1
|
Escobedo N, Tunque Cahui RR, Caruso G, García Ríos E, Hirsh L, Monzon AM, Parisi G, Palopoli N. CoDNaS-Q: a database of conformational diversity of the native state of proteins with quaternary structure. Bioinformatics 2022; 38:4959-4961. [DOI: 10.1093/bioinformatics/btac627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/03/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Summary
A collection of conformers that exist in a dynamical equilibrium defines the native state of a protein. The structural differences between them describe their conformational diversity, a defining characteristic of the protein with an essential role in multiple cellular processes. Since most proteins carry out their functions by assembling into complexes, we have developed CoDNaS-Q, the first online resource to explore conformational diversity in homooligomeric proteins. It features a curated collection of redundant protein structures with known quaternary structure. CoDNaS-Q integrates relevant annotations that allow researchers to identify and explore the extent and possible reasons of conformational diversity in homooligomeric protein complexes.
Availability and Implementation
CoDNaS-Q is freely accessible at http://ufq.unq.edu.ar/codnasq/ or https://codnas-q.bioinformatica.org/home. The data can be retrieved from the website. The source code of the database can be downloaded from https://github.com/SfrRonaldo/codnas-q.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nahuel Escobedo
- Universidad Nacional de Quilmes Departamento de Ciencia y Tecnología, , Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires, Argentina
| | | | - Gastón Caruso
- Universidad Nacional de Quilmes Departamento de Ciencia y Tecnología, , Buenos Aires, Argentina
| | - Emilio García Ríos
- Pontificia Universidad Católica del Perú Departamento de Ingeniería, , Lima, Perú
| | - Layla Hirsh
- Pontificia Universidad Católica del Perú Departamento de Ingeniería, , Lima, Perú
| | | | - Gustavo Parisi
- Universidad Nacional de Quilmes Departamento de Ciencia y Tecnología, , Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires, Argentina
| | - Nicolas Palopoli
- Universidad Nacional de Quilmes Departamento de Ciencia y Tecnología, , Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires, Argentina
| |
Collapse
|
2
|
Andreini C, Rosato A. Structural Bioinformatics and Deep Learning of Metalloproteins: Recent Advances and Applications. Int J Mol Sci 2022; 23:7684. [PMID: 35887033 PMCID: PMC9323969 DOI: 10.3390/ijms23147684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
All living organisms require metal ions for their energy production and metabolic and biosynthetic processes. Within cells, the metal ions involved in the formation of adducts interact with metabolites and macromolecules (proteins and nucleic acids). The proteins that require binding to one or more metal ions in order to be able to carry out their physiological function are called metalloproteins. About one third of all protein structures in the Protein Data Bank involve metalloproteins. Over the past few years there has been tremendous progress in the number of computational tools and techniques making use of 3D structural information to support the investigation of metalloproteins. This trend has been boosted by the successful applications of neural networks and machine/deep learning approaches in molecular and structural biology at large. In this review, we discuss recent advances in the development and availability of resources dealing with metalloproteins from a structure-based perspective. We start by addressing tools for the prediction of metal-binding sites (MBSs) using structural information on apo-proteins. Then, we provide an overview of the methods for and lessons learned from the structural comparison of MBSs in a fold-independent manner. We then move to describing databases of metalloprotein/MBS structures. Finally, we summarizing recent ML/DL applications enhancing the functional interpretation of metalloprotein structures.
Collapse
Affiliation(s)
- Claudia Andreini
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Identification of alternative protein targets of glutamate-ureido-lysine associated with PSMA tracer uptake in prostate cancer cells. Proc Natl Acad Sci U S A 2022; 119:2025710119. [PMID: 35064078 PMCID: PMC8795759 DOI: 10.1073/pnas.2025710119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/21/2022] Open
Abstract
Glutamate-ureido-lysine (GUL) probes are specific for prostate-specific membrane antigen (PSMA), overexpressed by most prostate cancers. This antigen can be lost as the cancer progresses. Recent reports have indicated that GUL probes can still identify these PSMA-negative tumors, indicating that the expression of alternative PSMA-like proteins may change during disease progression. In this study we identified two such candidate protein targets, NAALADaseL and mGluR8, by using a combined computational chemistry, data mining, molecular biology, radiochemistry, and synthetic chemistry approach. This work consequently prepares the groundwork for developing specific probes that can identify this progression, indicates directions for neuroendocrine prostate cancer research, and highlights the utility of a multidisciplinary approach for the rapid identification of unidentified proteins interacting with diagnostic probes. Prostate-specific membrane antigen (PSMA) is highly overexpressed in most prostate cancers and is clinically visualized using PSMA-specific probes incorporating glutamate-ureido-lysine (GUL). PSMA is effectively absent from certain high-mortality, treatment-resistant subsets of prostate cancers, such as neuroendocrine prostate cancer (NEPC); however, GUL-based PSMA tracers are still reported to have the potential to identify NEPC metastatic tumors. These probes may bind unknown proteins associated with PSMA-suppressed cancers. We have identified the up-regulation of PSMA-like aminopeptidase NAALADaseL and the metabotropic glutamate receptors (mGluRs) in PSMA-suppressed prostate cancers and find that their expression levels inversely correlate with PSMA expression and are associated with GUL-based radiotracer uptake. Furthermore, we identify that NAALADaseL and mGluR expression correlates with a unique cell cycle signature. This provides an opportunity for the future study of the biology of NEPC and potential therapeutic directions. Computationally predicting that GUL-based probes bind well to these targets, we designed and synthesized a fluorescent PSMA tracer to investigate these proteins in vitro, where it shows excellent affinity for PSMA, NAALADaseL, and specific mGluRs associated with poor prognosis.
Collapse
|
4
|
Bromberg Y, Aptekmann AA, Mahlich Y, Cook L, Senn S, Miller M, Nanda V, Ferreiro DU, Falkowski PG. Quantifying structural relationships of metal-binding sites suggests origins of biological electron transfer. SCIENCE ADVANCES 2022; 8:eabj3984. [PMID: 35030025 PMCID: PMC8759750 DOI: 10.1126/sciadv.abj3984] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/22/2021] [Indexed: 06/07/2023]
Abstract
Biological redox reactions drive planetary biogeochemical cycles. Using a novel, structure-guided sequence analysis of proteins, we explored the patterns of evolution of enzymes responsible for these reactions. Our analysis reveals that the folds that bind transition metal–containing ligands have similar structural geometry and amino acid sequences across the full diversity of proteins. Similarity across folds reflects the availability of key transition metals over geological time and strongly suggests that transition metal–ligand binding had a small number of common peptide origins. We observe that structures central to our similarity network come primarily from oxidoreductases, suggesting that ancestral peptides may have also facilitated electron transfer reactions. Last, our results reveal that the earliest biologically functional peptides were likely available before the assembly of fully functional protein domains over 3.8 billion years ago.Thus, life is a special, very complex form of motion of matter, but this form did not always exist, and it is not separated from inorganic nature by an impassable abyss; rather, it arose from inorganic nature as a new property in the process of evolution of the world. We must study the history of this evolution if we want to solve the problem of the origin of life. [A. I. Oparin (1)]
Collapse
Affiliation(s)
- Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ 08873, USA
| | - Ariel A. Aptekmann
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ 08873, USA
| | - Yannick Mahlich
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ 08873, USA
| | - Linda Cook
- Program in Applied and Computational Math, Princeton University, Princeton, NJ 08540, USA
| | - Stefan Senn
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ 08873, USA
| | - Maximillian Miller
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ 08873, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, and Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Diego U. Ferreiro
- Protein Physiology Lab, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paul G. Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
5
|
PDB-wide identification of physiological hetero-oligomeric assemblies based on conserved quaternary structure geometry. Structure 2021; 29:1303-1311.e3. [PMID: 34520740 PMCID: PMC8575123 DOI: 10.1016/j.str.2021.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/22/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022]
Abstract
An accurate understanding of biomolecular mechanisms and diseases requires information on protein quaternary structure (QS). A critical challenge in inferring QS information from crystallography data is distinguishing biological interfaces from fortuitous crystal-packing contacts. Here, we employ QS conservation across homologs to infer the biological relevance of hetero-oligomers. We compare the structures and compositions of hetero-oligomers, which allow us to annotate 7,810 complexes as physiologically relevant, 1,060 as likely errors, and 1,432 with comparative information on subunit stoichiometry and composition. Excluding immunoglobulins, these annotations encompass over 51% of hetero-oligomers in the PDB. We curate a dataset of 577 hetero-oligomeric complexes to benchmark these annotations, which reveals an accuracy >94%. When homology information is not available, we compare QS across repositories (PDB, PISA, and EPPIC) to derive confidence estimates. This work provides high-quality annotations along with a large benchmark dataset of hetero-assemblies.
Collapse
|
6
|
Pacini L, Lesieur C. A computational methodology to diagnose sequence-variant dynamic perturbations by comparing atomic protein structures. Bioinformatics 2021; 38:703-709. [PMID: 34694373 PMCID: PMC8574318 DOI: 10.1093/bioinformatics/btab736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/29/2021] [Accepted: 10/21/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION The objective is to diagnose dynamics perturbations caused by amino-acid mutations as prerequisite to assess protein functional health or drug failure, simply using network models of protein X-ray structures. RESULTS We find that the differences in the allocation of the atomic interactions of each amino acid to 1D, 2D, 3D, 4D structural levels between variants structurally robust, recover experimental dynamic perturbations. The allocation measure validated on two B-pentamers variants of AB5 toxins having 17 mutations, also distinguishes dynamic perturbations of pathogenic and non-pathogenic Transthyretin single-mutants. Finally, the main proteases of the coronaviruses SARS-CoV and SARS-CoV-2 exhibit changes in the allocation measure, raising the possibility of drug failure despite the main proteases structural similarity. AVAILABILITY AND IMPLEMENTATION The Python code used for the production of the results is available at github.com/lorpac/protein_partitioning_atomic_contacts. The authors will run the analysis on any PDB structures of protein variants upon request. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lorenza Pacini
- AMPERE, CNRS, Université de Lyon, Lyon, 69622, France,Institut Rhônalpin des systèmes complexes (IXXI), École Normale Supérieure de Lyon, Lyon, 69007, France
| | - Claire Lesieur
- AMPERE, CNRS, Université de Lyon, Lyon, 69622, France,Institut Rhônalpin des systèmes complexes (IXXI), École Normale Supérieure de Lyon, Lyon, 69007, France,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
7
|
Maturana P, Tobar-Calfucoy E, Fuentealba M, Roversi P, Garratt R, Cabrera R. Crystal structure of the 6-phosphogluconate dehydrogenase from Gluconobacter oxydans reveals tetrameric 6PGDHs as the crucial intermediate in the evolution of structure and cofactor preference in the 6PGDH family. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16572.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The enzyme 6-phosphogluconate dehydrogenase (6PGDH) is the central enzyme of the oxidative pentose phosphate pathway. Members of the 6PGDH family belong to different classes: either homodimeric enzymes assembled from long-chain subunits or homotetrameric ones assembled from short-chain subunits. Dimeric 6PGDHs bear an internal duplication absent in tetrameric 6PGDHs and distant homologues of the β-hydroxyacid dehydrogenase (βHADH) superfamily. Methods: We use X-ray crystallography to determine the structure of the apo form of the 6PGDH from Gluconobacter oxydans (Go6PGDH). We carried out a structural and phylogenetic analysis of short and long-chain 6PGDHs. We put forward an evolutionary hypothesis explaining the differences seen in oligomeric state vs. dinucleotide preference of the 6PGDH family. We determined the cofactor preference of Go6PGDH at different 6-phosphogluconate concentrations, characterizing the wild-type enzyme and three-point mutants of residues in the cofactor binding site of Go6PGDH. Results: The structural comparison suggests that the 6PG binding site initially evolved by exchanging C-terminal α-helices between subunits. An internal duplication event changed the quaternary structure of the enzyme from a tetrameric to a dimeric arrangement. The phylogenetic analysis suggests that 6PGDHs have spread from Bacteria to Archaea and Eukarya on multiple occasions by lateral gene transfer. Sequence motifs consistent with NAD+- and NADP+-specificity are found in the β2-α2 loop of dimeric and tetrameric 6PGDHs. Site-directed mutagenesis of Go6PGDH inspired by this analysis fully reverses dinucleotide preference. One of the mutants we engineered has the highest efficiency and specificity for NAD+ so far described for a 6PGDH. Conclusions: The family 6PGDH comprises dimeric and tetrameric members whose active sites are conformed by a C-terminal α-helix contributed from adjacent subunits. Dimeric 6PGDHs have evolved from the duplication-fusion of the tetrameric C-terminal domain before independent transitions of cofactor specificity. Changes in the conserved β2-α2 loop are crucial to modulate the cofactor specificity in Go6PGDH.
Collapse
|
8
|
He X, Li Y, Tao Y, Qi X, Ma R, Jia H, Yan M, Chen K, Hao N. Discovering and efficiently promoting the extracellular secretory expression of Thermobacillus sp. ZCTH02-B1 sucrose phosphorylase in Escherichia coli. Int J Biol Macromol 2021; 173:532-540. [PMID: 33482210 DOI: 10.1016/j.ijbiomac.2021.01.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/22/2022]
Abstract
Sucrose phosphorylase (SPase, EC2.4.1.7) is a promising transglycosylation biocatalyst used for producing glycosylated compounds that are widely used in the food, cosmetics, and pharmaceutical industries. In this study, a recombinant SPase from the Thermobacillus sp. ZCTH02-B1 (rTSPase), which was previously reported to have high thermostability and the catalytic ability to synthesize ascorbic acid 2-glucoside, was attempted to be extracellularly expressed in Escherichia coli BL21(DE3) by fusion of endogenous osmotically-inducible protein Y. Unexpectedly, the rTSPase itself was produced outside the cells with an underestimated performance, although no typical signal peptide was predicted. Further N- and C-terminal truncation experiments revealed that both termini of rTSPase have an important role in protein folding and enzymatic activity, while its secretion was N-terminus associated. Extracellular protein concentration and rTSPase activity achieved 1.8 mg/mL and 6.2 U/mL after induction of 36 h in a 5-L fermenter. High-level extracellular rTSPase production could also be obtained from E. coli within 24 h by inducing overexpression of D, D-carboxypeptidase for cell lysis.
Collapse
Affiliation(s)
- Xiaoying He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yehui Tao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xuelian Qi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruiqi Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Ming Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ning Hao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Wiederstein M, Sippl MJ. TopMatch-web: pairwise matching of large assemblies of protein and nucleic acid chains in 3D. Nucleic Acids Res 2020; 48:W31-W35. [PMID: 32479639 PMCID: PMC7319569 DOI: 10.1093/nar/gkaa366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/20/2020] [Accepted: 05/29/2020] [Indexed: 11/13/2022] Open
Abstract
Frequently, the complete functional units of biological molecules are assemblies of protein and nucleic acid chains. Stunning examples are the complex structures of ribosomes. Here, we present TopMatch-web, a computational tool for the study of the three-dimensional structure, function and evolution of such molecules. The unique feature of TopMatch is its ability to match the protein as well as nucleic acid chains of complete molecular assemblies simultaneously. The resulting structural alignments are visualized instantly using the high-performance molecular viewer NGL. We use the mitochondrial ribosomes of human and yeast as an example to demonstrate the capabilities of TopMatch-web. The service responds immediately, enabling the interactive study of many pairwise alignments of large molecular assemblies in a single session. TopMatch-web is freely accessible at https://topmatch.services.came.sbg.ac.at.
Collapse
Affiliation(s)
- Markus Wiederstein
- Paris-Lodron-University of Salzburg, Department of Biosciences, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Manfred J Sippl
- Paris-Lodron-University of Salzburg, Department of Biosciences, Hellbrunner Str. 34, 5020 Salzburg, Austria
| |
Collapse
|
10
|
Real time structural search of the Protein Data Bank. PLoS Comput Biol 2020; 16:e1007970. [PMID: 32639954 PMCID: PMC7371193 DOI: 10.1371/journal.pcbi.1007970] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/20/2020] [Accepted: 05/20/2020] [Indexed: 11/19/2022] Open
Abstract
Detection of protein structure similarity is a central challenge in structural bioinformatics. Comparisons are usually performed at the polypeptide chain level, however the functional form of a protein within the cell is often an oligomer. This fact, together with recent growth of oligomeric structures in the Protein Data Bank (PDB), demands more efficient approaches to oligomeric assembly alignment/retrieval. Traditional methods use atom level information, which can be complicated by the presence of topological permutations within a polypeptide chain and/or subunit rearrangements. These challenges can be overcome by comparing electron density volumes directly. But, brute force alignment of 3D data is a compute intensive search problem. We developed a 3D Zernike moment normalization procedure to orient electron density volumes and assess similarity with unprecedented speed. Similarity searching with this approach enables real-time retrieval of proteins/protein assemblies resembling a target, from PDB or user input, together with resulting alignments (http://shape.rcsb.org).
Collapse
|
11
|
Ochi T, Quarantotti V, Lin H, Jullien J, Rosa E Silva I, Boselli F, Barnabas DD, Johnson CM, McLaughlin SH, Freund SMV, Blackford AN, Kimata Y, Goldstein RE, Jackson SP, Blundell TL, Dutcher SK, Gergely F, van Breugel M. CCDC61/VFL3 Is a Paralog of SAS6 and Promotes Ciliary Functions. Structure 2020; 28:674-689.e11. [PMID: 32375023 PMCID: PMC7267773 DOI: 10.1016/j.str.2020.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/24/2020] [Accepted: 04/11/2020] [Indexed: 01/08/2023]
Abstract
Centrioles are cylindrical assemblies whose peripheral microtubule array displays a 9-fold rotational symmetry that is established by the scaffolding protein SAS6. Centriole symmetry can be broken by centriole-associated structures, such as the striated fibers in Chlamydomonas that are important for ciliary function. The conserved protein CCDC61/VFL3 is involved in this process, but its exact role is unclear. Here, we show that CCDC61 is a paralog of SAS6. Crystal structures of CCDC61 demonstrate that it contains two homodimerization interfaces that are similar to those found in SAS6, but result in the formation of linear filaments rather than rings. Furthermore, we show that CCDC61 binds microtubules and that residues involved in CCDC61 microtubule binding are important for ciliary function in Chlamydomonas. Together, our findings suggest that CCDC61 and SAS6 functionally diverged from a common ancestor while retaining the ability to scaffold the assembly of basal body-associated structures or centrioles, respectively.
Collapse
Affiliation(s)
- Takashi Ochi
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Valentina Quarantotti
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Huawen Lin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK; CRTI, INSERM, UNIV Nantes, Nantes, France
| | - Ivan Rosa E Silva
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Francesco Boselli
- DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Deepak D Barnabas
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher M Johnson
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephen H McLaughlin
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Yuu Kimata
- Department of Genetics, University of Cambridge, Cambridge CB4 1AR, UK; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Raymond E Goldstein
- DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Stephen P Jackson
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Mark van Breugel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
12
|
Andreeva A, Kulesha E, Gough J, Murzin AG. The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Res 2020; 48:D376-D382. [PMID: 31724711 PMCID: PMC7139981 DOI: 10.1093/nar/gkz1064] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
The Structural Classification of Proteins (SCOP) database is a classification of protein domains organised according to their evolutionary and structural relationships. We report a major effort to increase the coverage of structural data, aiming to provide classification of almost all domain superfamilies with representatives in the PDB. We have also improved the database schema, provided a new API and modernised the web interface. This is by far the most significant update in coverage since SCOP 1.75 and builds on the advances in schema from the SCOP 2 prototype. The database is accessible from http://scop.mrc-lmb.cam.ac.uk.
Collapse
Affiliation(s)
- Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Julian Gough
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Alexey G Murzin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
13
|
Andreani J, Quignot C, Guerois R. Structural prediction of protein interactions and docking using conservation and coevolution. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jessica Andreani
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Chloé Quignot
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Raphael Guerois
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| |
Collapse
|
14
|
Burke MJ, Stockley PG, Boyes J. Broadly Neutralizing Bovine Antibodies: Highly Effective New Tools against Evasive Pathogens? Viruses 2020; 12:v12040473. [PMID: 32331321 PMCID: PMC7232318 DOI: 10.3390/v12040473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Potent antibody-mediated neutralization is critical for an organism to combat the vast array of pathogens it will face during its lifetime. Due to the potential genetic diversity of some viruses, such as HIV-1 and influenza, standard neutralizing antibodies are often ineffective or easily evaded as their targets are masked or rapidly mutated. This has thwarted efforts to both prevent and treat HIV-1 infections and means that entirely new formulations are required to vaccinate against influenza each year. However, some rare antibodies isolated from infected individuals confer broad and potent neutralization. A subset of these broadly neutralizing antibodies possesses a long complementarity-determining 3 region of the immunoglobulin heavy chain (CDR H3). This feature generates unique antigen binding site configurations that can engage conserved but otherwise inaccessible epitope targets thus neutralizing many viral variants. Remarkably, ultralong CDR H3s are a common feature of the cow antibody repertoire and are encoded by a single variable, diversity, joining (VDJ) recombination that is extensively diversified prior to antigen exposure. Recently, it was shown that cows rapidly generate a broadly neutralizing response upon exposure to HIV-1 and this is primarily mediated by these novel ultralong antibody types. This review summarises the current knowledge of these unusual CDR H3 structures and discusses their known and potential future uses.
Collapse
Affiliation(s)
- Matthew J. Burke
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (P.G.S.)
| | - Peter G. Stockley
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (P.G.S.)
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Joan Boyes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (P.G.S.)
- Correspondence:
| |
Collapse
|
15
|
Norambuena J, Miller M, Boyd JM, Barkay T. Expression and regulation of the mer operon in Thermus thermophilus. Environ Microbiol 2020; 22:1619-1634. [PMID: 32090420 DOI: 10.1111/1462-2920.14953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 11/25/2022]
Abstract
Mercury (Hg) is a highly toxic and widely distributed heavy metal, which some Bacteria and Archaea detoxify by the reduction of ionic Hg (Hg[II]) to the elemental volatile form, Hg(0). This activity is specified by the mer operon. The mer operon of the deeply branching thermophile Thermus thermophilus HB27 encodes for, an O-acetyl-l-homoacetylserine sulfhydrylase (Oah2), a transcriptional regulator (MerR), a hypothetical protein (hp) and a mercuric reductase (MerA). Here, we show that this operon has two convergently expressed and differentially regulated promoters. An upstream promoter, P oah , controls the constitutive transcription of the entire operon and a second promoter (P mer ), located within merR, is responsive to Hg(II). In the absence of Hg(II), the transcription of merA is basal and when Hg(II) is present, merA transcription is induced. This response to Hg(II) is controlled by MerR and genetic evidence suggests that MerR acts as a repressor and activator of P mer . When the whole merR, including P mer , is removed, merA is transcribed from P oah independently of Hg(II). These results suggest that the transcriptional regulation of mer in T. thermophilus is both similar to, and different from, the well-documented regulation of proteobacterial mer systems, possibly representing an early step in the evolution of mer-operon regulation.
Collapse
Affiliation(s)
- Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, 08901, New Jersey, USA
| | - Maximilian Miller
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, 08901, New Jersey, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, 08901, New Jersey, USA
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, 08901, New Jersey, USA
| |
Collapse
|
16
|
Ladrón-de-Guevara E, Dominguez L, Rangel-Yescas GE, Fernández-Velasco DA, Torres-Larios A, Rosenbaum T, Islas LD. The Contribution of the Ankyrin Repeat Domain of TRPV1 as a Thermal Module. Biophys J 2019; 118:836-845. [PMID: 31757360 DOI: 10.1016/j.bpj.2019.10.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
The TRPV1 cation nonselective ion channel plays an essential role in thermosensation and perception of other noxious stimuli. TRPV1 can be activated by low extracellular pH, high temperature, or naturally occurring pungent molecules such as allicin, capsaicin, or resiniferatoxin. Its noxious thermal sensitivity makes it an important participant as a thermal sensor in mammals. However, details of the mechanism of channel activation by increases in temperature remain unclear. Here, we used a combination of approaches to try to understand the role of the ankyrin repeat domain (ARD) in channel behavior. First, a computational modeling approach by coarse-grained molecular dynamics simulation of the whole TRPV1 embedded in a phosphatidylcholine and phosphatidylethanolamine membrane provides insight into the dynamics of this channel domain. Global analysis of the structural ensemble shows that the ARD is a region that sustains high fluctuations during dynamics at different temperatures. We then performed biochemical and thermal stability studies of the purified ARD by the means of circular dichroism and tryptophan fluorescence and demonstrate that this region undergoes structural changes at similar temperatures that lead to TRPV1 activation. Our data suggest that the ARD is a dynamic module and that it may participate in controlling the temperature sensitivity of TRPV1.
Collapse
Affiliation(s)
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Mexico City, Mexico
| | | | | | - Alfredo Torres-Larios
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tamara Rosenbaum
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leon D Islas
- Facultad de Medicina, Departamento de Fisiología, Mexico City, Mexico.
| |
Collapse
|
17
|
Yu H, Hernández López RI, Steadman D, Méndez‐Sánchez D, Higson S, Cázares‐Körner A, Sheppard TD, Ward JM, Hailes HC, Dalby PA. Engineering transketolase to accept both unnatural donor and acceptor substrates and produce α‐hydroxyketones. FEBS J 2019; 287:1758-1776. [DOI: 10.1111/febs.15108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/26/2019] [Accepted: 10/23/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Haoran Yu
- Department of Biochemical Engineering University College London UK
| | | | | | | | - Sally Higson
- Department of Chemistry University College London UK
| | | | | | - John M. Ward
- Department of Biochemical Engineering University College London UK
| | | | - Paul A. Dalby
- Department of Biochemical Engineering University College London UK
| |
Collapse
|
18
|
Wang L, Zhang Y, Zou S. The characterization of pc-polylines representing protein backbones. Proteins 2019; 88:307-318. [PMID: 31442337 DOI: 10.1002/prot.25803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 11/10/2022]
Abstract
The backbone of a protein is typically represented as either a C α -polyline, a three-dimensional (3D) polyline that passes through the C α atoms, or a tuple of ϕ,ψ pairs while its fold is usually assigned using the 3D topological arrangement of the secondary structure elements (SSEs). It is tricky to obtain the SSE composition for a protein from the C α -polyline representation while its 3D SSE arrangement is not apparent in the two-dimensional (2D) ϕ,ψ representation. In this article, we first represent the backbone of a protein as a pc-polyline that passes through the centers of its peptide planes. We then analyze the pc-polylines for six different sets of proteins with high quality crystal structures. The results show that SSE composition becomes recognizable in pc-polyline presentation and consequently the geometrical property of the pc-polyline of a protein could be used to assign its secondary structure. Furthermore, our analysis finds that for each of the six sets the total length of a pc-polyline increases linearly with the number of the peptide planes. Interestingly a comparison of the six regression lines shows that they have almost identical slopes but different intercepts. Most interestingly there exist decent linear correlations between the intercepts of the six lines and either the average helix contents or the average sheet contents and between the intercepts and the average backbone hydrogen bonding energetics. Finally, we discuss the implications of the identified correlations for structure classification and protein folding, and the potential applications of pc-polyline representation to structure prediction and protein design.
Collapse
Affiliation(s)
- Lincong Wang
- The College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Yao Zhang
- The College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Shuxue Zou
- The College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Ferrada E. The Site-Specific Amino Acid Preferences of Homologous Proteins Depend on Sequence Divergence. Genome Biol Evol 2019; 11:121-135. [PMID: 30496400 PMCID: PMC6326188 DOI: 10.1093/gbe/evy261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
The propensity of protein sites to be occupied by any of the 20 amino acids is known as site-specific amino acid preferences (SSAP). Under the assumption that SSAP are conserved among homologs, they can be used to parameterize evolutionary models for the reconstruction of accurate phylogenetic trees. However, simulations and experimental studies have not been able to fully assess the relative conservation of SSAP as a function of sequence divergence between protein homologs. Here, we implement a computational procedure to predict the SSAP of proteins based on the effect of changes in thermodynamic stability upon mutation. An advantage of this computational approach is that it allows us to interrogate a large and unbiased sample of homologous proteins, over the entire spectrum of sequence divergence, and under selection for the same molecular trait. We show that computational predictions have reproducibilities that resemble those obtained in experimental replicates, and can largely recapitulate the SSAP observed in a large-scale mutagenesis experiment. Our results support recent experimental reports on the conservation of SSAP of related homologs, with a slowly increasing fraction of up to 15% of different sites at sequence distances lower than 40%. However, even under the sole contribution of thermodynamic stability, our conservative approach identifies up to 30% of significant different sites between divergent homologs. We show that this relation holds for homologs of diverse sizes and structural classes. Analyses of residue contact networks suggest that an important determinant of these differences is the increasing accumulation of structural deviations that results from sequence divergence.
Collapse
Affiliation(s)
- Evandro Ferrada
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, 8580745, Santiago, Chile
| |
Collapse
|
20
|
Seth-Pasricha M, Senn S, Sanman LE, Bogyo M, Nanda V, Bidle KA, Bidle KD. Catalytic linkage between caspase activity and proteostasis in Archaea. Environ Microbiol 2018; 21:286-298. [PMID: 30370585 DOI: 10.1111/1462-2920.14456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/29/2022]
Abstract
The model haloarchaeon, Haloferax volcanii possess an extremely high, and highly specific, basal caspase activity in exponentially growing cells that closely resembles caspase-4. This activity is specifically inhibited by the pan-caspase inhibitor, z-VAD-FMK, and has no cross-reactivity with other known protease families. Although it is one of the dominant cellular proteolytic activities in exponentially growing H. volcanii cells, the interactive cellular roles remain unknown and the protein(s) responsible for this activity remain elusive. Here, biochemical purification and in situ trapping with caspase targeted covalent inhibitors combined with genome-enabled proteomics, structural analysis, targeted gene knockouts and treatment with canavanine demonstrated a catalytic linkage between caspase activity and thermosomes, proteasomes and cdc48b, a cell division protein and proteasomal degradation facilitating ATPase, as part of an 'interactase' of stress-related protein complexes with an established link to the unfolded protein response (UPR). Our findings provide novel cellular and biochemical context for the observed caspase activity in Archaea and add new insight to understanding the role of this activity, implicating their possible role in the establishment of protein stress and ER associated degradation pathways in Eukarya.
Collapse
Affiliation(s)
- Mansha Seth-Pasricha
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Stefan Senn
- Abteilung für Chemie und Bioanalytik, Universität Salzburg, Salzburg, Austria
| | - Laura E Sanman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Kelly A Bidle
- Department of Biology, Behavioral Neuroscience, and Health Sciences, Rider University, Lawrenceville, NJ, USA
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
21
|
Kovacs NA, Penev PI, Venapally A, Petrov AS, Williams LD. Circular Permutation Obscures Universality of a Ribosomal Protein. J Mol Evol 2018; 86:581-592. [PMID: 30306205 DOI: 10.1007/s00239-018-9869-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/28/2018] [Indexed: 12/29/2022]
Abstract
Functions, origins, and evolution of the translation system are best understood in the context of unambiguous and phylogenetically based taxonomy and nomenclature. Here, we map ribosomal proteins onto the tree of life and provide a nomenclature for ribosomal proteins that is consistent with phylogenetic relationships. We have increased the accuracy of homology relationships among ribosomal proteins, providing a more informative picture of their lineages. We demonstrate that bL33 (bacteria) and eL42 (archaea/eukarya) are homologs with common ancestry and acute similarities in sequence and structure. Their similarities were previously obscured by circular permutation. The most likely mechanism of permutation between bL33 and eL42 is duplication followed by fusion and deletion of both the first and last β-hairpins. bL33 and eL42 are composed of zinc ribbon protein folds, one of the most common zinc finger fold-groups of, and most frequently observed in translation-related domains. Bacterial-specific ribosomal protein bL33 and archaeal/eukaryotic-specific ribosomal protein eL42 are now both assigned the name of uL33, indicating a universal ribosomal protein. We provide a phylogenetic naming scheme for all ribosomal proteins that is based on phylogenetic relationships to be used as a tool for studying the systemics, evolution, and origins of the ribosome.
Collapse
Affiliation(s)
- Nicholas A Kovacs
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Petar I Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Amitej Venapally
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA.
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
22
|
Acevedo W, Ramírez-Sarmiento CA, Agosin E. Identifying the interactions between natural, non-caloric sweeteners and the human sweet receptor by molecular docking. Food Chem 2018; 264:164-171. [DOI: 10.1016/j.foodchem.2018.04.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/03/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022]
|
23
|
Glavina J, Román EA, Espada R, de Prat-Gay G, Chemes LB, Sánchez IE. Interplay between sequence, structure and linear motifs in the adenovirus E1A hub protein. Virology 2018; 525:117-131. [PMID: 30265888 DOI: 10.1016/j.virol.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 01/04/2023]
Abstract
E1A is the main transforming protein in mastadenoviruses. This work uses bioinformatics to extrapolate experimental knowledge from Human adenovirus serotype 5 and 12 E1A proteins to all known serotypes. A conserved domain architecture with a high degree of intrinsic disorder acts as a scaffold for multiple linear motifs with variable occurrence mediating the interaction with over fifty host proteins. While linear motifs contribute strongly to sequence conservation within intrinsically disordered E1A regions, motif repertoires can deviate significantly from those found in prototypical serotypes. Close to one hundred predicted residue-residue contacts suggest the presence of stable structure in the CR3 domain and of specific conformational ensembles involving both short- and long-range intramolecular interactions. Our computational results suggest that E1A sequence conservation and co-evolution reflect the evolutionary pressure to maintain a mainly disordered, yet non-random conformation harboring a high number of binding motifs that mediate viral hijacking of the cell machinery.
Collapse
Affiliation(s)
- Juliana Glavina
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas. Buenos Aires, Argentina
| | - Ernesto A Román
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina
| | - Rocío Espada
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas. Buenos Aires, Argentina
| | - Gonzalo de Prat-Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Lucía B Chemes
- Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biotecnológicas IIB-INTECH, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina; Departamento de Fisiología y Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Ignacio E Sánchez
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas. Buenos Aires, Argentina.
| |
Collapse
|
24
|
Rosaleny LE, Cardona-Serra S, Escalera-Moreno L, Baldoví JJ, Gołȩbiewska V, Wlazło K, Casino P, Prima-García H, Gaita-Ariño A, Coronado E. Peptides as Versatile Platforms for Quantum Computing. J Phys Chem Lett 2018; 9:4522-4526. [PMID: 30044106 DOI: 10.1021/acs.jpclett.8b01813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The pursuit of novel functional building blocks for the emerging field of quantum computing is one of the most appealing topics in the context of quantum technologies. Herein we showcase the urgency of introducing peptides as versatile platforms for quantum computing. In particular, we focus on lanthanide-binding tags, originally developed for the study of protein structure. We use pulsed electronic paramagnetic resonance to demonstrate quantum coherent oscillations in both neodymium and gadolinium peptidic qubits. Calculations based on density functional theory followed by a ligand field analysis indicate the possibility of influencing the nature of the spin qubit states by means of controlled changes in the peptidic sequence. We conclude with an overview of the challenges and opportunities opened by this interdisciplinary field.
Collapse
Affiliation(s)
- Lorena E Rosaleny
- Institut de Ciència Molecular , Universitat de València , Cat. José Beltrán 2 , 46980 Paterna , Spain
| | - Salvador Cardona-Serra
- Institut de Ciència Molecular , Universitat de València , Cat. José Beltrán 2 , 46980 Paterna , Spain
| | - Luis Escalera-Moreno
- Institut de Ciència Molecular , Universitat de València , Cat. José Beltrán 2 , 46980 Paterna , Spain
| | - José J Baldoví
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , D-22761 Hamburg , Germany
| | - Violetta Gołȩbiewska
- Institut de Ciència Molecular , Universitat de València , Cat. José Beltrán 2 , 46980 Paterna , Spain
| | - Karolina Wlazło
- Institut de Ciència Molecular , Universitat de València , Cat. José Beltrán 2 , 46980 Paterna , Spain
| | - Patricia Casino
- Departamento de Bioquı́mica y Biologı́a Molecular , ERI BioTecMed, Universitat de València , Dr. Moliner 50 , 46100 Burjassot , Spain
| | - Helena Prima-García
- Institut de Ciència Molecular , Universitat de València , Cat. José Beltrán 2 , 46980 Paterna , Spain
| | - Alejandro Gaita-Ariño
- Institut de Ciència Molecular , Universitat de València , Cat. José Beltrán 2 , 46980 Paterna , Spain
| | - Eugenio Coronado
- Institut de Ciència Molecular , Universitat de València , Cat. José Beltrán 2 , 46980 Paterna , Spain
| |
Collapse
|
25
|
Irudayanathan FJ, Wang X, Wang N, Willsey SR, Seddon IA, Nangia S. Self-Assembly Simulations of Classic Claudins—Insights into the Pore Structure, Selectivity, and Higher Order Complexes. J Phys Chem B 2018; 122:7463-7474. [DOI: 10.1021/acs.jpcb.8b03842] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Xiaoyi Wang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Wang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Sarah R. Willsey
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Ian A. Seddon
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
26
|
PDB-wide identification of biological assemblies from conserved quaternary structure geometry. Nat Methods 2017; 15:67-72. [DOI: 10.1038/nmeth.4510] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
|
27
|
Pugacheva V, Korotkov A, Korotkov E. Search of latent periodicity in amino acid sequences by means of genetic algorithm and dynamic programming. Stat Appl Genet Mol Biol 2017; 15:381-400. [PMID: 27337743 DOI: 10.1515/sagmb-2015-0079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to show that amino acid sequences have a latent periodicity with insertions and deletions of amino acids in unknown positions of the analyzed sequence. Genetic algorithm, dynamic programming and random weight matrices were used to develop a new mathematical algorithm for latent periodicity search. A multiple alignment of periods was calculated with help of the direct optimization of the position-weight matrix without using pairwise alignments. The developed algorithm was applied to analyze amino acid sequences of a small number of proteins. This study showed the presence of latent periodicity with insertions and deletions in the amino acid sequences of such proteins, for which the presence of latent periodicity was not previously known. The origin of latent periodicity with insertions and deletions is discussed.
Collapse
|
28
|
Rios-Anjos RM, Camandona VDL, Bleicher L, Ferreira-Junior JR. Structural and functional mapping of Rtg2p determinants involved in retrograde signaling and aging of Saccharomyces cerevisiae. PLoS One 2017; 12:e0177090. [PMID: 28472157 PMCID: PMC5417653 DOI: 10.1371/journal.pone.0177090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/21/2017] [Indexed: 01/27/2023] Open
Abstract
In Saccharomyces cerevisiae mitochondrial dysfunction induces retrograde signaling, a pathway of communication from mitochondria to the nucleus that promotes a metabolic remodeling to ensure sufficient biosynthetic precursors for replication. Rtg2p is a positive modulator of this pathway that is also required for cellular longevity. This protein belongs to the ASKHA superfamily, and contains a putative N-terminal ATP-binding domain, but there is no detailed structural and functional map of the residues in this domain that accounts for their contribution to retrograde signaling and aging. Here we use Decomposition of Residue Correlation Networks and site-directed mutagenesis to identify Rtg2p structural determinants of retrograde signaling and longevity. We found that most of the residues involved in retrograde signaling surround the ATP-binding loops, and that Rtg2p N-terminus is divided in three regions whose mutants have different aging phenotypes. We also identified E137, D158 and S163 as possible residues involved in stabilization of ATP at the active site. The mutants shown here may be used to map other Rtg2p activities that crosstalk to other pathways of the cell related to genomic stability and aging.
Collapse
Affiliation(s)
| | | | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
29
|
Acharya G, Kaur G, Subramanian S. Evolutionary relationships between heme-binding ferredoxin α + β barrels. BMC Bioinformatics 2016; 17:168. [PMID: 27089923 PMCID: PMC4835899 DOI: 10.1186/s12859-016-1033-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/12/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The α + β barrel superfamily of the ferredoxin-like fold consists of a functionally diverse group of evolutionarily related proteins. The barrel architecture of these proteins is formed by either homo-/hetero-dimerization or duplication and fusion of ferredoxin-like domains. Several members of this superfamily bind heme in order to carry out their functions. RESULTS We analyze the heme-binding sites in these proteins as well as their barrel topologies. Our comparative structural analysis of these heme-binding barrels reveals two distinct modes of packing of the ferredoxin-like domains to constitute the α + β barrel, which is typified by the Type-1/IsdG-like and Type-2/OxdA-like proteins, respectively. We examine the heme-binding pockets and explore the versatility of the α + β barrels ability to accommodate heme or heme-related moieties, such as siroheme, in at least three different sites, namely, the mode seen in IsdG/OxdA, Cld/DyP/EfeB/HemQ and siroheme decarboxylase barrels. CONCLUSIONS Our study offers insights into the plausible evolutionary relationships between the two distinct barrel packing topologies and relate the observed heme-binding sites to these topologies.
Collapse
Affiliation(s)
- Giriraj Acharya
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, India
| | - Gurmeet Kaur
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, India
| | | |
Collapse
|
30
|
Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL, Wan W, Bui KH, Hagen WJ, Briggs JAG, Glavy JS, Hurt E, Beck M. Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 2016; 352:363-365. [PMID: 27081072 PMCID: PMC8926079 DOI: 10.1126/science.aaf0643] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/19/2016] [Indexed: 07/21/2023]
Abstract
Nuclear pore complexes (NPCs) are 110-megadalton assemblies that mediate nucleocytoplasmic transport. NPCs are built from multiple copies of ~30 different nucleoporins, and understanding how these nucleoporins assemble into the NPC scaffold imposes a formidable challenge. Recently, it has been shown how the Y complex, a prominent NPC module, forms the outer rings of the nuclear pore. However, the organization of the inner ring has remained unknown until now. We used molecular modeling combined with cross-linking mass spectrometry and cryo-electron tomography to obtain a composite structure of the inner ring. This architectural map explains the vast majority of the electron density of the scaffold. We conclude that despite obvious differences in morphology and composition, the higher-order structure of the inner and outer rings is unexpectedly similar.
Collapse
Affiliation(s)
- Jan Kosinski
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Shyamal Mosalaganti
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Alexander von Appen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Roman Teimer
- Biochemistry Center of Heidelberg University, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Amanda L. DiGuilio
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 507 River Street, Hoboken, NJ 07030, USA
| | - William Wan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Wim J.H. Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - John A. G. Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| | - Joseph S. Glavy
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 507 River Street, Hoboken, NJ 07030, USA
| | - Ed Hurt
- Biochemistry Center of Heidelberg University, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| |
Collapse
|
31
|
|
32
|
Gutiérrez FI, Rodriguez-Valenzuela F, Ibarra IL, Devos DP, Melo F. Efficient and automated large-scale detection of structural relationships in proteins with a flexible aligner. BMC Bioinformatics 2016; 17:20. [PMID: 26732380 PMCID: PMC4702403 DOI: 10.1186/s12859-015-0866-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
Background The total number of known three-dimensional protein structures is rapidly increasing. Consequently, the need for fast structural search against complete databases without a significant loss of accuracy is increasingly demanding. Recently, TopSearch, an ultra-fast method for finding rigid structural relationships between a query structure and the complete Protein Data Bank (PDB), at the multi-chain level, has been released. However, comparable accurate flexible structural aligners to perform efficient whole database searches of multi-domain proteins are not yet available. The availability of such a tool is critical for a sustainable boosting of biological discovery. Results Here we report on the development of a new method for the fast and flexible comparison of protein structure chains. The method relies on the calculation of 2D matrices containing a description of the three-dimensional arrangement of secondary structure elements (angles and distances). The comparison involves the matching of an ensemble of substructures through a nested-two-steps dynamic programming algorithm. The unique features of this new approach are the integration and trade-off balancing of the following: 1) speed, 2) accuracy and 3) global and semiglobal flexible structure alignment by integration of local substructure matching. The comparison, and matching with competitive accuracy, of one medium sized (250-aa) query structure against the complete PDB database (216,322 protein chains) takes about 8 min using an average desktop computer. The method is at least 2–3 orders of magnitude faster than other tested tools with similar accuracy. We validate the performance of the method for fold and superfamily assignment in a large benchmark set of protein structures. We finally provide a series of examples to illustrate the usefulness of this method and its application in biological discovery. Conclusions The method is able to detect partial structure matching, rigid body shifts, conformational changes and tolerates substantial structural variation arising from insertions, deletions and sequence divergence, as well as structural convergence of unrelated proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0866-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando I Gutiérrez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.,Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Felipe Rodriguez-Valenzuela
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Ignacio L Ibarra
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.,Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide, Sevilla, Spain
| | - Damien P Devos
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany. .,Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide, Sevilla, Spain.
| | - Francisco Melo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| |
Collapse
|
33
|
Nanda V, Senn S, Pike DH, Rodriguez-Granillo A, Hansen WA, Khare SD, Noy D. Structural principles for computational and de novo design of 4Fe-4S metalloproteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:531-538. [PMID: 26449207 DOI: 10.1016/j.bbabio.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/01/2015] [Indexed: 11/30/2022]
Abstract
Iron-sulfur centers in metalloproteins can access multiple oxidation states over a broad range of potentials, allowing them to participate in a variety of electron transfer reactions and serving as catalysts for high-energy redox processes. The nitrogenase FeMoCO cluster converts di-nitrogen to ammonia in an eight-electron transfer step. The 2(Fe4S4) containing bacterial ferredoxin is an evolutionarily ancient metalloprotein fold and is thought to be a primordial progenitor of extant oxidoreductases. Controlling chemical transformations mediated by iron-sulfur centers such as nitrogen fixation, hydrogen production as well as electron transfer reactions involved in photosynthesis are of tremendous importance for sustainable chemistry and energy production initiatives. As such, there is significant interest in the design of iron-sulfur proteins as minimal models to gain fundamental understanding of complex natural systems and as lead-molecules for industrial and energy applications. Herein, we discuss salient structural characteristics of natural iron-sulfur proteins and how they guide principles for design. Model structures of past designs are analyzed in the context of these principles and potential directions for enhanced designs are presented, and new areas of iron-sulfur protein design are proposed. This article is part of a Special issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, protein networks, edited by Ronald L. Koder and J.L Ross Anderson.
Collapse
Affiliation(s)
- Vikas Nanda
- Department of Biochemistry and Molecular Biology and the Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| | - Stefan Senn
- Department of Biochemistry and Molecular Biology and the Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Douglas H Pike
- Department of Biochemistry and Molecular Biology and the Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Agustina Rodriguez-Granillo
- Department of Biochemistry and Molecular Biology and the Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Will A Hansen
- Department of Chemistry and the Center for Integrated Proteomics Research, Rutgers University, 174 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Sagar D Khare
- Department of Chemistry and the Center for Integrated Proteomics Research, Rutgers University, 174 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Dror Noy
- Bioenergetics and Protein Design Laboratory, Migal - Galilee Research Institute, South Industrial Zone, Kiryat Shmona 11016, Israel
| |
Collapse
|
34
|
The Ku–Mar zinc finger: A segment-swapped zinc ribbon in MarR-like transcription regulators related to the Ku bridge. J Struct Biol 2015. [DOI: 10.1016/j.jsb.2015.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Guyon F, Martz F, Vavrusa M, Bécot J, Rey J, Tufféry P. BCSearch: fast structural fragment mining over large collections of protein structures. Nucleic Acids Res 2015; 43:W378-82. [PMID: 25977292 PMCID: PMC4489267 DOI: 10.1093/nar/gkv492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/02/2015] [Indexed: 01/23/2023] Open
Abstract
Resources to mine the large amount of protein structures available today are necessary to better understand how amino acid variations are compatible with conformation preservation, to assist protein design, engineering and, further, the development of biologic therapeutic compounds. BCSearch is a versatile service to efficiently mine large collections of protein structures. It relies on a new approach based on a Binet-Cauchy kernel that is more discriminative than the widely used root mean square deviation criterion. It has statistics independent of size even for short fragments, and is fast. The systematic mining of large collections of structures such as the complete SCOPe protein structural classification or comprehensive subsets of the Protein Data Bank can be performed in few minutes. Based on this new score, we propose four innovative applications: BCFragSearch and BCMirrorSearch, respectively, search for fragments similar and anti-similar to a query and return information on the diversity of the sequences of the hits. BCLoopSearch identifies candidate fragments of fixed size matching the flanks of a gaped structure. BCSpecificitySearch analyzes a complete protein structure and returns information about sites having few similar fragments. BCSearch is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/BCSearch.
Collapse
Affiliation(s)
- Frédéric Guyon
- Molécules Thérapeutiques in Silico, INSERM UMR-S 973, Université Paris Diderot, Sorbone Paris Cité, 75205 Paris Cedex 13, France
| | - François Martz
- Molécules Thérapeutiques in Silico, INSERM UMR-S 973, Université Paris Diderot, Sorbone Paris Cité, 75205 Paris Cedex 13, France
| | - Marek Vavrusa
- Molécules Thérapeutiques in Silico, INSERM UMR-S 973, Université Paris Diderot, Sorbone Paris Cité, 75205 Paris Cedex 13, France
| | - Jérôme Bécot
- Molécules Thérapeutiques in Silico, INSERM UMR-S 973, Université Paris Diderot, Sorbone Paris Cité, 75205 Paris Cedex 13, France
| | - Julien Rey
- Molécules Thérapeutiques in Silico, INSERM UMR-S 973, Université Paris Diderot, Sorbone Paris Cité, 75205 Paris Cedex 13, France
| | - Pierre Tufféry
- Molécules Thérapeutiques in Silico, INSERM UMR-S 973, Université Paris Diderot, Sorbone Paris Cité, 75205 Paris Cedex 13, France
| |
Collapse
|
36
|
Schafferhans A, Rost B. Taking structure searches to the next dimension. Structure 2015; 22:938-9. [PMID: 25007224 DOI: 10.1016/j.str.2014.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Structure comparisons are now the first step when a new experimental high-resolution protein structure has been determined. In this issue of Structure, Wiederstein and colleagues describe their latest tool for comparing structures, which gives us the unprecedented power to discover crucial structural connections between whole complexes of proteins in the full structural database in real time.
Collapse
Affiliation(s)
- Andrea Schafferhans
- Department of Informatics, Bioinformatics-I12, TUM, Boltzmannstrasse 3, 85748 Garching/Munich, Germany.
| | - Burkhard Rost
- Department of Informatics, Bioinformatics-I12, TUM, Boltzmannstrasse 3, 85748 Garching/Munich, Germany
| |
Collapse
|
37
|
Abstract
Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and especially how biomolecular structure connects to function by means of localized frustration. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. In this review, we also emphasize that frustration, far from being always a bad thing, is an essential feature of biomolecules that allows dynamics to be harnessed for function. In this way, we hope to illustrate how Frustration is a fundamental concept in molecular biology.
Collapse
|
38
|
Pineau C, Guschinskaya N, Robert X, Gouet P, Ballut L, Shevchik VE. Substrate recognition by the bacterial type II secretion system: more than a simple interaction. Mol Microbiol 2014; 94:126-40. [DOI: 10.1111/mmi.12744] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Camille Pineau
- Université Lyon 1; F-69622 Lyon France
- INSA-Lyon; F-69621 Villeurbanne France
- CNRS; UMR5240; Microbiologie Adaptation et Pathogénie; F-69622 Lyon France
| | - Natalia Guschinskaya
- Université Lyon 1; F-69622 Lyon France
- CNRS; UMR5240; Microbiologie Adaptation et Pathogénie; F-69622 Lyon France
| | - Xavier Robert
- Laboratory for Biocrystallography and Structural Biology of Therapeutic Targets; Molecular and Structural Bases of Infectious Diseases; CNRS; UMR5086; F-69367 Lyon France
| | - Patrice Gouet
- Laboratory for Biocrystallography and Structural Biology of Therapeutic Targets; Molecular and Structural Bases of Infectious Diseases; CNRS; UMR5086; F-69367 Lyon France
| | - Lionel Ballut
- Laboratory for Biocrystallography and Structural Biology of Therapeutic Targets; Molecular and Structural Bases of Infectious Diseases; CNRS; UMR5086; F-69367 Lyon France
| | - Vladimir E. Shevchik
- Université Lyon 1; F-69622 Lyon France
- INSA-Lyon; F-69621 Villeurbanne France
- CNRS; UMR5240; Microbiologie Adaptation et Pathogénie; F-69622 Lyon France
| |
Collapse
|
39
|
Wiederstein M, Gruber M, Frank K, Melo F, Sippl MJ. Structure-based characterization of multiprotein complexes. Structure 2014; 22:1063-70. [PMID: 24954616 PMCID: PMC4087271 DOI: 10.1016/j.str.2014.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 01/22/2023]
Abstract
Multiprotein complexes govern virtually all cellular processes. Their 3D structures provide important clues to their biological roles, especially through structural correlations among protein molecules and complexes. The detection of such correlations generally requires comprehensive searches in databases of known protein structures by means of appropriate structure-matching techniques. Here, we present a high-speed structure search engine capable of instantly matching large protein oligomers against the complete and up-to-date database of biologically functional assemblies of protein molecules. We use this tool to reveal unseen structural correlations on the level of protein quaternary structure and demonstrate its general usefulness for efficiently exploring complex structural relationships among known protein assemblies.
Collapse
Affiliation(s)
- Markus Wiederstein
- Division of Structural Biology & Bioinformatics, Department of Molecular Biology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Markus Gruber
- Division of Structural Biology & Bioinformatics, Department of Molecular Biology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Karl Frank
- Division of Structural Biology & Bioinformatics, Department of Molecular Biology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Francisco Melo
- Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Alameda 340, 8320000 Santiago, Chile; Molecular Bioinformatics Laboratory, Millennium Institute on Immunology and Immunotherapy, 8320000 Santiago, Chile
| | - Manfred J Sippl
- Division of Structural Biology & Bioinformatics, Department of Molecular Biology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
40
|
Abstract
A number of design strategies exist for the development of novel metalloproteins. These strategies often exploit the inherent symmetry of metal coordination and local topology. Computational design of metal binding sites in flexible regions of proteins is challenging as the number of conformational degrees of freedom is significantly increased. Additionally, without pre-organization of the primary shell ligands by the protein fold, metal binding sites can rearrange according to the coordination constraints of the metal center. Examples of metal incorporation into existing folds, full fold design exploiting symmetry, and fold design in asymmetric scaffolds are presented.
Collapse
Affiliation(s)
- Avanish S Parmar
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | | | | |
Collapse
|
41
|
Ma J, Wang S. Algorithms, Applications, and Challenges of Protein Structure Alignment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 94:121-75. [DOI: 10.1016/b978-0-12-800168-4.00005-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Kotamarthi HC, Sharma R, Koti Ainavarapu SR. Single-molecule studies on PolySUMO proteins reveal their mechanical flexibility. Biophys J 2013; 104:2273-81. [PMID: 23708367 DOI: 10.1016/j.bpj.2013.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023] Open
Abstract
Proteins with β-sandwich and β-grasp topologies are resistant to mechanical unfolding as shown by single-molecule force spectroscopy studies. Their high mechanical stability has generally been associated with the mechanical clamp geometry present at the termini. However, there is also evidence for the importance of interactions other than the mechanical clamp in providing mechanical stability, which needs to be tested thoroughly. Here, we report the mechanical unfolding properties of ubiquitin-like proteins (SUMO1 and SUMO2) and their comparison with those of ubiquitin. Although ubiquitin and SUMOs have similar size and structural topology, they differ in their sequences and structural contacts, making them ideal candidates to understand the variations in the mechanical stability of a given protein topology. We observe a two-state unfolding pathway for SUMO1 and SUMO2, similar to that of ubiquitin. Nevertheless, the unfolding forces of SUMO1 (∼130 pN) and SUMO2 (∼120 pN) are lower than that of ubiquitin (∼190 pN) at a pulling speed of 400 nm/s, indicating their lower mechanical stability. The mechanical stabilities of SUMO proteins and ubiquitin are well correlated with the number of interresidue contacts present in their structures. From pulling speed-dependent mechanical unfolding experiments and Monte Carlo simulations, we find that the unfolding potential widths of SUMO1 (∼0.51 nm) and SUMO2 (∼0.33 nm) are much larger than that of ubiquitin (∼0.19 nm), indicating that SUMO1 is six times and SUMO2 is three times mechanically more flexible than ubiquitin. These findings might also be important in understanding the functional differences between ubiquitin and SUMOs.
Collapse
Affiliation(s)
- Hema Chandra Kotamarthi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | | | | |
Collapse
|
43
|
Madej T, Lanczycki CJ, Zhang D, Thiessen PA, Geer RC, Marchler-Bauer A, Bryant SH. MMDB and VAST+: tracking structural similarities between macromolecular complexes. Nucleic Acids Res 2013; 42:D297-303. [PMID: 24319143 PMCID: PMC3965051 DOI: 10.1093/nar/gkt1208] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The computational detection of similarities between protein 3D structures has become an indispensable tool for the detection of homologous relationships, the classification of protein families and functional inference. Consequently, numerous algorithms have been developed that facilitate structure comparison, including rapid searches against a steadily growing collection of protein structures. To this end, NCBI’s Molecular Modeling Database (MMDB), which is based on the Protein Data Bank (PDB), maintains a comprehensive and up-to-date archive of protein structure similarities computed with the Vector Alignment Search Tool (VAST). These similarities have been recorded on the level of single proteins and protein domains, comprising in excess of 1.5 billion pairwise alignments. Here we present VAST+, an extension to the existing VAST service, which summarizes and presents structural similarity on the level of biological assemblies or macromolecular complexes. VAST+ simplifies structure neighboring results and shows, for macromolecular complexes tracked in MMDB, lists of similar complexes ranked by the extent of similarity. VAST+ replaces the previous VAST service as the default presentation of structure neighboring data in NCBI’s Entrez query and retrieval system. MMDB and VAST+ can be accessed via http://www.ncbi.nlm.nih.gov/Structure.
Collapse
Affiliation(s)
- Thomas Madej
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38 A, Room 8N805, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Senn S, Nanda V, Falkowski P, Bromberg Y. Function-based assessment of structural similarity measurements using metal co-factor orientation. Proteins 2013; 82:648-56. [PMID: 24127252 DOI: 10.1002/prot.24442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/17/2013] [Accepted: 09/26/2013] [Indexed: 12/20/2022]
Abstract
Structure comparison is widely used to quantify protein relationships. Although there are several approaches to calculate structural similarity, specifying significance thresholds for similarity metrics is difficult due to the inherent likeness of common secondary structure elements. In this study, metal co-factor location is used to assess the biological relevance of structural alignments. The distance between the centroids of bound co-factors adds a chemical and function-relevant constraint to the structural superimposition of two proteins. This additional dimension can be used to define cut-off values for discriminating valid and spurious alignments in large alignment sets. The hypothesis underlying our approach is that metal coordination sites constrain structural evolution, thus revealing functional relationships between distantly related proteins. A comparison of three related nitrogenases shows the sequence and fold constraints imposed on the protein structures up to 18 Å away from the centers of their bound metal clusters.
Collapse
Affiliation(s)
- Stefan Senn
- Environmental Biophysics and Molecular Ecology Program, Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, 08901
| | | | | | | |
Collapse
|
45
|
Kofler S, Ackaert C, Samonig M, Asam C, Briza P, Horejs-Hoeck J, Cabrele C, Ferreira F, Duschl A, Huber C, Brandstetter H. Stabilization of the dimeric birch pollen allergen Bet v 1 impacts its immunological properties. J Biol Chem 2013; 289:540-51. [PMID: 24253036 PMCID: PMC3879576 DOI: 10.1074/jbc.m113.518795] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many allergens share several biophysical characteristics, including the capability to undergo oligomerization. The dimerization mechanism in Bet v 1 and its allergenic properties are so far poorly understood. Here, we report crystal structures of dimeric Bet v 1, revealing a noncanonical incorporation of cysteine at position 5 instead of genetically encoded tyrosine. Cysteine polysulfide bridging stabilized different dimeric assemblies, depending on the polysulfide linker length. These dimers represent quaternary arrangements that are frequently observed in related proteins, reflecting their prevalence in unmodified Bet v 1. These conclusions were corroborated by characteristic immunologic properties of monomeric and dimeric allergen variants. Hereby, residue 5 could be identified as an allergenic hot spot in Bet v 1. The presented results refine fundamental principles in protein chemistry and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity.
Collapse
Affiliation(s)
- Stefan Kofler
- From the Structural Biology Group, Department of Molecular Biology
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Parra RG, Espada R, Sánchez IE, Sippl MJ, Ferreiro DU. Detecting repetitions and periodicities in proteins by tiling the structural space. J Phys Chem B 2013; 117:12887-97. [PMID: 23758291 PMCID: PMC3807821 DOI: 10.1021/jp402105j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
The
notion of energy landscapes provides conceptual tools for understanding
the complexities of protein folding and function. Energy landscape
theory indicates that it is much easier to find sequences that satisfy
the “Principle of Minimal Frustration” when the folded
structure is symmetric (Wolynes, P. G. Symmetry and the Energy Landscapes
of Biomolecules. Proc. Natl. Acad. Sci. U.S.A.1996, 93, 14249–14255). Similarly,
repeats and structural mosaics may be fundamentally related to landscapes
with multiple embedded funnels. Here we present analytical tools to
detect and compare structural repetitions in protein molecules. By
an exhaustive analysis of the distribution of structural repeats using
a robust metric, we define those portions of a protein molecule that
best describe the overall structure as a tessellation of basic units.
The patterns produced by such tessellations provide intuitive representations
of the repeating regions and their association toward higher order
arrangements. We find that some protein architectures can be described
as nearly periodic, while in others clear separations between repetitions
exist. Since the method is independent of amino acid sequence information,
we can identify structural units that can be encoded by a variety
of distinct amino acid sequences.
Collapse
Affiliation(s)
- R Gonzalo Parra
- Protein Physiology Lab, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA-CONICET-IQUIBICEN , Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
47
|
Kim JD, Senn S, Harel A, Jelen BI, Falkowski PG. Discovering the electronic circuit diagram of life: structural relationships among transition metal binding sites in oxidoreductases. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120257. [PMID: 23754810 DOI: 10.1098/rstb.2012.0257] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oxidoreductases play a central role in catalysing enzymatic electron-transfer reactions across the tree of life. To first order, the equilibrium thermodynamic properties of these proteins are governed by protein folds associated with specific transition metals and ligands at the active site. A global analysis of holoenzyme structures and functions suggests that there are fewer than approximately 500 fundamental oxidoreductases, which can be further clustered into 35 unique groups. These catalysts evolved in prokaryotes early in the Earth's history and are largely responsible for the emergence of non-equilibrium biogeochemical cycles on the planet's surface. Although the evolutionary history of the amino acid sequences in the oxidoreductases is very difficult to reconstruct due to gene duplication and horizontal gene transfer, the evolution of the folds in the catalytic sites can potentially be used to infer the history of these enzymes. Using a novel, yet simple analysis of the secondary structures associated with the ligands in oxidoreductases, we developed a structural phylogeny of these enzymes. The results of this 'composome' analysis suggest an early split from a basal set of a small group of proteins dominated by loop structures into two families of oxidoreductases, one dominated by α-helices and the second by β-sheets. The structural evolutionary patterns in both clades trace redox gradients and increased hydrogen bond energy in the active sites. The overall pattern suggests that the evolution of the oxidoreductases led to decreased entropy in the transition metal folds over approximately 2.5 billion years, allowing the enzymes to use increasingly oxidized substrates with high specificity.
Collapse
Affiliation(s)
- J Dongun Kim
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
48
|
Zögg T, Sponring M, Schindler S, Koll M, Schneider R, Brandstetter H, Auer B. Crystal structures of the viral protease Npro imply distinct roles for the catalytic water in catalysis. Structure 2013; 21:929-38. [PMID: 23643950 PMCID: PMC3677099 DOI: 10.1016/j.str.2013.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/22/2013] [Accepted: 04/01/2013] [Indexed: 11/30/2022]
Abstract
Npro is a key effector protein of pestiviruses such as bovine viral diarrhea virus and abolishes host cell antiviral defense mechanisms. Synthesized as the N-terminal part of the viral polyprotein, Npro releases itself via an autoproteolytic cleavage, triggering its immunological functions. However, the mechanisms of its proteolytic action and its immune escape were unclear. Here, we present the crystal structures of Npro to 1.25 Å resolution. Structures of pre- and postcleavage intermediates identify three catalytically relevant elements. The trapping of the putative catalytic water reveals its distinct roles as a base, acid, and nucleophile. The presentation of the substrate further explains the enigmatic latency of the protease, ensuring a single in cis cleavage. Additionally, we identified a zinc-free, disulfide-linked conformation of the TRASH motif, an interaction hub of immune factors. The structure opens additional opportunities in utilizing Npro as an autocleaving fusion protein and as a pharmaceutical target. Putative catalytic water reveals distinct roles as a base, acid, and nucleophile The structural mechanism explains a single in cis cleavage The bimodular architecture reflects proteolytic and immunological functions The structure provides two orthogonal targets for therapy
Collapse
Affiliation(s)
- Thomas Zögg
- Department of Molecular Biology, University of Salzburg, Billrothstraße 11, 5020 Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
49
|
Rose PW, Bi C, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S, Green RK, Goodsell DS, Prlic A, Quesada M, Quinn GB, Ramos AG, Westbrook JD, Young J, Zardecki C, Berman HM, Bourne PE. The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res 2012. [PMID: 23193259 PMCID: PMC3531086 DOI: 10.1093/nar/gks1200] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) develops tools and resources that provide a structural view of biology for research and education. The RCSB PDB web site (http://www.rcsb.org) uses the curated 3D macromolecular data contained in the PDB archive to offer unique methods to access, report and visualize data. Recent activities have focused on improving methods for simple and complex searches of PDB data, creating specialized access to chemical component data and providing domain-based structural alignments. New educational resources are offered at the PDB-101 educational view of the main web site such as Author Profiles that display a researcher’s PDB entries in a timeline. To promote different kinds of access to the RCSB PDB, Web Services have been expanded, and an RCSB PDB Mobile application for the iPhone/iPad has been released. These improvements enable new opportunities for analyzing and understanding structure data.
Collapse
Affiliation(s)
- Peter W Rose
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093-0743, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ritchie DW, Ghoorah AW, Mavridis L, Venkatraman V. Fast protein structure alignment using Gaussian overlap scoring of backbone peptide fragment similarity. Bioinformatics 2012; 28:3274-81. [DOI: 10.1093/bioinformatics/bts618] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|