020-0426-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
The ESCRT complexes drive membrane scission in HIV-1 release, autophagosome closure, MVB biogenesis, cytokinesis, and other cell processes. ESCRT-I is the most upstream complex and bridges the system to HIV-1 Gag in virus release. The crystal structure of the headpiece of human ESCRT-I comprising TSG101–VPS28–VPS37B–MVB12A was determined, revealing an ESCRT-I helical assembly with a 12 molecule repeat. Electron microscopy confirmed that ESCRT-I subcomplexes form helical filaments in solution. Mutation of VPS28 helical interface residues blocks filament formation in vitro and autophagosome closure and HIV-1 release in human cells. Coarse grained simulations of ESCRT assembly at HIV-1 budding sites suggest that formation of a 12-membered ring of ESCRT-I molecules is a geometry-dependent checkpoint during late stages of Gag assembly and HIV-1 budding, and templates ESCRT-III assembly for membrane scission. These data show that ESCRT-I is not merely a bridging adaptor, but has an essential scaffolding and mechanical role in its own right. Further information on experimental design is available in the Nature Research Reporting Summary linked to this article.
Collapse
Affiliation(s)
- Thomas G Flower
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Arpa Hudait
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Kevin Rose
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Tjahjono
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Alexander J Pak
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Adam L Yokom
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Xinwen Liang
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA. .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
9
|
Alix-Mediated Rescue of Feline Immunodeficiency Virus Budding Differs from That Observed with Human Immunodeficiency Virus. J Virol 2020; 94:JVI.02019-19. [PMID: 32213612 DOI: 10.1128/jvi.02019-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
The structural protein Gag is the only viral component required for retroviral budding from infected cells. Each of the three conserved domains-the matrix (MA), capsid (CA), and nucleocapsid (NC) domains-drives different phases of viral particle assembly and egress. Once virus assembly is complete, retroviruses, like most enveloped viruses, utilize host proteins to catalyze membrane fission and to free progeny virions. These proteins are members of the endosomal sorting complex required for transport (ESCRT), a cellular machinery that coats the inside of budding necks to perform membrane-modeling events necessary for particle abscission. The ESCRT is recruited through interactions with PTAP and LYPXnL, two highly conserved sequences named late (L) domains, which bind TSG101 and Alix, respectively. A TSG101-binding L-domain was identified in the p2 region of the feline immunodeficiency virus (FIV) Gag protein. Here, we show that the human protein Alix stimulates the release of virus from FIV-expressing human cells. Furthermore, we demonstrate that the Alix Bro1 domain rescues FIV mutants lacking a functional TSG101-interacting motif, independently of the entire p2 region and of the canonical Alix-binding L-domain(s) in FIV Gag. However, in contrast to the effect on human immunodeficiency virus type 1 (HIV-1), the C377,409S double mutation, which disrupts both CCHC zinc fingers in the NC domain, does not abrogate Alix-mediated virus rescue. These studies provide insight into conserved and divergent mechanisms of lentivirus-host interactions involved in virus budding.IMPORTANCE FIV is a nonprimate lentivirus that infects domestic cats and causes a syndrome that is reminiscent of AIDS in humans. Based on its similarity to HIV with regard to different molecular and biochemical properties, FIV represents an attractive model for the development of strategies to prevent and/or treat HIV infection. Here, we show that the Bro1 domain of the human cellular protein Alix is sufficient to rescue the budding of FIV mutants devoid of canonical L-domains. Furthermore, we demonstrate that the integrity of the CCHC motifs in the Gag NC domain is dispensable for Alix-mediated rescue of virus budding, suggesting the involvement of other regions of the Gag viral protein. Our research is pertinent to the identification of a conserved yet mechanistically divergent ESCRT-mediated lentivirus budding process in general, and to the role of Alix in particular, which underlies the complex viral-cellular network of interactions that promote late steps of the retroviral life cycle.
Collapse
|
10
|
Gahloth D, Heaven G, Jowitt TA, Mould AP, Bella J, Baldock C, Woodman P, Tabernero L. The open architecture of HD-PTP phosphatase provides new insights into the mechanism of regulation of ESCRT function. Sci Rep 2017; 7:9151. [PMID: 28831121 PMCID: PMC5567221 DOI: 10.1038/s41598-017-09467-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/26/2017] [Indexed: 11/16/2022] Open
Abstract
HD-PTP is a tumour suppressor phosphatase that controls endocytosis, down-regulation of mitogenic receptors and cell migration. Central to its role is the specific recruitment of critical endosomal sorting complexes required for transport (ESCRTs). However, the molecular mechanisms that enable HD-PTP to regulate ESCRT function are unknown. We have characterised the molecular architecture of the entire ESCRT binding region of HD-PTP using small angle X-ray scattering and hydrodynamic analyses. We show that HD-PTP adopts an open and extended conformation, optimal for concomitant interactions with multiple ESCRTs, which contrasts with the compact conformation of the related ESCRT regulator Alix. We demonstrate that the HD-PTP open conformation is functionally competent for binding cellular protein partners. Our analyses rationalise the functional cooperation of HD-PTP with ESCRT-0, ESCRT-I and ESCRT-III and support a model for regulation of ESCRT function by displacement of ESCRT subunits, which is crucial in determining the fate of ubiquitinated cargo.
Collapse
Affiliation(s)
- Deepankar Gahloth
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Graham Heaven
- School of Chemistry and Photon Science Institute, University of Manchester, Manchester, UK
| | - Thomas A Jowitt
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Biomolecular Analysis Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - A Paul Mould
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Biomolecular Analysis Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jordi Bella
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Clair Baldock
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Philip Woodman
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Lydia Tabernero
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
11
|
Sette P, O'Connor SK, Yerramilli VS, Dussupt V, Nagashima K, Chutiraka K, Lingappa J, Scarlata S, Bouamr F. HIV-1 Nucleocapsid Mimics the Membrane Adaptor Syntenin PDZ to Gain Access to ESCRTs and Promote Virus Budding. Cell Host Microbe 2016; 19:336-48. [PMID: 26962944 DOI: 10.1016/j.chom.2016.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/07/2016] [Accepted: 02/11/2016] [Indexed: 01/09/2023]
Abstract
HIV-1 recruits cellular endosomal sorting complexes required for transport (ESCRTs) to bud virions from the membrane. Disruption of the viral nucleocapsid (NC) domain integrity affects HIV-1 budding. However, the molecular mechanisms of NC's involvement in HIV budding remain unclear. We find that NC mimics the PDZ domains of syntenin, a membrane-binding adaptor involved in cell-to-cell contact/communication, to capture the Bro1 domain of ALIX, which is an ESCRTs recruiting cellular adaptor. NC binds membranes via basic residues in either the distal or proximal zinc fingers, and NC-membrane binding is essential for Bro1 capture and HIV-1 budding. Removal of RNA enhances NC membrane binding, suggesting a dynamic competition between membrane lipids and RNA for the same binding sites in NC. Remarkably, syntenin PDZ can substitute for NC function in HIV-1 budding. Thus, NC mimics syntenin PDZs to function as a membrane-binding adaptor critical for HIV-1 budding at specific microdomains of the membrane.
Collapse
Affiliation(s)
- Paola Sette
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20894, USA
| | - Sarah K O'Connor
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20894, USA
| | - V Siddartha Yerramilli
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Vincent Dussupt
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20894, USA
| | - Kunio Nagashima
- Electron Microscope Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Kasana Chutiraka
- Department of Global Health, University of Washington, Seattle, WA 98102, USA
| | - Jaisri Lingappa
- Department of Global Health, University of Washington, Seattle, WA 98102, USA
| | - Suzanne Scarlata
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20894, USA.
| |
Collapse
|
12
|
Gahloth D, Levy C, Heaven G, Stefani F, Wunderley L, Mould P, Cliff MJ, Bella J, Fielding AJ, Woodman P, Tabernero L. Structural Basis for Selective Interaction between the ESCRT Regulator HD-PTP and UBAP1. Structure 2016; 24:2115-2126. [PMID: 27839950 PMCID: PMC5145805 DOI: 10.1016/j.str.2016.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/27/2016] [Accepted: 10/12/2016] [Indexed: 01/21/2023]
Abstract
Endosomal sorting complexes required for transport (ESCRTs) are essential for ubiquitin-dependent degradation of mitogenic receptors, a process often compromised in cancer pathologies. Sorting of ubiquinated receptors via ESCRTs is controlled by the tumor suppressor phosphatase HD-PTP. The specific interaction between HD-PTP and the ESCRT-I subunit UBAP1 is critical for degradation of growth factor receptors and integrins. Here, we present the structural characterization by X-ray crystallography and double electron-electron resonance spectroscopy of the coiled-coil domain of HD-PTP and its complex with UBAP1. The coiled-coil domain adopts an unexpected open and rigid conformation that contrasts with the closed and flexible coiled-coil domain of the related ESCRT regulator Alix. The HD-PTP:UBAP1 structure identifies the molecular determinants of the interaction and provides a molecular basis for the specific functional cooperation between HD-PTP and UBAP1. Our findings provide insights into the molecular mechanisms of regulation of ESCRT pathways that could be relevant to anticancer therapies.
Collapse
Affiliation(s)
- Deepankar Gahloth
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Colin Levy
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Graham Heaven
- School of Chemistry and Photon Science Institute, University of Manchester, Manchester M13 9PT, UK
| | - Flavia Stefani
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Lydia Wunderley
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Paul Mould
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Matthew J Cliff
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jordi Bella
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alistair J Fielding
- School of Chemistry and Photon Science Institute, University of Manchester, Manchester M13 9PT, UK
| | - Philip Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Lydia Tabernero
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
13
|
Lee J, Oh KJ, Lee D, Kim BY, Choi JS, Ku B, Kim SJ. Structural Study of the HD-PTP Bro1 Domain in a Complex with the Core Region of STAM2, a Subunit of ESCRT-0. PLoS One 2016; 11:e0149113. [PMID: 26866605 PMCID: PMC4751086 DOI: 10.1371/journal.pone.0149113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 01/27/2016] [Indexed: 11/18/2022] Open
Abstract
EGFR is a key player in cell proliferation and survival signaling, and its sorting into MVBs for eventual lysosomal degradation is controlled by the coordination of multiple ESCRT complexes on the endosomal membrane. HD-PTP is a cytosolic protein tyrosine phosphatase, and is associated with EGFR trafficking by interacting with the ESCRT-0 protein STAM2 and the ESCRT-III protein CHMP4B via its N-terminal Bro1 domain. Intriguingly, the homologous domain of two other human Bro1 domain-containing proteins, Alix and Brox, binds CHMP4B but not STAM2, despite their high structural similarity. To elucidate this binding specificity, we determined the complex structure of the HD-PTP Bro1 domain bound to the STAM2 core region. STAM2 binds to the hydrophobic concave pocket of the HD-PTP Bro1 domain, as CHMP4B does to the pocket of Alix, Brox, or HD-PTP but in the opposite direction. Critically, Thr145 of HD-PTP, corresponding to Lys151 of Alix and Arg145 of Brox, is revealed to be a determinant residue enabling this protein to bind STAM2, as the Alix- or Brox-mimicking mutations of this residue blocks the intermolecular interaction. This work therefore provides the structural basis for how HD-PTP recognizes the ESCRT-0 component to control EGFR sorting.
Collapse
Affiliation(s)
- Juhyeon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Kyoung-Jin Oh
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Dasom Lee
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Bo Yeon Kim
- Incurable Diseases Therapeutics Research Center, World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- * E-mail: (BK); (SJK)
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- * E-mail: (BK); (SJK)
| |
Collapse
|
14
|
Knockdown of Autophagy Inhibits Infectious Hepatitis C Virus Release by the Exosomal Pathway. J Virol 2015; 90:1387-96. [PMID: 26581990 DOI: 10.1128/jvi.02383-15] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma in humans. We showed previously that HCV induces autophagy for viral persistence by preventing the innate immune response. Knockdown of autophagy reduces extracellular HCV release, although the precise mechanism remains unknown. In this study, we observed that knockdown of autophagy genes enhances intracellular HCV RNA and accumulates infectious virus particles in cells. Since HCV release is linked with the exosomal pathway, we examined whether autophagy proteins associate with exosomes in HCV-infected cells. We observed an association between HCV and the exosomal marker CD63 in autophagy knockdown cells. Subsequently, we observed that levels of extracellular infectious HCV were significantly lower in exosomes released from autophagy knockdown cells. To understand the mechanism for reduced extracellular infectious HCV in the exosome, we observed that an interferon (IFN)-stimulated BST-2 gene is upregulated in autophagy knockdown cells and associated with the exosome marker CD63, which may inhibit HCV assembly or release. Taken together, our results suggest a novel mechanism involving autophagy and exosome-mediated HCV release from infected hepatocytes. IMPORTANCE Autophagy plays an important role in HCV pathogenesis. Autophagy suppresses the innate immune response and promotes survival of virus-infected hepatocytes. The present study examined the role of autophagy in secretion of infectious HCV from hepatocytes. Autophagy promoted HCV trafficking from late endosomes to lysosomes, thus providing a link with the exosome. Inhibition of HCV-induced autophagy could be used as a strategy to block exosome-mediated virus transmission.
Collapse
|
15
|
Han Z, Madara JJ, Liu Y, Liu W, Ruthel G, Freedman BD, Harty RN. ALIX Rescues Budding of a Double PTAP/PPEY L-Domain Deletion Mutant of Ebola VP40: A Role for ALIX in Ebola Virus Egress. J Infect Dis 2015; 212 Suppl 2:S138-45. [PMID: 25786915 DOI: 10.1093/infdis/jiu838] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ebola (EBOV) is an enveloped, negative-sense RNA virus belonging to the family Filoviridae that causes hemorrhagic fever syndromes with high-mortality rates. To date, there are no licensed vaccines or therapeutics to control EBOV infection and prevent transmission. Consequently, the need to better understand the mechanisms that regulate virus transmission is critical to developing countermeasures. The EBOV VP40 matrix protein plays a central role in late stages of virion assembly and egress, and independent expression of VP40 leads to the production of virus-like particles (VLPs) by a mechanism that accurately mimics budding of live virus. VP40 late (L) budding domains mediate efficient virus-cell separation by recruiting host ESCRT and ESCRT-associated proteins to complete the membrane fission process. L-domains consist of core consensus amino acid motifs including PPxY, P(T/S)AP, and YPx(n)L/I, and EBOV VP40 contains overlapping PPxY and PTAP motifs whose interactions with Nedd4 and Tsg101, respectively, have been characterized extensively. Here, we present data demonstrating for the first time that EBOV VP40 possesses a third L-domain YPx(n)L/I consensus motif that interacts with the ESCRT-III protein Alix. We show that the YPx(n)L/I motif mapping to amino acids 18-26 of EBOV VP40 interacts with the Alix Bro1-V fragment, and that siRNA knockdown of endogenous Alix expression inhibits EBOV VP40 VLP egress. Furthermore, overexpression of Alix Bro1-V rescues VLP production of the budding deficient EBOV VP40 double PTAP/PPEY L-domain deletion mutant to wild-type levels. Together, these findings demonstrate that EBOV VP40 recruits host Alix via a YPx(n)L/I motif that can function as an alternative L-domain to promote virus egress.
Collapse
Affiliation(s)
- Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Jonathan J Madara
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Yuliang Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Wenbo Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
16
|
Feng Z, Hirai-Yuki A, McKnight KL, Lemon SM. Naked Viruses That Aren't Always Naked: Quasi-Enveloped Agents of Acute Hepatitis. Annu Rev Virol 2014; 1:539-60. [PMID: 26958733 DOI: 10.1146/annurev-virology-031413-085359] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Historically, viruses were considered to be either enveloped or nonenveloped. However, recent work on hepatitis A virus and hepatitis E virus challenges this long-held tenet. Whereas these human pathogens are shed in feces as naked nonenveloped virions, recent studies indicate that both circulate in the blood completely masked in membranes during acute infection. These membrane-wrapped virions are as infectious as their naked counterparts, although they do not express a virally encoded protein on their surface, thus distinguishing them from conventional enveloped viruses. The absence of a viral fusion protein implies that these quasi-enveloped virions have unique mechanisms for entry into cells. Like true enveloped viruses, however, these phylogenetically distinct viruses usurp components of the host ESCRT system to hijack host cell membranes and noncytolytically exit infected cells. The membrane protects these viruses from neutralizing antibodies, facilitating dissemination within the host, whereas nonenveloped virions shed in feces are stable in the environment, allowing for epidemic transmission.
Collapse
Affiliation(s)
- Zongdi Feng
- Lineberger Comprehensive Cancer Center, Inflammatory Diseases Institute, and Departments of Medicine and Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7292;
| | - Asuka Hirai-Yuki
- Lineberger Comprehensive Cancer Center, Inflammatory Diseases Institute, and Departments of Medicine and Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7292;
| | - Kevin L McKnight
- Lineberger Comprehensive Cancer Center, Inflammatory Diseases Institute, and Departments of Medicine and Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7292;
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, Inflammatory Diseases Institute, and Departments of Medicine and Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7292;
| |
Collapse
|
17
|
Lai CK, Saxena V, Tseng CH, Jeng KS, Kohara M, Lai MMC. Nonstructural protein 5A is incorporated into hepatitis C virus low-density particle through interaction with core protein and microtubules during intracellular transport. PLoS One 2014; 9:e99022. [PMID: 24905011 PMCID: PMC4048239 DOI: 10.1371/journal.pone.0099022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/09/2014] [Indexed: 01/16/2023] Open
Abstract
Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) serves dual functions in viral RNA replication and virus assembly. Here, we demonstrate that HCV replication complex along with NS5A and Core protein was transported to the lipid droplet (LD) through microtubules, and NS5A-Core complexes were then transported from LD through early-to-late endosomes to the plasma membrane via microtubules. Further studies by cofractionation analysis and immunoelectron microscopy of the released particles showed that NS5A-Core complexes, but not NS4B, were present in the low-density fractions, but not in the high-density fractions, of the HCV RNA-containing virions and associated with the internal virion core. Furthermore, exosomal markers CD63 and CD81 were also detected in the low-density fractions, but not in the high-density fractions. Overall, our results suggest that HCV NS5A is associated with the core of the low-density virus particles which exit the cell through a preexisting endosome/exosome pathway and may contribute to HCV natural infection.
Collapse
Affiliation(s)
- Chao-Kuen Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Toxicology, National Taiwan University, Taipei, Taiwan
| | - Vikas Saxena
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chung-Hsin Tseng
- Department of Microbiology and Immunology, and Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - King-Song Jeng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Michael M. C. Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
- Department of Microbiology and Immunology, and Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Sette P, Nagashima K, Piper RC, Bouamr F. Ubiquitin conjugation to Gag is essential for ESCRT-mediated HIV-1 budding. Retrovirology 2013; 10:79. [PMID: 23895345 PMCID: PMC3751857 DOI: 10.1186/1742-4690-10-79] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023] Open
Abstract
Background HIV-1 relies on the host ESCRTs for release from cells. HIV-1 Gag engages ESCRTs by directly binding TSG101 or Alix. ESCRTs also sort ubiquitinated membrane proteins through endosomes to facilitate their lysosomal degradation. The ability of ESCRTs to recognize and process ubiquitinated proteins suggests that ESCRT-dependent viral release may also be controlled by ubiquitination. Although both Gag and ESCRTs undergo some level of ubiquitination, definitive demonstration that ubiquitin is required for viral release is lacking. Here we suppress ubiquitination at viral budding sites by fusing the catalytic domain of the Herpes Simplex UL36 deubiquitinating enzyme (DUb) onto TSG101, Alix, or Gag. Results Expressing DUb-TSG101 suppressed Alix-independent HIV-1 release and viral particles remained tethered to the cell surface. DUb-TSG101 had no effect on budding of MoMLV or EIAV, two retroviruses that rely on the ESCRT machinery for exit. Alix-dependent virus release such as EIAV’s, and HIV-1 lacking access to TSG101, was instead dramatically blocked by co-expressing DUb-Alix. Finally, Gag-DUb was unable to support virus release and dominantly interfered with release of wild type HIV-1. Fusion of UL36 did not effect interactions with Alix, TSG101, or Gag and all of the inhibitory effects of UL36 fusion were abolished when its catalytic activity was ablated. Accordingly, Alix, TSG101 and Gag fused to inactive UL36 functionally replaced their unfused counterparts. Interestingly, coexpression of the Nedd4-2s ubiquitin ligase suppressed the ability of DUb-TSG101 to inhibit HIV-1 release while also restoring detectable Gag ubiquitination at the membrane. Similarly, incorporation of Gag-Ub fusion proteins into virions lifted DUb-ESCRT inhibitory effect. In contrast, Nedd4-2s did not suppress the inhibition mediated by Gag-DUb despite restoring robust ubiquitination of TSG101/ESCRT-I at virus budding sites. Conclusions These studies demonstrate a necessary and natural role for ubiquitin in ESCRT-dependent viral release and indicate a critical role for ubiquitination of Gag rather than ubiquitination of ESCRTs themselves.
Collapse
Affiliation(s)
- Paola Sette
- Viral Budding Unit, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Dr, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
19
|
Bissig C, Lenoir M, Velluz MC, Kufareva I, Abagyan R, Overduin M, Gruenberg J. Viral infection controlled by a calcium-dependent lipid-binding module in ALIX. Dev Cell 2013; 25:364-73. [PMID: 23664863 DOI: 10.1016/j.devcel.2013.04.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/13/2013] [Accepted: 03/29/2013] [Indexed: 11/25/2022]
Abstract
ALIX plays a role in nucleocapsid release during viral infection, as does lysobisphosphatidic acid (LBPA). However, the mechanism remains unclear. Here we report that LBPA is recognized within an exposed site in ALIX Bro1 domain predicted by MODA, an algorithm for discovering membrane-docking areas in proteins. LBPA interactions revealed a strict requirement for a structural calcium tightly bound near the lipid interaction site. Unlike other calcium- and phospholipid-binding proteins, the all-helical triangle-shaped fold of the Bro1 domain confers selectivity for LBPA via a pair of hydrophobic residues in a flexible loop, which undergoes a conformational change upon membrane association. Both LBPA and calcium binding are necessary for endosome association and virus infection, as are ALIX ESCRT binding and dimerization capacity. We conclude that LBPA recruits ALIX onto late endosomes via the calcium-bound Bro1 domain, triggering a conformational change in ALIX to mediate the delivery of viral nucleocapsids to the cytosol during infection.
Collapse
Affiliation(s)
- Christin Bissig
- Biochemistry Department, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
20
|
Feng Z, Hensley L, McKnight KL, Hu F, Madden V, Ping L, Jeong SH, Walker C, Lanford RE, Lemon SM. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 2013; 496:367-71. [PMID: 23542590 PMCID: PMC3631468 DOI: 10.1038/nature12029] [Citation(s) in RCA: 543] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 02/20/2013] [Indexed: 12/25/2022]
Abstract
Animal viruses are broadly categorized structurally by the presence or absence of an envelope composed of a lipid-bilayer membrane, attributes that profoundly affect stability, transmission and immune recognition. Among those lacking an envelope, the Picornaviridae are a large and diverse family of positive-strand RNA viruses that includes hepatitis A virus (HAV), an ancient human pathogen that remains a common cause of enterically transmitted hepatitis. HAV infects in a stealth-like manner and replicates efficiently in the liver. Virus-specific antibodies appear only after 3-4 weeks of infection, and typically herald its resolution. Although unexplained mechanistically, both anti-HAV antibody and inactivated whole-virus vaccines prevent disease when administered as late as 2 weeks after exposure, when virus replication is well established in the liver. Here we show that HAV released from cells is cloaked in host-derived membranes, thereby protecting the virion from antibody-mediated neutralization. These enveloped viruses ('eHAV') resemble exosomes, small vesicles that are increasingly recognized to be important in intercellular communications. They are fully infectious, sensitive to extraction with chloroform, and circulate in the blood of infected humans. Their biogenesis is dependent on host proteins associated with endosomal-sorting complexes required for transport (ESCRT), namely VPS4B and ALIX. Whereas the hijacking of membranes by HAV facilitates escape from neutralizing antibodies and probably promotes virus spread within the liver, anti-capsid antibodies restrict replication after infection with eHAV, suggesting a possible explanation for prophylaxis after exposure. Membrane hijacking by HAV blurs the classic distinction between 'enveloped' and 'non-enveloped' viruses and has broad implications for mechanisms of viral egress from infected cells as well as host immune responses.
Collapse
Affiliation(s)
- Zongdi Feng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7292, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4 complexes. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission.
Collapse
Affiliation(s)
- John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | | | |
Collapse
|
22
|
Ali N, Zhang L, Taylor S, Mironov A, Urbé S, Woodman P. Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB. Curr Biol 2013; 23:453-61. [PMID: 23477725 DOI: 10.1016/j.cub.2013.02.033] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/04/2013] [Accepted: 02/14/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sorting ubiquitinated epidermal growth factor receptor (EGFR) to the intralumenal vesicles of the multivesicular body requires the coordinated action of several ESCRT complexes. A central question is how EGFR transits vectorially from early, ubiquitin-binding ESCRTs to the final complex, ESCRT-III, such that cargo sequestration is coupled with intralumenal vesicle formation. RESULTS We show that the ESCRT accessory protein HD-PTP/PTPN23 associates with EGFR and combines with the deubiquitinating enzyme UBPY/USP8 to transfer EGFR from ESCRT-0 to ESCRT-III and drive EGFR sorting to intralumenal vesicles. HD-PTP binds ESCRT-0 via two interactions with the STAM2 subunit. First, the HD-PTP Bro1 domain binds the core domain of STAM2. This is competed by the ESCRT-III subunit CHMP4B, which binds an overlapping site on HD-PTP Bro1. Second, a proline-rich peptide in HD-PTP binds the SH3 domain of STAM2. Similar proline-rich peptides on UBPY also bind STAM2 SH3 to facilitate EGFR deubiquitination. Hence, locally recruited UBPY would be expected to compete with HD-PTP for STAM2 binding at this second site. Indeed, we show that HD-PTP recruits UBPY to EGFR. Association of UBPY with HD-PTP involves UBPY interacting with HD-PTP-bound CHMP4B, as well as additional interaction(s) between UBPY and HD-PTP. CONCLUSIONS This study identifies HD-PTP as a central coordinator of the ESCRT pathway for EGFR. Based on these studies, we propose a model whereby the concerted recruitment of CHMP4B and UBPY to HD-PTP and the engagement of UBPY by STAM2 displaces ESCRT-0 from HD-PTP, deubiquitinates EGFR, and releases ESCRT-0 from cargo in favor of ESCRT-III.
Collapse
Affiliation(s)
- Nazim Ali
- University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
23
|
Identification of the HIV-1 NC binding interface in Alix Bro1 reveals a role for RNA. J Virol 2012; 86:11608-15. [PMID: 22896625 DOI: 10.1128/jvi.01260-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
HIV-1 recruits members of ESCRT, the cell membrane fission machinery that promotes virus exit. HIV-1 Gag protein gains access to ESCRT directly by binding Alix, an ESCRT-associated protein that promotes budding. The Alix Bro1 and V domains bind Gag NC and p6 regions, respectively. Whereas V-p6 binding and function are well characterized, residues in Bro1 that interact with NC and their functional contribution to Alix-mediated HIV-1 budding are unknown. We mapped Bro1 residues that constitute the NC binding interface and found that they are critical for function. Intriguingly, residues involved in interactions on both sides of the Bro1-NC interface are positively charged, suggesting the involvement of a negatively charged cellular factor serving as a bridge. Nuclease treatment eliminated Bro1-NC interactions, revealing the involvement of RNA. These findings establish a direct role for NC in mediating interactions with ESCRT necessary for virus release and report the first evidence of RNA involvement in such recruitments.
Collapse
|
24
|
Mu R, Dussupt V, Jiang J, Sette P, Rudd V, Chuenchor W, Bello NF, Bouamr F, Xiao TS. Two distinct binding modes define the interaction of Brox with the C-terminal tails of CHMP5 and CHMP4B. Structure 2012; 20:887-98. [PMID: 22484091 PMCID: PMC3350598 DOI: 10.1016/j.str.2012.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/18/2012] [Accepted: 03/11/2012] [Indexed: 01/07/2023]
Abstract
Interactions of the CHMP protein carboxyl terminal tails with effector proteins play important roles in retroviral budding, cytokinesis, and multivesicular body biogenesis. Here we demonstrate that hydrophobic residues at the CHMP4B C-terminal amphipathic α helix bind a concave surface of Brox, a mammalian paralog of Alix. Unexpectedly, CHMP5 was also found to bind Brox and specifically recruit endogenous Brox to detergent-resistant membrane fractions through its C-terminal 20 residues. Instead of an α helix, the CHMP5 C-terminal tail adopts a tandem β-hairpin structure that binds Brox at the same site as CHMP4B. Additional Brox:CHMP5 interface is furnished by a unique CHMP5 hydrophobic pocket engaging the Brox residue Y348 that is not conserved among the Bro1 domains. Our studies thus unveil a β-hairpin conformation of the CHMP5 protein C-terminal tail, and provide insights into the overlapping but distinct binding profiles of ESCRT-III and the Bro1 domain proteins.
Collapse
Affiliation(s)
- Ruiling Mu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Vincent Dussupt
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Jiansheng Jiang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Paola Sette
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Victoria Rudd
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Watchalee Chuenchor
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Nana F. Bello
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
- Corresponding authors: Tsan Sam Xiao, PhD, Phone: 301 402 9782, Fax: 301 480 1291, . Fadila Bouamr, PhD, Phone: 301 496 4099, Fax: 301 402 0226,
| | - Tsan Sam Xiao
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
- Corresponding authors: Tsan Sam Xiao, PhD, Phone: 301 402 9782, Fax: 301 480 1291, . Fadila Bouamr, PhD, Phone: 301 496 4099, Fax: 301 402 0226,
| |
Collapse
|
25
|
Abstract
We recently reported that human immunodeficiency virus type 1 (HIV-1) carrying PTAP and LYPX(n)L L domains ceased budding when the nucleocapsid (NC) domain was mutated, suggesting a role for NC in HIV-1 release. Here we investigated whether NC involvement in virus release is a property specific to HIV-1 or a general requirement of retroviruses. Specifically, we examined a possible role for NC in the budding of retroviruses relying on divergent L domains and structurally homologous NC domains that harbor diverse protein sequences. We found that NC is critical for the release of viruses utilizing the PTAP motif whether it functions within its native Gag in simian immunodeficiency virus cpzGAB2 (SIVcpzGAB2) or SIVsmmE543 or when it is transplanted into the heterologous Gag protein of equine infectious anemia virus (EIAV). In both cases, virus release was severely diminished even though NC mutant Gag proteins retained the ability to assemble spherical particles. Moreover, budding-defective NC mutants, which displayed particles tethered to the plasma membrane, were triggered to release virus when access to the cell endocytic sorting complex required for transport pathway was restored (i.e., in trans expression of Nedd4.2s). We also examined the role of NC in the budding of EIAV, a retrovirus relying exclusively on the (L)YPX(n)L-type L domain. We found that EIAV late budding defects were rescued by overexpression of the isolated Alix Bro1 domain (Bro1). Bro1-mediated rescue of EIAV release required the wild-type NC. EIAV NC mutants lost interactions with Bro1 and failed to produce viruses despite retaining the ability to self-assemble. Together, our studies establish a role for NC in the budding of retroviruses harboring divergent L domains and evolutionarily diverse NC sequences, suggesting the utilization of a common conserved mechanism and/or cellular factor rather than a specific motif.
Collapse
|
26
|
Zhai Q, Landesman MB, Robinson H, Sundquist WI, Hill CP. Structure of the Bro1 domain protein BROX and functional analyses of the ALIX Bro1 domain in HIV-1 budding. PLoS One 2011; 6:e27466. [PMID: 22162750 PMCID: PMC3230590 DOI: 10.1371/journal.pone.0027466] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/17/2011] [Indexed: 11/18/2022] Open
Abstract
Background Bro1 domains are elongated, banana-shaped domains that were first identified in the yeast ESCRT pathway protein, Bro1p. Humans express three Bro1 domain-containing proteins: ALIX, BROX, and HD-PTP, which function in association with the ESCRT pathway to help mediate intraluminal vesicle formation at multivesicular bodies, the abscission stage of cytokinesis, and/or enveloped virus budding. Human Bro1 domains share the ability to bind the CHMP4 subset of ESCRT-III proteins, associate with the HIV-1 NCGag protein, and stimulate the budding of viral Gag proteins. The curved Bro1 domain structure has also been proposed to mediate membrane bending. To date, crystal structures have only been available for the related Bro1 domains from the Bro1p and ALIX proteins, and structures of additional family members should therefore aid in the identification of key structural and functional elements. Methodology/Principal Findings We report the crystal structure of the human BROX protein, which comprises a single Bro1 domain. The Bro1 domains from BROX, Bro1p and ALIX adopt similar overall structures and share two common exposed hydrophobic surfaces. Surface 1 is located on the concave face and forms the CHMP4 binding site, whereas Surface 2 is located at the narrow end of the domain. The structures differ in that only ALIX has an extended loop that projects away from the convex face to expose the hydrophobic Phe105 side chain at its tip. Functional studies demonstrated that mutations in Surface 1, Surface 2, or Phe105 all impair the ability of ALIX to stimulate HIV-1 budding. Conclusions/Significance Our studies reveal similarities in the overall folds and hydrophobic protein interaction sites of different Bro1 domains, and show that a unique extended loop contributes to the ability of ALIX to function in HIV-1 budding.
Collapse
Affiliation(s)
- Qianting Zhai
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Michael B. Landesman
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Howard Robinson
- Department of Biology, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Wesley I. Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail: (WIS); (CPH)
| | - Christopher P. Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail: (WIS); (CPH)
| |
Collapse
|