1
|
Hugonneau-Beaufet I, Barnier JP, Thiriet-Rupert S, Létoffé S, Mainardi JL, Ghigo JM, Beloin C, Arthur M. Characterization of Pseudomonas aeruginosa l,d-Transpeptidases and Evaluation of Their Role in Peptidoglycan Adaptation to Biofilm Growth. Microbiol Spectr 2023; 11:e0521722. [PMID: 37255442 PMCID: PMC10434034 DOI: 10.1128/spectrum.05217-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
Peptidoglycan is an essential component of the bacterial cell envelope that sustains the turgor pressure of the cytoplasm, determines cell shape, and acts as a scaffold for the anchoring of envelope polymers such as lipoproteins. The final cross-linking step of peptidoglycan polymerization is performed by classical d,d-transpeptidases belonging to the penicillin-binding protein (PBP) family and by l,d-transpeptidases (LDTs), which are dispensable for growth in most bacterial species and whose physiological functions remain elusive. In this study, we investigated the contribution of LDTs to cell envelope synthesis in Pseudomonas aeruginosa grown in planktonic and biofilm conditions. We first assigned a function to each of the three P. aeruginosa LDTs by gene inactivation in P. aeruginosa, heterospecific gene expression in Escherichia coli, and, for one of them, direct determination of its enzymatic activity. We found that the three P. aeruginosa LDTs catalyze peptidoglycan cross-linking (LdtPae1), the anchoring of lipoprotein OprI to the peptidoglycan (LdtPae2), and the hydrolysis of the resulting peptidoglycan-OprI amide bond (LdtPae3). Construction of a phylogram revealed that LDTs performing each of these three functions in various species cannot be assigned to distinct evolutionary lineages, in contrast to what has been observed with PBPs. We showed that biofilm, but not planktonic bacteria, displayed an increase proportion of peptidoglycan cross-links formed by LdtPae1 and a greater extent of OprI anchoring to peptidoglycan, which is controlled by LdtPae2 and LdtPae3. Consistently, deletion of each of the ldt genes impaired biofilm formation and potentiated the bactericidal activity of EDTA. These results indicate that LDTs contribute to the stabilization of the bacterial cell envelope and to the adaptation of peptidoglycan metabolism to growth in biofilm. IMPORTANCE Active-site cysteine LDTs form a functionally heterologous family of enzymes that contribute to the biogenesis of the bacterial cell envelope through formation of peptidoglycan cross-links and through the dynamic anchoring of lipoproteins to peptidoglycan. Here, we report the role of three P. aeruginosa LDTs that had not been previously characterized. We show that these enzymes contribute to resistance to the bactericidal activity of EDTA and to the adaptation of cell envelope polymers to conditions that prevail in biofilms. These results indicate that LDTs should be considered putative targets in the development of drug-EDTA associations for the control of biofilm-related infections.
Collapse
Affiliation(s)
- Inès Hugonneau-Beaufet
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
| | - Jean-Philippe Barnier
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Service de Microbiologie, Hôpital Européen Georges Pompidou, AP-HP Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, Faculté de Santé, UFR de Médecine, Paris, France
| | - Stanislas Thiriet-Rupert
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Sylvie Létoffé
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Jean-Luc Mainardi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Service de Microbiologie, Hôpital Européen Georges Pompidou, AP-HP Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, Faculté de Santé, UFR de Médecine, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Michel Arthur
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Ahmad N, Dugad S, Chauhan V, Ahmed S, Sharma K, Kachhap S, Zaidi R, Bishai WR, Lamichhane G, Kumar P. Allosteric cooperation in ß-lactam binding to a non-classical transpeptidase. eLife 2022; 11:73055. [PMID: 35475970 PMCID: PMC9094749 DOI: 10.7554/elife.73055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
L,D-transpeptidase function predominates in atypical 3®3 transpeptide networking of peptidoglycan (PG) layer in Mycobacterium tuberculosis. Prior studies of L,D-transpeptidases have identified only the catalytic site that binds to peptide moiety of the PG substrate or ß-lactam antibiotics. This insight was leveraged to develop mechanism of its activity and inhibition by ß-lactams. Here we report identification of an allosteric site at a distance of 21 Å from the catalytic site that binds the sugar moiety of PG substrates (hereafter referred to as the S-pocket). This site also binds a second ß-lactam molecule and influences binding at the catalytic site. We provide evidence that two ß-lactam molecules bind co-operatively to this enzyme, one non-covalently at the S-pocket and one covalently at the catalytic site. This dual ß-lactam binding phenomenon is previously unknown and is an observation that may offer novel approaches for the structure-based design of new drugs against M. tuberculosis./em>.
Collapse
Affiliation(s)
- Nazia Ahmad
- Department of Biochemistry, Jamia Hamdard University, Delhi, India
| | - Sanmati Dugad
- Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
| | - Varsha Chauhan
- Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
| | - Shubbir Ahmed
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, India
| | - Kunal Sharma
- Department of Biochemistry, Jamia Hamdard University, Delhi, India
| | - Sangita Kachhap
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek, Poland
| | - Rana Zaidi
- Department of Biochemistry, Jamia Hamdard University, Delhi, India
| | - William R Bishai
- Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
| | - Gyanu Lamichhane
- Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
| | - Pankaj Kumar
- Medicine, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
3
|
Mora-Ochomogo M, Lohans CT. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med Chem 2021; 12:1623-1639. [PMID: 34778765 PMCID: PMC8528271 DOI: 10.1039/d1md00200g] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/25/2021] [Indexed: 12/24/2022] Open
Abstract
The β-lactams are the most widely used antibacterial agents worldwide. These antibiotics, a group that includes the penicillins and cephalosporins, are covalent inhibitors that target bacterial penicillin-binding proteins and disrupt peptidoglycan synthesis. Bacteria can achieve resistance to β-lactams in several ways, including the production of serine β-lactamase enzymes. While β-lactams also covalently interact with serine β-lactamases, these enzymes are capable of deacylating this complex, treating the antibiotic as a substrate. In this tutorial-style review, we provide an overview of the β-lactam antibiotics, focusing on their covalent interactions with their target proteins and resistance mechanisms. We begin by describing the structurally diverse range of β-lactam antibiotics and β-lactamase inhibitors that are currently used as therapeutics. Then, we introduce the penicillin-binding proteins, describing their functions and structures, and highlighting their interactions with β-lactam antibiotics. We next describe the classes of serine β-lactamases, exploring some of the mechanisms by which they achieve the ability to degrade β-lactams. Finally, we introduce the l,d-transpeptidases, a group of bacterial enzymes involved in peptidoglycan synthesis which are also targeted by β-lactam antibiotics. Although resistance mechanisms are now prevalent for all antibiotics in this class, past successes in antibiotic development have at least delayed this onset of resistance. The β-lactams continue to be an essential tool for the treatment of infectious disease, and recent advances (e.g., β-lactamase inhibitor development) will continue to support their future use.
Collapse
Affiliation(s)
| | - Christopher T Lohans
- Department of Biomedical and Molecular Sciences, Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
4
|
Lin CSH, Chan ACK, Vermeulen J, Brockerman J, Soni AS, Tanner ME, Gaynor EC, McIntosh LP, Simorre JP, Murphy MEP. Peptidoglycan binding by a pocket on the accessory NTF2-domain of Pgp2 directs helical cell shape of Campylobacter jejuni. J Biol Chem 2021; 296:100528. [PMID: 33711341 PMCID: PMC8038945 DOI: 10.1016/j.jbc.2021.100528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023] Open
Abstract
The helical morphology of Campylobacter jejuni, a bacterium involved in host gut colonization and pathogenesis in humans, is determined by the structure of the peptidoglycan (PG) layer. This structure is dictated by trimming of peptide stems by the LD-carboxypeptidase Pgp2 within the periplasm. The interaction interface between Pgp2 and PG to select sites for peptide trimming is unknown. We determined a 1.6 Å resolution crystal structure of Pgp2, which contains a conserved LD-carboxypeptidase domain and a previously uncharacterized domain with an NTF2-like fold (NTF2). We identified a pocket in the NTF2 domain formed by conserved residues and located ∼40 Å from the LD-carboxypeptidase active site. Expression of pgp2 in trans with substitutions of charged (Lys257, Lys307, Glu324) and hydrophobic residues (Phe242 and Tyr233) within the pocket did not restore helical morphology to a pgp2 deletion strain. Muropeptide analysis indicated a decrease of murotripeptides in the deletion strain expressing these mutants, suggesting reduced Pgp2 catalytic activity. Pgp2 but not the K307A mutant was pulled down by C. jejuni Δpgp2 PG sacculi, supporting a role for the pocket in PG binding. NMR spectroscopy was used to define the interaction interfaces of Pgp2 with several PG fragments, which bound to the active site within the LD-carboxypeptidase domain and the pocket of the NTF2 domain. We propose a model for Pgp2 binding to PG strands involving both the LD-carboxypeptidase domain and the accessory NTF2 domain to induce a helical cell shape.
Collapse
Affiliation(s)
- Chang Sheng-Huei Lin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anson C K Chan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenny Vermeulen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacob Brockerman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arvind S Soni
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin C Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
5
|
Cochrane SA, Lohans CT. Breaking down the cell wall: Strategies for antibiotic discovery targeting bacterial transpeptidases. Eur J Med Chem 2020; 194:112262. [PMID: 32248005 DOI: 10.1016/j.ejmech.2020.112262] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
The enzymes involved in bacterial cell wall synthesis are established antibiotic targets, and continue to be a central focus for antibiotic development. Bacterial penicillin-binding proteins (and, in some bacteria, l,d-transpeptidases) form essential peptide cross-links in the cell wall. Although the β-lactam class of antibiotics target these enzymes, bacterial resistance threatens their clinical use, and there is an urgent unmet need for new antibiotics. However, the search for new antibiotics targeting the bacterial cell wall is hindered by a number of obstacles associated with screening the enzymes involved in peptidoglycan synthesis. This review describes recent approaches for measuring the activity and inhibition of penicillin-binding proteins and l,d-transpeptidases, highlighting strategies that are poised to serve as valuable tools for high-throughput screening of transpeptidase inhibitors, supporting the development of new antibiotics.
Collapse
Affiliation(s)
- Stephen A Cochrane
- School of Chemistry and Chemical Engineering, David Keir Building, Stranmillis Road, Queen's University Belfast, Belfast, BT9 5AG, UK.
| | - Christopher T Lohans
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada.
| |
Collapse
|
6
|
Moshafi MH, Ghasemshirazi S, Abiri A. The art of suicidal molecular seduction for targeting drug resistance. Med Hypotheses 2020; 140:109676. [PMID: 32203818 DOI: 10.1016/j.mehy.2020.109676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/29/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022]
Abstract
The development of drug resistance is one of the most significant challenges of the current century in the pharmaceutical industry. Superinfections, cancer chemoresistance, and resistance observed in many non-infectious diseases are nullifying the efforts and monetary supplies, put in the advent of new drug molecules. Millions of people die because of this drug resistance developed gradually through extensive use of the drugs. Inherently, some drugs are less prone to become ineffective by drug resistance than others. Covalent inhibitors bind to their targets via a biologically permanent bound with their cognate receptor and therefore display more potent inhibiting characteristics. Suicide inhibitors or mechanism-based inhibitors are one of the covalent inhibitors, which require a pre-activation step by their targeting enzyme. This step accrues their selectivity and specificity with respect to other covalent inhibitors. After that pre-activation step, they produce an analogue of the transition state of the catalytic enzyme, which is practically incapable of dissociating from the enzyme. Suicide inhibitors, due to their high intrinsic affinity toward the related enzyme, are resistant to many mechanisms involved in the development of drug resistance and can be regarded as one of the enemies of this scientific hurdle. These inhibitors compete even with monoclonal antibodies in terms of their cost-effectiveness and efficacy.
Collapse
Affiliation(s)
- Mohammad Hassan Moshafi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeid Ghasemshirazi
- Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
β-Lactamase of Mycobacterium tuberculosis Shows Dynamics in the Active Site That Increase upon Inhibitor Binding. Antimicrob Agents Chemother 2020; 64:AAC.02025-19. [PMID: 31871087 DOI: 10.1128/aac.02025-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The Mycobacterium tuberculosis β-lactamase BlaC is a broad-spectrum β-lactamase that can convert a range of β-lactam antibiotics. Enzymes with low specificity are expected to exhibit active-site flexibility. To probe the motions in BlaC, we studied the dynamic behavior in solution using nuclear magnetic resonance (NMR) spectroscopy. 15N relaxation experiments show that BlaC is mostly rigid on the pico- to nanosecond timescale. Saturation transfer experiments indicate that also on the high-millisecond timescale BlaC is not dynamic. Using relaxation dispersion experiments, clear evidence was obtained for dynamics in the low-millisecond range, with an exchange rate of ca. 860 s-1 The dynamic amide groups are localized in the active site. Upon formation of an adduct with the inhibitor avibactam, extensive line broadening occurs, indicating an increase in magnitude of the active-site dynamics. Furthermore, the rate of the motions increases significantly. Upon reaction with the inhibitor clavulanic acid, similar line broadening is accompanied by duplication of NMR signals, indicative of at least one additional, slower exchange process (exchange rate, k ex, of <100 s-1), while for this inhibitor also loss of pico- to nanosecond timescale rigidity is observed for some amides in the α domain. Possible sources of the observed dynamics, such as motions in the omega loop and rearrangements of active-site residues, are discussed. The increase in dynamics upon ligand binding argues against a model of inhibitor binding through conformational selection. Rather, the induced dynamics may serve to maximize the likelihood of sampling the optimal conformation for hydrolysis of the bound ligand.
Collapse
|
8
|
Caprari S, Brandi V, Pasquadibisceglie A, Polticelli F. Uncovering the structure and function of Pseudomonas aeruginosa periplasmic proteins by an in silico approach. J Biomol Struct Dyn 2019; 38:4508-4520. [PMID: 31631799 DOI: 10.1080/07391102.2019.1683468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen highly relevant from a biomedical viewpoint. It is one of the main causes of infection in hospitalized patients and a major cause of mortality of cystic fibrosis patients. This is also due to its ability to develop resistance to antibiotics by various mechanisms. Therefore, it is urgent and desirable to identify novel targets for the development of new antibacterial drugs against Pseudomonas aeruginosa. In this work this problem was tackled by an in silico approach aimed at providing a reliable structural model and functional annotation for the Pseudomonas aeruginosa periplasmic proteins for which these data are not available yet. A total of 83 protein sequences were analyzed, and the corresponding structural models were built, leading to the identification of 32 periplasmic 'substrate-binding proteins', 14 enzymes and 4 proteins with different functions, including lipids and metals binding. The most interesting cases were found within the 'enzymes' group with the identification of a lipase, which can be regarded as a virulence factor, a protease involved in the assembly of β-barrel membrane proteins and a l,d-transpeptidase, which could contribute to confer resistance to β-lactam antibiotics to the bacterium.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Silvia Caprari
- Department of Sciences, Roma Tre University, Rome, Italy
| | | | | | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Rome, Italy.,National Institute of Nuclear Physics, Roma Tre Section, Rome, Italy
| |
Collapse
|
9
|
Ealand CS, Machowski EE, Kana BD. β-lactam resistance: The role of low molecular weight penicillin binding proteins, β-lactamases and ld-transpeptidases in bacteria associated with respiratory tract infections. IUBMB Life 2018; 70:855-868. [PMID: 29717815 DOI: 10.1002/iub.1761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 02/02/2023]
Abstract
Disruption of peptidoglycan (PG) biosynthesis in the bacterial cell wall by β-lactam antibiotics has transformed therapeutic options for bacterial infections. These antibiotics target the transpeptidase domains in penicillin binding proteins (PBPs), which can be classified into high and low molecular weight (LMW) counterparts. While the essentiality of the former has been extensively demonstrated, the physiological roles of LMW PBPs remain poorly understood. Herein, we review the function of LMW PBPs, β-lactamases and ld-transpeptidases (Ldts) in pathogens associated with respiratory tract infections. More specifically, we explore their roles in mediating β-lactam resistance. Using a comparative genomics approach, we identified a high degree of genetic redundancy for LMW PBPs which retain the motifs, SxxN, SxN and KTG required for catalytic activity. Differences in domain architecture suggest distinct physiological roles, possibly related to bacterial cell cycle and/or adaptation to various environmental conditions. Many of the LMW PBPs play an important role in β-lactam resistance either through mutation or variation in abundance. In all of the bacterial genomes assessed, at least one β-lactamase homologue is present, suggesting that enzymatic degradation of β-lactams is a highly conserved resistance mechanism. Furthermore, the presence of Ldt homologues in the majority of species surveyed suggests that alternative PG crosslinking may further mediate β-lactam drug resistance. A deeper understanding of the interplay between these different mechanisms of β-lactam resistance will provide a framework for new therapeutics, which are urgently required given the rapid emergence of antimicrobial resistance. © 2018 IUBMB Life, 70(9):855-868, 2018.
Collapse
Affiliation(s)
- Christopher S Ealand
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Edith E Machowski
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bavesh D Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa.,MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, CAPRISA, Durban, South Africa
| |
Collapse
|
10
|
Squeglia F, Ruggiero A, Berisio R. Chemistry of Peptidoglycan in Mycobacterium tuberculosis
Life Cycle: An off-the-wall Balance of Synthesis and Degradation. Chemistry 2017; 24:2533-2546. [DOI: 10.1002/chem.201702973] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| |
Collapse
|
11
|
Mycobacterium abscessus l,d-Transpeptidases Are Susceptible to Inactivation by Carbapenems and Cephalosporins but Not Penicillins. Antimicrob Agents Chemother 2017; 61:AAC.00866-17. [PMID: 28760902 DOI: 10.1128/aac.00866-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/21/2017] [Indexed: 11/20/2022] Open
Abstract
As a growing number of clinical isolates of Mycobacterium abscessus are resistant to most antibiotics, new treatment options that are effective against these drug-resistant strains are desperately needed. The majority of the linkages in the cell wall peptidoglycan of M. abscessus are synthesized by nonclassical transpeptidases, namely, the l,d-transpeptidases. Emerging evidence suggests that these enzymes represent a new molecular vulnerability in this pathogen. Recent studies have demonstrated that inhibition of these enzymes by the carbapenem class of β-lactams determines their activity against Mycobacterium tuberculosis Here, we studied the interactions of β-lactams with two l,d-transpeptidases in M. abscessus, namely, LdtMab1 and LdtMab2, and found that both the carbapenem and cephalosporin, but not penicillin, subclasses of β-lactams inhibit these enzymes. Contrary to the commonly held belief that combination therapy with β-lactams is redundant, doripenem and cefdinir exhibit synergy against both pansusceptible M. abscessus and clinical isolates that are resistant to most antibiotics, which suggests that dual-β-lactam therapy has potential for the treatment of M. abscessus Finally, we solved the first crystal structure of an M. abscessus l,d-transpeptidase, LdtMab2, and using substitutions of critical amino acids in the catalytic site and computational simulations, we describe the key molecular interactions between this enzyme and β-lactams, which provide an insight into the molecular basis for the relative efficacy of different β-lactams against M. abscessus.
Collapse
|
12
|
Steiner EM, Schneider G, Schnell R. Binding and processing of β‐lactam antibiotics by the transpeptidase Ldt
Mt2
from
Mycobacterium tuberculosis. FEBS J 2017; 284:725-741. [DOI: 10.1111/febs.14010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Eva Maria Steiner
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| |
Collapse
|
13
|
Billones JB, Carrillo MCO, Organo VG, Macalino SJY, Sy JBA, Emnacen IA, Clavio NAB, Concepcion GP. Toward antituberculosis drugs: in silico screening of synthetic compounds against Mycobacterium tuberculosisl,d-transpeptidase 2. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1147-57. [PMID: 27042006 PMCID: PMC4795573 DOI: 10.2147/dddt.s97043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mycobacterium tuberculosis (Mtb) the main causative agent of tuberculosis, is the main reason why this disease continues to be a global public health threat. It is therefore imperative to find a novel antitubercular drug target that is unique to the structural machinery or is essential to the growth and survival of the bacterium. One such target is the enzyme l,d-transpeptidase 2, also known as LdtMt2, a protein primarily responsible for the catalysis of 3→3 cross-linkages that make up the mycolyl–arabinogalactan–peptidoglycan complex of Mtb. In this study, structure-based pharmacophore screening, molecular docking, and in silico toxicity evaluations were employed in screening compounds from a database of synthetic compounds. Out of the 4.5 million database compounds, 18 structures were identified as high-scoring, high-binding hits with very satisfactory absorption, distribution, metabolism, excretion, and toxicity properties. Two out of the 18 compounds were further subjected to in vitro bioactivity assays, with one exhibiting a good inhibitory activity against the Mtb H37Ra strain.
Collapse
Affiliation(s)
- Junie B Billones
- Office of the Vice President for Academic Affairs - Emerging Interdisciplinary Research Program: "Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines," Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Diliman, Diliman, Quezon City, Philippines; Institute of Pharmaceutical Sciences, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Maria Constancia O Carrillo
- Office of the Vice President for Academic Affairs - Emerging Interdisciplinary Research Program: "Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines," Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Voltaire G Organo
- Office of the Vice President for Academic Affairs - Emerging Interdisciplinary Research Program: "Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines," Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Stephani Joy Y Macalino
- Office of the Vice President for Academic Affairs - Emerging Interdisciplinary Research Program: "Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines," Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Jamie Bernadette A Sy
- Office of the Vice President for Academic Affairs - Emerging Interdisciplinary Research Program: "Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines," Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Inno A Emnacen
- Office of the Vice President for Academic Affairs - Emerging Interdisciplinary Research Program: "Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines," Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Nina Abigail B Clavio
- Office of the Vice President for Academic Affairs - Emerging Interdisciplinary Research Program: "Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines," Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Gisela P Concepcion
- Marine Science Institute, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| |
Collapse
|
14
|
Hsu YP, Meng X, VanNieuwenhze M. Methods for visualization of peptidoglycan biosynthesis. METHODS IN MICROBIOLOGY 2016. [DOI: 10.1016/bs.mim.2016.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Patra D, Mishra P, Vijayan M, Surolia A. Negative Cooperativity and High Affinity in Chitooligosaccharide Binding by a Mycobacterium smegmatis Protein Containing LysM and Lectin Domains. Biochemistry 2015; 55:49-61. [DOI: 10.1021/acs.biochem.5b00841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dhabaleswar Patra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Padmanabh Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Mamannamana Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
16
|
Wong JEMM, Midtgaard SR, Gysel K, Thygesen MB, Sørensen KK, Jensen KJ, Stougaard J, Thirup S, Blaise M. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:592-605. [PMID: 25760608 PMCID: PMC4356369 DOI: 10.1107/s139900471402793x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/22/2014] [Indexed: 11/10/2022]
Abstract
LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.
Collapse
Affiliation(s)
- Jaslyn E. M. M. Wong
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Søren Roi Midtgaard
- Niels Bohr Institute, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Kira Gysel
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Mikkel B. Thygesen
- Centre for Carbohydrate Recognition and Signalling, Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Kasper K. Sørensen
- Centre for Carbohydrate Recognition and Signalling, Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Knud J. Jensen
- Centre for Carbohydrate Recognition and Signalling, Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Søren Thirup
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Mickaël Blaise
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| |
Collapse
|
17
|
Awad R, Sévajol M, Ayala I, Chouquet A, Frachet P, Gans P, Reiser JB, Kleman JP. The SH3 regulatory domain of the hematopoietic cell kinase Hck binds ELMO via its polyproline motif. FEBS Open Bio 2015; 5:99-106. [PMID: 25737835 PMCID: PMC4338372 DOI: 10.1016/j.fob.2015.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic EnguLfment and cell MOtility (ELMO) proteins form an evolutionary conserved family of regulators involved in small GTPase dependent actin remodeling processes that regulates the guanine exchange factor activity of some of the Downstream Of CrK (DOCK) family members. Gathered data strongly suggest that DOCK activation by ELMO and the subsequent signaling result from a subtle balance in the binding of partners to ELMO. Among its putative upward modulators, the Hematopoietic cell kinase (Hck), a member of the Src kinase superfamily, has been identified as a binding partner and a specific tyrosine kinase for ELMO1. Indeed, Hck is implicated in distinct molecular signaling pathways governing phagocytosis, cell adhesion, and migration of hematopoietic cells. Although ELMO1 has been shown to interact with the regulatory Src Homology 3 (SH3) domain of Hck, no direct evidence indicating the mode of interaction between Hck and ELMO1 have been provided in the literature. In the present study, we report convergent pieces of evidence that demonstrate the specific interaction between the SH3 domain of Hck and the polyproline motif of ELMO1. Our results also suggest that the tyrosine-phosphorylation state of ELMO1 tail might act as a putative modulator of Hck kinase activity towards ELMO1 that in turn participates in DOCK180 activation and further triggers subsequent signaling towards actin remodeling.
Collapse
Key Words
- DOCK, Downstream Of CrK protein family
- EAD, ELMO Autoregulatory Domain
- EID, ELMO Inhibitory Domain
- ELMO
- ELMO, EnguLfment and cell MOtility protein family
- ERM, Ezrin–Radixin–Moesin protein family
- FRET, Förster (Fluorescence) resonance energy transfer
- GEF, Guanine nucleotide Exchange Factor
- GSH, Glutathione (reduced)
- GST, Glutathione S-Transferase
- Hck
- Hck, Hematopoietic cell kinase
- PH, Pleckstrin Homology domain
- Phagocytosis
- Phosphorylation
- Polyproline
- PxP, Polyproline motif
- RBD, Rho-Binding Domain
- SH3
- SH3, Src Homology 3 domain
- TAMs, Tyro3, Axl and Mer receptor tyrosine kinase family
- TEV, Tobacco Etch Virus
Collapse
Affiliation(s)
- Rida Awad
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
| | | | - Isabel Ayala
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
| | | | | | - Pierre Gans
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
| | | | | |
Collapse
|
18
|
Biology and Assembly of the Bacterial Envelope. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:41-76. [PMID: 26621461 DOI: 10.1007/978-3-319-23603-2_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All free-living bacterial cells are delimited and protected by an envelope of high complexity. This physiological barrier is essential for bacterial survival and assures multiple functions. The molecular assembly of the different envelope components into a functional structure represents a tremendous biological challenge and is of high interest for fundamental sciences. The study of bacterial envelope assembly has also been fostered by the need for novel classes of antibacterial agents to fight the problematic of bacterial resistance to antibiotics. This chapter focuses on the two most intensively studied classes of bacterial envelopes that belong to the phyla Firmicutes and Proteobacteria. The envelope of Firmicutes typically has one membrane and is defined as being monoderm whereas the envelope of Proteobacteria contains two distinct membranes and is referred to as being diderm. In this chapter, we will first discuss the multiple roles of the bacterial envelope and clarify the nomenclature used to describe the different types of envelopes. We will then define the architecture and composition of the envelopes of Firmicutes and Proteobacteria while outlining their similarities and differences. We will further cover the extensive progress made in the field of bacterial envelope assembly over the last decades, using Bacillus subtilis and Escherichia coli as model systems for the study of the monoderm and diderm bacterial envelopes, respectively. We will detail our current understanding of how molecular machines assure the secretion, insertion and folding of the envelope proteins as well as the assembly of the glycosidic components of the envelope. Finally, we will highlight the topics that are still under investigation, and that will surely lead to important discoveries in the near future.
Collapse
|
19
|
Schanda P, Triboulet S, Laguri C, Bougault CM, Ayala I, Callon M, Arthur M, Simorre JP. Atomic model of a cell-wall cross-linking enzyme in complex with an intact bacterial peptidoglycan. J Am Chem Soc 2014; 136:17852-60. [PMID: 25429710 PMCID: PMC4544747 DOI: 10.1021/ja5105987] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a highly cross-linked biopolymer. The transpeptidases that perform this cross-linking are important targets for antibiotics. Despite this biomedical importance, to date no structure of a protein in complex with an intact bacterial peptidoglycan has been resolved, primarily due to the large size and flexibility of peptidoglycan sacculi. Here we use solid-state NMR spectroscopy to derive for the first time an atomic model of an l,d-transpeptidase from Bacillus subtilis bound to its natural substrate, the intact B. subtilis peptidoglycan. Importantly, the model obtained from protein chemical shift perturbation data shows that both domains-the catalytic domain as well as the proposed peptidoglycan recognition domain-are important for the interaction and reveals a novel binding motif that involves residues outside of the classical enzymatic pocket. Experiments on mutants and truncated protein constructs independently confirm the binding site and the implication of both domains. Through measurements of dipolar-coupling derived order parameters of bond motion we show that protein binding reduces the flexibility of peptidoglycan. This first report of an atomic model of a protein-peptidoglycan complex paves the way for the design of new antibiotic drugs targeting l,d-transpeptidases. The strategy developed here can be extended to the study of a large variety of enzymes involved in peptidoglycan morphogenesis.
Collapse
Affiliation(s)
- Paul Schanda
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Sébastien Triboulet
- Centre de Recherche des Cordeliers, LRMA, Equipe 12, Univ. Pierre et Marie Curie-Paris 6, UMR S 1138, 75006 Paris (France)
- Université Paris Descartes, Sorbonne, UMR S 1138, 75006 Paris (France); INSERM, U1138, 75006 Paris (France)
| | - Cédric Laguri
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Catherine M. Bougault
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Isabel Ayala
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Morgane Callon
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Michel Arthur
- Centre de Recherche des Cordeliers, LRMA, Equipe 12, Univ. Pierre et Marie Curie-Paris 6, UMR S 1138, 75006 Paris (France)
- Université Paris Descartes, Sorbonne, UMR S 1138, 75006 Paris (France); INSERM, U1138, 75006 Paris (France)
| | - Jean-Pierre Simorre
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| |
Collapse
|
20
|
Lecoq L, Bougault C, Triboulet S, Dubée V, Hugonnet JE, Arthur M, Simorre JP. Chemical shift perturbations induced by the acylation of Enterococcus faecium L,D-transpeptidase catalytic cysteine with ertapenem. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:339-343. [PMID: 23907322 DOI: 10.1007/s12104-013-9513-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/21/2013] [Indexed: 06/02/2023]
Abstract
Penicillin-binding proteins were long considered as the only peptidoglycan cross-linking enzymes and one of the main targets of β-lactam antibiotics. A new class of transpeptidases, the L,D-transpeptidases, has emerged in the last decade. In most Gram-negative and Gram-positive bacteria, these enzymes generally have nonessential roles in peptidoglycan synthesis. In some clostridiae and mycobacteria, such as Mycobacterium tuberculosis, they are nevertheless responsible for the major peptidoglycan cross-linking pathway. L,D-Transpeptidases are thus considered as appealing new targets for the development of innovative therapeutic approaches. Carbapenems are currently investigated in this perspective as they are active on extensively drug-resistant M. tuberculosis and represent the only β-lactam class inhibiting L,D-transpeptidases. The molecular basis of the enzyme selectivity for carbapenems nevertheless remains an open question. Here we present the backbone and side-chain (1)H, (13)C, (15)N NMR assignments of the catalytic domain of Enterococcus faecium L,D-transpeptidase before and after acylation with the carbapenem ertapenem, as a prerequisite for further structural and functional studies.
Collapse
Affiliation(s)
- Lauriane Lecoq
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA, 41 rue Jules Horowitz, 38027, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Correale S, Ruggiero A, Capparelli R, Pedone E, Berisio R. Structures of free and inhibited forms of theL,D-transpeptidase LdtMt1fromMycobacterium tuberculosis. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1697-706. [DOI: 10.1107/s0907444913013085] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/13/2013] [Indexed: 11/10/2022]
|
22
|
Abstract
NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP).
Collapse
Affiliation(s)
- Dominique Marion
- University Grenoble Alpes, Institut de Biologie Structurale (IBS) F-38027 Grenoble, France
| |
Collapse
|
23
|
Triboulet S, Dubée V, Lecoq L, Bougault C, Mainardi JL, Rice LB, Ethève-Quelquejeu M, Gutmann L, Marie A, Dubost L, Hugonnet JE, Simorre JP, Arthur M. Kinetic features of L,D-transpeptidase inactivation critical for β-lactam antibacterial activity. PLoS One 2013; 8:e67831. [PMID: 23861815 PMCID: PMC3701632 DOI: 10.1371/journal.pone.0067831] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/22/2013] [Indexed: 12/03/2022] Open
Abstract
Active-site serine D,D-transpeptidases belonging to the penicillin-binding protein family (PBPs) have been considered for a long time as essential for peptidoglycan cross-linking in all bacteria. However, bypass of the PBPs by an L,D-transpeptidase (Ldtfm) conveys high-level resistance to β-lactams of the penam class in Enterococcus faecium with a minimal inhibitory concentration (MIC) of ampicillin >2,000 µg/ml. Unexpectedly, Ldtfm does not confer resistance to β-lactams of the carbapenem class (imipenem MIC = 0.5 µg/ml) whereas cephems display residual activity (ceftriaxone MIC = 128 µg/ml). Mass spectrometry, fluorescence kinetics, and NMR chemical shift perturbation experiments were performed to explore the basis for this specificity and identify β-lactam features that are critical for efficient L,D-transpeptidase inactivation. We show that imipenem, ceftriaxone, and ampicillin acylate Ldtfm by formation of a thioester bond between the active-site cysteine and the β-lactam-ring carbonyl. However, slow acylation and slow acylenzyme hydrolysis resulted in partial Ldtfm inactivation by ampicillin and ceftriaxone. For ampicillin, Ldtfm acylation was followed by rupture of the C5–C6 bond of the β-lactam ring and formation of a secondary acylenzyme prone to hydrolysis. The saturable step of the catalytic cycle was the reversible formation of a tetrahedral intermediate (oxyanion) without significant accumulation of a non-covalent complex. In agreement, a derivative of Ldtfm blocked in acylation bound ertapenem (a carbapenem), ceftriaxone, and ampicillin with similar low affinities. Thus, oxyanion and acylenzyme stabilization are both critical for rapid L,D-transpeptidase inactivation and antibacterial activity. These results pave the way for optimization of the β-lactam scaffold for L,D-transpeptidase-inactivation.
Collapse
Affiliation(s)
- Sébastien Triboulet
- Centre de Recherche des Cordeliers, Equipe 12, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lecoq L, Dubée V, Triboulet S, Bougault C, Hugonnet JE, Arthur M, Simorre JP. Structure of Enterococcus faeciuml,d-transpeptidase acylated by ertapenem provides insight into the inactivation mechanism. ACS Chem Biol 2013; 8:1140-6. [PMID: 23574509 DOI: 10.1021/cb4001603] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a biopolymer highly cross-linked through d,d-transpeptidation. Peptidoglycan cross-linking is catalyzed by penicillin-binding proteins (PBPs) that are the essential target of β-lactam antibiotics. PBPs are functionally replaced by l,d-transpeptidases (Ldts) in ampicillin-resistant mutants of Enterococcus faecium and in wild-type Mycobacterium tuberculosis. Ldts are inhibited in vivo by a single class of β-lactams, the carbapenems, which act as a suicide substrate. We present here the first structure of a carbapenem-acylated l,d-transpeptidase, E. faecium Ldtfm acylated by ertapenem, which revealed key contacts between the carbapenem core and residues of the catalytic cavity of the enzyme. Significant reorganization of the antibiotic conformation occurs upon enzyme acylation. These results, together with the analysis of protein-to-carbapenem proton transfers, provide new insights into the mechanism of Ldt acylation by carbapenems.
Collapse
Affiliation(s)
- Lauriane Lecoq
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Grenoble,
France
- CNRS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075,
Grenoble, France
- Université
Joseph Fourier−Grenoble
1, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Grenoble, France
| | - Vincent Dubée
- Centre de Recherche des Cordeliers,
LRMA, Equipe 12, Université Pierre et Marie Curie−Paris 6, UMR S 872, Paris, France
- INSERM, U872, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMR S 872, Paris,
France
| | - Sébastien Triboulet
- Centre de Recherche des Cordeliers,
LRMA, Equipe 12, Université Pierre et Marie Curie−Paris 6, UMR S 872, Paris, France
- INSERM, U872, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMR S 872, Paris,
France
| | - Catherine Bougault
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Grenoble,
France
- CNRS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075,
Grenoble, France
- Université
Joseph Fourier−Grenoble
1, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Grenoble, France
| | - Jean-Emmanuel Hugonnet
- Centre de Recherche des Cordeliers,
LRMA, Equipe 12, Université Pierre et Marie Curie−Paris 6, UMR S 872, Paris, France
- INSERM, U872, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMR S 872, Paris,
France
| | - Michel Arthur
- Centre de Recherche des Cordeliers,
LRMA, Equipe 12, Université Pierre et Marie Curie−Paris 6, UMR S 872, Paris, France
- INSERM, U872, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMR S 872, Paris,
France
| | - Jean-Pierre Simorre
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Grenoble,
France
- CNRS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075,
Grenoble, France
- Université
Joseph Fourier−Grenoble
1, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Grenoble, France
| |
Collapse
|
25
|
Kim HS, Kim J, Im HN, Yoon JY, An DR, Yoon HJ, Kim JY, Min HK, Kim SJ, Lee JY, Han BW, Suh SW. Structural basis for the inhibition of Mycobacterium tuberculosis L,D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:420-31. [PMID: 23519417 PMCID: PMC3605043 DOI: 10.1107/s0907444912048998] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/29/2012] [Indexed: 01/17/2023]
Abstract
Difficulty in the treatment of tuberculosis and growing drug resistance in Mycobacterium tuberculosis (Mtb) are a global health issue. Carbapenems inactivate L,D-transpeptidases; meropenem, when administered with clavulanate, showed in vivo activity against extensively drug-resistant Mtb strains. LdtMt2 (Rv2518c), one of two functional L,D-transpeptidases in Mtb, is predominantly expressed over LdtMt1 (Rv0116c). Here, the crystal structure of N-terminally truncated LdtMt2 (residues Leu131-Ala408) is reported in both ligand-free and meropenem-bound forms. The structure of meropenem-inhibited LdtMt2 provides a detailed structural view of the interactions between a carbapenem drug and Mtb L,D-transpeptidase. The structures revealed that the catalytic L,D-transpeptidase domain of LdtMt2 is preceded by a bacterial immunogloblin-like Big_5 domain and is followed by an extended C-terminal tail that interacts with both domains. Furthermore, it is shown using mass analyses that meropenem acts as a suicide inhibitor of LdtMt2. Upon acylation of the catalytic Cys354 by meropenem, the `active-site lid' undergoes a large conformational change to partially cover the active site so that the bound meropenem is accessible to the bulk solvent via three narrow paths. This work will facilitate structure-guided discovery of L,D-transpeptidase inhibitors as novel antituberculosis drugs against drug-resistant Mtb.
Collapse
Affiliation(s)
- Hyoun Sook Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jieun Kim
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ha Na Im
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji Young Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Doo Ri An
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hye Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jin Young Kim
- Division of Mass Spectrometry, Korea Basic Science Institute, Ochang-eup Yeongudangiro 162, Cheongwon-gun, Chungbuk 363-883, Republic of Korea
| | - Hye Kyeoung Min
- Division of Mass Spectrometry, Korea Basic Science Institute, Ochang-eup Yeongudangiro 162, Cheongwon-gun, Chungbuk 363-883, Republic of Korea
| | - Soon-Jong Kim
- Department of Chemistry, Mokpo National University, Chonnam 534-729, Republic of Korea
| | - Jae Young Lee
- Department of Life Science, Dongguk University Seoul, Seoul 100-712, Republic of Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Se Won Suh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
26
|
Böth D, Steiner EM, Stadler D, Lindqvist Y, Schnell R, Schneider G. Structure of LdtMt2, an L,D-transpeptidase from Mycobacterium tuberculosis. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:432-41. [PMID: 23519418 PMCID: PMC3605044 DOI: 10.1107/s0907444912049268] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 11/30/2012] [Indexed: 05/12/2023]
Abstract
The transpeptidase LtdMt2 catalyzes the formation of the (3-3) cross-links characteristic of the peptidoglycan layer in the Mycobacterium tuberculosis cell wall. Bioinformatics analysis suggests that the extramembrane part of the enzyme consists of three domains: two smaller domains (denoted as A and B domains) and a transpeptidase domain (the C domain) at the C-terminus. The crystal structures of two fragments comprising the AB domains and the BC domains have been determined. The structure of the BC module, which was determined to 1.86 Å resolution using Se-SAD phasing, consists of the B domain with an immunoglobulin-related fold and the catalytic domain belonging to the ErfK/YbiS/YbnG fold family. The structure of the AB-domain fragment, which was solved by molecular replacement to 1.45 Å resolution, reveals that despite a lack of overall sequence identity the A domain is structurally very similar to the B domain. Combining the structures of the two fragments provides a view of the complete three-domain extramembrane part of LdtMt2 and shows that the protein extends at least 80-100 Å from the plasma membrane into the peptidoglycan layer and thus defines the maximal distance at which cross-links are formed by this enzyme. The LdtMt-related transpeptidases contain one or two immunoglobulin domains, which suggests that these might serve as extender units to position the catalytic domain at an appropriate distance from the membrane in the peptidoglycan layer.
Collapse
Affiliation(s)
- Dominic Böth
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 177 Stockholm, Sweden
| | - Eva Maria Steiner
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 177 Stockholm, Sweden
| | - Daniela Stadler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 177 Stockholm, Sweden
| | - Ylva Lindqvist
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 177 Stockholm, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 177 Stockholm, Sweden
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 177 Stockholm, Sweden
| |
Collapse
|
27
|
Abstract
In this issue of Structure, Lecoq et al. investigated the structural and dynamic basis for the unexpected inhibition of peptidoglycan-crosslinking l,d-transpeptidases by carbapenem antibiotics. In addition to defining a neutral thiol-imidazole catalytic triad, their studies revealed extensive induced motions upon formation of a long-live covalent drug-enzyme complex.
Collapse
Affiliation(s)
- Soumya De
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | | |
Collapse
|