1
|
Zhang H, Huang Y, Bei Z, Ju Z, Meng J, Hao M, Zhang J, Zhang H, Xi W. Inter-Residue Distance Prediction From Duet Deep Learning Models. Front Genet 2022; 13:887491. [PMID: 35651930 PMCID: PMC9148999 DOI: 10.3389/fgene.2022.887491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Residue distance prediction from the sequence is critical for many biological applications such as protein structure reconstruction, protein–protein interaction prediction, and protein design. However, prediction of fine-grained distances between residues with long sequence separations still remains challenging. In this study, we propose DuetDis, a method based on duet feature sets and deep residual network with squeeze-and-excitation (SE), for protein inter-residue distance prediction. DuetDis embraces the ability to learn and fuse features directly or indirectly extracted from the whole-genome/metagenomic databases and, therefore, minimize the information loss through ensembling models trained on different feature sets. We evaluate DuetDis and 11 widely used peer methods on a large-scale test set (610 proteins chains). The experimental results suggest that 1) prediction results from different feature sets show obvious differences; 2) ensembling different feature sets can improve the prediction performance; 3) high-quality multiple sequence alignment (MSA) used for both training and testing can greatly improve the prediction performance; and 4) DuetDis is more accurate than peer methods for the overall prediction, more reliable in terms of model prediction score, and more robust against shallow multiple sequence alignment (MSA).
Collapse
Affiliation(s)
- Huiling Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhendong Bei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Ju
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jintao Meng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Hao
- College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Jingjing Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiping Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Xi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wenhui Xi,
| |
Collapse
|
2
|
Holland J, Grigoryan G. Structure‐conditioned amino‐acid couplings: how contact geometry affects pairwise sequence preferences. Protein Sci 2022; 31:900-917. [PMID: 35060221 PMCID: PMC8927866 DOI: 10.1002/pro.4280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/11/2022]
Abstract
Relating a protein's sequence to its conformation is a central challenge for both structure prediction and sequence design. Statistical contact potentials, as well as their more descriptive versions that account for side‐chain orientation and other geometric descriptors, have served as simplistic but useful means of representing second‐order contributions in sequence–structure relationships. Here we ask what happens when a pairwise potential is conditioned on the fully defined geometry of interacting backbones fragments. We show that the resulting structure‐conditioned coupling energies more accurately reflect pair preferences as a function of structural contexts. These structure‐conditioned energies more reliably encode native sequence information and more highly correlate with experimentally determined coupling energies. Clustering a database of interaction motifs by structure results in ensembles of similar energies and clustering them by energy results in ensembles of similar structures. By comparing many pairs of interaction motifs and showing that structural similarity and energetic similarity go hand‐in‐hand, we provide a tangible link between modular sequence and structure elements. This link is applicable to structural modeling, and we show that scoring CASP models with structured‐conditioned energies results in substantially higher correlation with structural quality than scoring the same models with a contact potential. We conclude that structure‐conditioned coupling energies are a good way to model the impact of interaction geometry on second‐order sequence preferences.
Collapse
Affiliation(s)
- Jack Holland
- Department of Computer Science Dartmouth College Hanover New Hampshire USA
| | - Gevorg Grigoryan
- Department of Computer Science Dartmouth College Hanover New Hampshire USA
| |
Collapse
|
3
|
Rahman J, Newton MAH, Islam MKB, Sattar A. Enhancing protein inter-residue real distance prediction by scrutinising deep learning models. Sci Rep 2022; 12:787. [PMID: 35039537 PMCID: PMC8764118 DOI: 10.1038/s41598-021-04441-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
Protein structure prediction (PSP) has achieved significant progress lately via prediction of inter-residue distances using deep learning models and exploitation of the predictions during conformational search. In this context, prediction of large inter-residue distances and also prediction of distances between residues separated largely in the protein sequence remain challenging. To deal with these challenges, state-of-the-art inter-residue distance prediction algorithms have used large sets of coevolutionary and non-coevolutionary features. In this paper, we argue that the more the types of features used, the more the kinds of noises introduced and then the deep learning model has to overcome the noises to improve the accuracy of the predictions. Also, multiple features capturing similar underlying characteristics might not necessarily have significantly better cumulative effect. So we scrutinise the feature space to reduce the types of features to be used, but at the same time, we strive to improve the prediction accuracy. Consequently, for inter-residue real distance prediction, in this paper, we propose a deep learning model named scrutinised distance predictor (SDP), which uses only 2 coevolutionary and 3 non-coevolutionary features. On several sets of benchmark proteins, our proposed SDP method improves mean Local Distance Different Test (LDDT) scores at least by 10% over existing state-of-the-art methods. The SDP program along with its data is available from the website https://gitlab.com/mahnewton/sdp .
Collapse
Affiliation(s)
- Julia Rahman
- School of Information and Communication Technology, Griffith University, Southport, Australia.
| | - M A Hakim Newton
- Institute of Integrated and Intelligent Systems, Griffith University, Southport, Australia.
| | - Md Khaled Ben Islam
- School of Information and Communication Technology, Griffith University, Southport, Australia
| | - Abdul Sattar
- School of Information and Communication Technology, Griffith University, Southport, Australia
- Institute of Integrated and Intelligent Systems, Griffith University, Southport, Australia
| |
Collapse
|
4
|
Tran NH, Xu J, Li M. A tale of solving two computational challenges in protein science: neoantigen prediction and protein structure prediction. Brief Bioinform 2022; 23:bbab493. [PMID: 34891158 PMCID: PMC8769896 DOI: 10.1093/bib/bbab493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
In this article, we review two challenging computational questions in protein science: neoantigen prediction and protein structure prediction. Both topics have seen significant leaps forward by deep learning within the past five years, which immediately unlocked new developments of drugs and immunotherapies. We show that deep learning models offer unique advantages, such as representation learning and multi-layer architecture, which make them an ideal choice to leverage a huge amount of protein sequence and structure data to address those two problems. We also discuss the impact and future possibilities enabled by those two applications, especially how the data-driven approach by deep learning shall accelerate the progress towards personalized biomedicine.
Collapse
Affiliation(s)
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, USA
| | - Ming Li
- University of Waterloo, Canada
| |
Collapse
|
5
|
Xu J, Mcpartlon M, Li J. Improved protein structure prediction by deep learning irrespective of co-evolution information. NAT MACH INTELL 2021; 3:601-609. [PMID: 34368623 PMCID: PMC8340610 DOI: 10.1038/s42256-021-00348-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Predicting the tertiary structure of a protein from its primary sequence has been greatly improved by integrating deep learning and co-evolutionary analysis, as shown in CASP13 and CASP14. We describe our latest study of this idea, analyzing the efficacy of network size and co-evolution data and its performance on both natural and designed proteins. We show that a large ResNet (convolutional residual neural networks) can predict structures of correct folds for 26 out of 32 CASP13 free-modeling (FM) targets and L/5 long-range contacts with precision over 80%. When co-evolution is not used ResNet still can predict structures of correct folds for 18 CASP13 FM targets, greatly exceeding previous methods that do not use co-evolution either. Even with only primary sequence ResNet can predict structures of correct folds for all tested human-designed proteins. In addition, ResNet may fare better for the designed proteins when trained without co-evolution than with co-evolution. These results suggest that ResNet does not simply denoise co-evolution signals, but instead may learn important protein sequence-structure relationship. This has important implications on protein design and engineering especially when co-evolutionary data is unavailable.
Collapse
Affiliation(s)
- Jinbo Xu
- Toyota Technological Institute at Chicago
| | - Matthew Mcpartlon
- Department of Computer Science, University of Chicago.,Toyota Technological Institute at Chicago
| | - Jin Li
- Department of Computer Science, University of Chicago.,Toyota Technological Institute at Chicago
| |
Collapse
|
6
|
Li J, Xu J. Study of Real-Valued Distance Prediction for Protein Structure Prediction with Deep Learning. Bioinformatics 2021; 37:3197-3203. [PMID: 33961022 PMCID: PMC8504618 DOI: 10.1093/bioinformatics/btab333] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/07/2021] [Accepted: 04/28/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Inter-residue distance prediction by deep ResNet (convolutional residual neural network) has greatly advanced protein structure prediction. Currently the most successful structure prediction methods predict distance by discretizing it into dozens of bins. Here we study how well real-valued distance can be predicted and how useful it is for 3D structure modeling by comparing it with discrete-valued prediction based upon the same deep ResNet. RESULTS Different from the recent methods that predict only a single real value for the distance of an atom pair, we predict both the mean and standard deviation of a distance and then fold a protein by the predicted mean and deviation. Our findings include: 1) tested on the CASP13 FM (free-modeling) targets, our real-valued distance prediction obtains 81% precision on top L/5 long-range contact prediction, much better than the best CASP13 results (70%); 2) our real-valued prediction can predict correct folds for the same number of CASP13 FM targets as the best CASP13 group, despite generating only 20 decoys for each target; 3) our method greatly outperforms a very new real-valued prediction method DeepDist in both contact prediction and 3D structure modeling; and 4) when the same deep ResNet is used, our real-valued distance prediction has 1-6% higher contact and distance accuracy than our own discrete-valued prediction, but less accurate 3D structure models. AVAILABILITY AND IMPLEMENTATION https://github.com/j3xugit/RaptorX-3DModeling. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jin Li
- Toyota Technological Institute at Chicago, USA.,Department of Computer Science, University of Chicago, USA
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, USA
| |
Collapse
|
7
|
Wu F, Xu J. Deep template-based protein structure prediction. PLoS Comput Biol 2021; 17:e1008954. [PMID: 33939695 PMCID: PMC8118551 DOI: 10.1371/journal.pcbi.1008954] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/13/2021] [Accepted: 04/11/2021] [Indexed: 11/19/2022] Open
Abstract
MOTIVATION Protein structure prediction has been greatly improved by deep learning, but most efforts are devoted to template-free modeling. But very few deep learning methods are developed for TBM (template-based modeling), a popular technique for protein structure prediction. TBM has been studied extensively in the past, but its accuracy is not satisfactory when highly similar templates are not available. RESULTS This paper presents a new method NDThreader (New Deep-learning Threader) to address the challenges of TBM. NDThreader first employs DRNF (deep convolutional residual neural fields), which is an integration of deep ResNet (convolutional residue neural networks) and CRF (conditional random fields), to align a query protein to templates without using any distance information. Then NDThreader uses ADMM (alternating direction method of multipliers) and DRNF to further improve sequence-template alignments by making use of predicted distance potential. Finally, NDThreader builds 3D models from a sequence-template alignment by feeding it and sequence coevolution information into a deep ResNet to predict inter-atom distance distribution, which is then fed into PyRosetta for 3D model construction. Our experimental results show that NDThreader greatly outperforms existing methods such as CNFpred, HHpred, DeepThreader and CEthreader. NDThreader was blindly tested in CASP14 as a part of RaptorX server, which obtained the best average GDT score among all CASP14 servers on the 58 TBM targets.
Collapse
Affiliation(s)
- Fandi Wu
- Toyota Technological Institute at Chicago, Chicago, IL, United States of America
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL, United States of America
| |
Collapse
|
8
|
Postic G, Janel N, Moroy G. Representations of protein structure for exploring the conformational space: A speed-accuracy trade-off. Comput Struct Biotechnol J 2021; 19:2618-2625. [PMID: 34025948 PMCID: PMC8120936 DOI: 10.1016/j.csbj.2021.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022] Open
Abstract
We compare ten structural representations, either atomistic or coarse-grained. Thus, ten distance-dependent statistical potentials of mean force (PMF) were built. The Cβ-only and Cα + Cβ representations provide the best speed–accuracy trade-off. Including glycines through Cα, in a Cβ-only representation, yields a higher accuracy. We generalize the conclusions to the total information gain (TIG) scoring function.
The recent breakthrough in the field of protein structure prediction shows the relevance of using knowledge-based based scoring functions in combination with a low-resolution 3D representation of protein macromolecules. The choice of not using all atoms is barely supported by any data in the literature, and is mostly motivated by empirical and practical reasons, such as the computational cost of assessing the numerous folds of the protein conformational space. Here, we present a comprehensive study, carried on a large and balanced benchmark of predicted protein structures, to see how different types of structural representations rank in either accuracy or calculation speed, and which ones offer the best compromise between these two criteria. We tested ten representations, including low-resolution, high-resolution, and coarse-grained approaches. We also investigated the generalization of the findings to other formalisms than the widely-used “potential of mean force” (PMF) method. Thus, we observed that representing protein structures by their β carbons—combined or not with Cα—provides the best speed–accuracy trade-off, when using a “total information gain” scoring function. For statistical PMFs, using MARTINI backbone and side-chains beads is the best option. Finally, we also demonstrated the necessity of training the reference state on all atom types, and of including the Cα atoms of glycine residues, in a Cβ-based representation.
Collapse
Affiliation(s)
- Guillaume Postic
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, F-75013 Paris, France
- Corresponding author.
| | - Nathalie Janel
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Gautier Moroy
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, F-75013 Paris, France
| |
Collapse
|
9
|
Flower TG, Hurley JH. Crystallographic molecular replacement using an in silico-generated search model of SARS-CoV-2 ORF8. Protein Sci 2021; 30:728-734. [PMID: 33625752 PMCID: PMC7980513 DOI: 10.1002/pro.4050] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/01/2022]
Abstract
The majority of crystal structures are determined by the method of molecular replacement (MR). The range of application of MR is limited mainly by the need for an accurate search model. In most cases, pre-existing experimentally determined structures are used as search models. In favorable cases, ab initio predicted structures have yielded search models adequate for MR. The ORF8 protein of SARS-CoV-2 represents a challenging case for MR using an ab initio prediction because ORF8 has an all β-sheet fold and few orthologs. We previously determined experimentally the structure of ORF8 using the single anomalous dispersion (SAD) phasing method, having been unable to find an MR solution to the crystallographic phase problem. Following a report of an accurate prediction of the ORF8 structure, we assessed whether the predicted model would have succeeded as an MR search model. A phase problem solution was found, and the resulting structure was refined, yielding structural parameters equivalent to the original experimental solution.
Collapse
Affiliation(s)
- Thomas G. Flower
- Department of Molecular and Cell Biology and California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - James H. Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
10
|
Flower TG, Hurley JH. Crystallographic molecular replacement using an in silico-generated search model of SARS-CoV-2 ORF8. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.05.425441. [PMID: 33442695 PMCID: PMC7805452 DOI: 10.1101/2021.01.05.425441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The majority of crystal structures are determined by the method of molecular replacement (MR). The range of application of MR is limited mainly by the need for an accurate search model. In most cases, pre-existing experimentally determined structures are used as search models. In favorable cases, ab initio predicted structures have yielded search models adequate for molecular replacement. The ORF8 protein of SARS-CoV-2 represents a challenging case for MR using an ab initio prediction because ORF8 has an all β-sheet fold and few orthologs. We previously determined experimentally the structure of ORF8 using the single anomalous dispersion (SAD) phasing method, having been unable to find an MR solution to the crystallographic phase problem. Following a report of an accurate prediction of the ORF8 structure, we assessed whether the predicted model would have succeeded as an MR search model. A phase problem solution was found, and the resulting structure was refined, yielding structural parameters equivalent to the original experimental solution.
Collapse
Affiliation(s)
- Thomas G. Flower
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720
| | - James H. Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
11
|
Seffernick JT, Lindert S. Hybrid methods for combined experimental and computational determination of protein structure. J Chem Phys 2020; 153:240901. [PMID: 33380110 PMCID: PMC7773420 DOI: 10.1063/5.0026025] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023] Open
Abstract
Knowledge of protein structure is paramount to the understanding of biological function, developing new therapeutics, and making detailed mechanistic hypotheses. Therefore, methods to accurately elucidate three-dimensional structures of proteins are in high demand. While there are a few experimental techniques that can routinely provide high-resolution structures, such as x-ray crystallography, nuclear magnetic resonance (NMR), and cryo-EM, which have been developed to determine the structures of proteins, these techniques each have shortcomings and thus cannot be used in all cases. However, additionally, a large number of experimental techniques that provide some structural information, but not enough to assign atomic positions with high certainty have been developed. These methods offer sparse experimental data, which can also be noisy and inaccurate in some instances. In cases where it is not possible to determine the structure of a protein experimentally, computational structure prediction methods can be used as an alternative. Although computational methods can be performed without any experimental data in a large number of studies, inclusion of sparse experimental data into these prediction methods has yielded significant improvement. In this Perspective, we cover many of the successes of integrative modeling, computational modeling with experimental data, specifically for protein folding, protein-protein docking, and molecular dynamics simulations. We describe methods that incorporate sparse data from cryo-EM, NMR, mass spectrometry, electron paramagnetic resonance, small-angle x-ray scattering, Förster resonance energy transfer, and genetic sequence covariation. Finally, we highlight some of the major challenges in the field as well as possible future directions.
Collapse
Affiliation(s)
- Justin T. Seffernick
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
12
|
Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AWR, Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones DT, Silver D, Kavukcuoglu K, Hassabis D. Improved protein structure prediction using potentials from deep learning. Nature 2020; 577:706-710. [PMID: 31942072 DOI: 10.1038/s41586-019-1923-7] [Citation(s) in RCA: 1469] [Impact Index Per Article: 367.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)-a blind assessment of the state of the field-AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David T Jones
- The Francis Crick Institute, London, UK.,University College London, London, UK
| | | | | | | |
Collapse
|
13
|
Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AWR, Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones DT, Silver D, Kavukcuoglu K, Hassabis D. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins 2019; 87:1141-1148. [PMID: 31602685 PMCID: PMC7079254 DOI: 10.1002/prot.25834] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022]
Abstract
We describe AlphaFold, the protein structure prediction system that was entered by the group A7D in CASP13. Submissions were made by three free-modeling (FM) methods which combine the predictions of three neural networks. All three systems were guided by predictions of distances between pairs of residues produced by a neural network. Two systems assembled fragments produced by a generative neural network, one using scores from a network trained to regress GDT_TS. The third system shows that simple gradient descent on a properly constructed potential is able to perform on par with more expensive traditional search techniques and without requiring domain segmentation. In the CASP13 FM assessors' ranking by summed z-scores, this system scored highest with 68.3 vs 48.2 for the next closest group (an average GDT_TS of 61.4). The system produced high-accuracy structures (with GDT_TS scores of 70 or higher) for 11 out of 43 FM domains. Despite not explicitly using template information, the results in the template category were comparable to the best performing template-based methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David T. Jones
- The Francis Crick InstituteLondonUK
- University College LondonLondonUK
| | | | | | | |
Collapse
|
14
|
AlQuraishi M. AlphaFold at CASP13. Bioinformatics 2019; 35:4862-4865. [PMID: 31116374 PMCID: PMC6907002 DOI: 10.1093/bioinformatics/btz422] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 05/15/2019] [Indexed: 11/13/2022] Open
Abstract
SUMMARY Computational prediction of protein structure from sequence is broadly viewed as a foundational problem of biochemistry and one of the most difficult challenges in bioinformatics. Once every two years the Critical Assessment of protein Structure Prediction (CASP) experiments are held to assess the state of the art in the field in a blind fashion, by presenting predictor groups with protein sequences whose structures have been solved but have not yet been made publicly available. The first CASP was organized in 1994, and the latest, CASP13, took place last December, when for the first time the industrial laboratory DeepMind entered the competition. DeepMind's entry, AlphaFold, placed first in the Free Modeling (FM) category, which assesses methods on their ability to predict novel protein folds (the Zhang group placed first in the Template-Based Modeling (TBM) category, which assess methods on predicting proteins whose folds are related to ones already in the Protein Data Bank.) DeepMind's success generated significant public interest. Their approach builds on two ideas developed in the academic community during the preceding decade: (i) the use of co-evolutionary analysis to map residue co-variation in protein sequence to physical contact in protein structure, and (ii) the application of deep neural networks to robustly identify patterns in protein sequence and co-evolutionary couplings and convert them into contact maps. In this Letter, we contextualize the significance of DeepMind's entry within the broader history of CASP, relate AlphaFold's methodological advances to prior work, and speculate on the future of this important problem.
Collapse
Affiliation(s)
- Mohammed AlQuraishi
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Lab of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Xu J, Wang S. Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins 2019; 87:1069-1081. [PMID: 31471916 DOI: 10.1002/prot.25810] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/24/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
This paper reports the CASP13 results of distance-based contact prediction, threading, and folding methods implemented in three RaptorX servers, which are built upon the powerful deep convolutional residual neural network (ResNet) method initiated by us for contact prediction in CASP12. On the 32 CASP13 FM (free-modeling) targets with a median multiple sequence alignment (MSA) depth of 36, RaptorX yielded the best contact prediction among 46 groups and almost the best 3D structure modeling among all server groups without time-consuming conformation sampling. In particular, RaptorX achieved top L/5, L/2, and L long-range contact precision of 70%, 58%, and 45%, respectively, and predicted correct folds (TMscore > 0.5) for 18 of 32 targets. Further, RaptorX predicted correct folds for all FM targets with >300 residues (T0950-D1, T0969-D1, and T1000-D2) and generated the best 3D models for T0950-D1 and T0969-D1 among all groups. This CASP13 test confirms our previous findings: (a) predicted distance is more useful than contacts for both template-based and free modeling; and (b) structure modeling may be improved by integrating template and coevolutionary information via deep learning. This paper will discuss progress we have made since CASP12, the strength and weakness of our methods, and why deep learning performed much better in CASP13.
Collapse
Affiliation(s)
- Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, Illinois
| | - Sheng Wang
- Toyota Technological Institute at Chicago, Chicago, Illinois
| |
Collapse
|
16
|
Mirzaei S, Sidi T, Keasar C, Crivelli S. Purely Structural Protein Scoring Functions Using Support Vector Machine and Ensemble Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1515-1523. [PMID: 28113636 DOI: 10.1109/tcbb.2016.2602269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The function of a protein is determined by its structure, which creates a need for efficient methods of protein structure determination to advance scientific and medical research. Because current experimental structure determination methods carry a high price tag, computational predictions are highly desirable. Given a protein sequence, computational methods produce numerous 3D structures known as decoys. Selection of the best quality decoys is both challenging and essential as the end users can handle only a few ones. Therefore, scoring functions are central to decoy selection. They combine measurable features into a single number indicator of decoy quality. Unfortunately, current scoring functions do not consistently select the best decoys. Machine learning techniques offer great potential to improve decoy scoring. This paper presents two machine-learning based scoring functions to predict the quality of proteins structures, i.e., the similarity between the predicted structure and the experimental one without knowing the latter. We use different metrics to compare these scoring functions against three state-of-the-art scores. This is a first attempt at comparing different scoring functions using the same non-redundant dataset for training and testing and the same features. The results show that adding informative features may be more significant than the method used.
Collapse
|
17
|
Abstract
Motivation Template-based modeling, including homology modeling and protein threading, is a popular method for protein 3D structure prediction. However, alignment generation and template selection for protein sequences without close templates remain very challenging. Results We present a new method called DeepThreader to improve protein threading, including both alignment generation and template selection, by making use of deep learning (DL) and residue co-variation information. Our method first employs DL to predict inter-residue distance distribution from residue co-variation and sequential information (e.g. sequence profile and predicted secondary structure), and then builds sequence-template alignment by integrating predicted distance information and sequential features through an ADMM algorithm. Experimental results suggest that predicted inter-residue distance is helpful to both protein alignment and template selection especially for protein sequences without very close templates, and that our method outperforms currently popular homology modeling method HHpred and threading method CNFpred by a large margin and greatly outperforms the latest contact-assisted protein threading method EigenTHREADER. Availability and implementation http://raptorx.uchicago.edu/ Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jianwei Zhu
- Toyota Technological Institute, Chicago, IL, USA.,Key Lab of Intelligent Information Process, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Wang
- Toyota Technological Institute, Chicago, IL, USA
| | - Dongbo Bu
- Key Lab of Intelligent Information Process, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinbo Xu
- Toyota Technological Institute, Chicago, IL, USA
| |
Collapse
|
18
|
Abstract
Direct coupling analysis (DCA) for protein folding has made very good progress, but it is not effective for proteins that lack many sequence homologs, even coupled with time-consuming conformation sampling with fragments. We show that we can accurately predict interresidue distance distribution of a protein by deep learning, even for proteins with ∼60 sequence homologs. Using only the geometric constraints given by the resulting distance matrix we may construct 3D models without involving extensive conformation sampling. Our method successfully folded 21 of the 37 CASP12 hard targets with a median family size of 58 effective sequence homologs within 4 h on a Linux computer of 20 central processing units. In contrast, DCA-predicted contacts cannot be used to fold any of these hard targets in the absence of extensive conformation sampling, and the best CASP12 group folded only 11 of them by integrating DCA-predicted contacts into fragment-based conformation sampling. Rigorous experimental validation in CASP13 shows that our distance-based folding server successfully folded 17 of 32 hard targets (with a median family size of 36 sequence homologs) and obtained 70% precision on the top L/5 long-range predicted contacts. The latest experimental validation in CAMEO shows that our server predicted correct folds for 2 membrane proteins while all of the other servers failed. These results demonstrate that it is now feasible to predict correct fold for many more proteins lack of similar structures in the Protein Data Bank even on a personal computer.
Collapse
|
19
|
Yu Z, Yao Y, Deng H, Yi M. ANDIS: an atomic angle- and distance-dependent statistical potential for protein structure quality assessment. BMC Bioinformatics 2019; 20:299. [PMID: 31159742 PMCID: PMC6547486 DOI: 10.1186/s12859-019-2898-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/13/2019] [Indexed: 01/05/2023] Open
Abstract
Background The knowledge-based statistical potential has been widely used in protein structure modeling and model quality assessment. They are commonly evaluated based on their abilities of native recognition as well as decoy discrimination. However, these two aspects are found to be mutually exclusive in many statistical potentials. Results We developed an atomic ANgle- and DIStance-dependent (ANDIS) statistical potential for protein structure quality assessment with distance cutoff being a tunable parameter. When distance cutoff is ≤9.0 Å, “effective atomic interaction” is employed to enhance the ability of native recognition. For a distance cutoff of ≥10 Å, the distance-dependent atom-pair potential with random-walk reference state is combined to strengthen the ability of decoy discrimination. Benchmark tests on 632 structural decoy sets from diverse sources demonstrate that ANDIS outperforms other state-of-the-art potentials in both native recognition and decoy discrimination. Conclusions Distance cutoff is a crucial parameter for distance-dependent statistical potentials. A lower distance cutoff is better for native recognition, while a higher one is favorable for decoy discrimination. The ANDIS potential is freely available as a standalone application at http://qbp.hzau.edu.cn/ANDIS/. Electronic supplementary material The online version of this article (10.1186/s12859-019-2898-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongwang Yu
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuangen Yao
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiyou Deng
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China. .,Institute of Applied Physics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Yi
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China. .,Institute of Applied Physics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Mulnaes D, Gohlke H. TopScore: Using Deep Neural Networks and Large Diverse Data Sets for Accurate Protein Model Quality Assessment. J Chem Theory Comput 2018; 14:6117-6126. [DOI: 10.1021/acs.jctc.8b00690] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Daniel Mulnaes
- Department of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Department of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- John von Neumann
Institute for Computing (NIC), Jülich Supercomputing Centre
(JSC) & Institute for Complex Systems - Structural Biochemistry
(ICS 6), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
21
|
An Energy Landscape Treatment of Decoy Selection in Template-Free Protein Structure Prediction. COMPUTATION 2018. [DOI: 10.3390/computation6020039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
From Extraction of Local Structures of Protein Energy Landscapes to Improved Decoy Selection in Template-Free Protein Structure Prediction. Molecules 2018; 23:molecules23010216. [PMID: 29351266 PMCID: PMC6017496 DOI: 10.3390/molecules23010216] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 11/17/2022] Open
Abstract
Due to the essential role that the three-dimensional conformation of a protein plays in regulating interactions with molecular partners, wet and dry laboratories seek biologically-active conformations of a protein to decode its function. Computational approaches are gaining prominence due to the labor and cost demands of wet laboratory investigations. Template-free methods can now compute thousands of conformations known as decoys, but selecting native conformations from the generated decoys remains challenging. Repeatedly, research has shown that the protein energy functions whose minima are sought in the generation of decoys are unreliable indicators of nativeness. The prevalent approach ignores energy altogether and clusters decoys by conformational similarity. Complementary recent efforts design protein-specific scoring functions or train machine learning models on labeled decoys. In this paper, we show that an informative consideration of energy can be carried out under the energy landscape view. Specifically, we leverage local structures known as basins in the energy landscape probed by a template-free method. We propose and compare various strategies of basin-based decoy selection that we demonstrate are superior to clustering-based strategies. The presented results point to further directions of research for improving decoy selection, including the ability to properly consider the multiplicity of native conformations of proteins.
Collapse
|
23
|
Bell DR, Cheng SY, Salazar H, Ren P. Capturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations. Sci Rep 2017; 7:45812. [PMID: 28393861 PMCID: PMC5385882 DOI: 10.1038/srep45812] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/06/2017] [Indexed: 01/25/2023] Open
Abstract
We introduce a coarse-grained RNA model for molecular dynamics simulations, RACER (RnA CoarsE-gRained). RACER achieves accurate native structure prediction for a number of RNAs (average RMSD of 2.93 Å) and the sequence-specific variation of free energy is in excellent agreement with experimentally measured stabilities (R2 = 0.93). Using RACER, we identified hydrogen-bonding (or base pairing), base stacking, and electrostatic interactions as essential driving forces for RNA folding. Also, we found that separating pairing vs. stacking interactions allowed RACER to distinguish folded vs. unfolded states. In RACER, base pairing and stacking interactions each provide an approximate stability of 3-4 kcal/mol for an A-form helix. RACER was developed based on PDB structural statistics and experimental thermodynamic data. In contrast with previous work, RACER implements a novel effective vdW potential energy function, which led us to re-parameterize hydrogen bond and electrostatic potential energy functions. Further, RACER is validated and optimized using a simulated annealing protocol to generate potential energy vs. RMSD landscapes. Finally, RACER is tested using extensive equilibrium pulling simulations (0.86 ms total) on eleven RNA sequences (hairpins and duplexes).
Collapse
Affiliation(s)
- David R. Bell
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sara Y. Cheng
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, United States
| | - Heber Salazar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
24
|
Wang S, Li W, Zhang R, Liu S, Xu J. CoinFold: a web server for protein contact prediction and contact-assisted protein folding. Nucleic Acids Res 2016; 44:W361-6. [PMID: 27112569 PMCID: PMC4987891 DOI: 10.1093/nar/gkw307] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/12/2016] [Indexed: 12/14/2022] Open
Abstract
CoinFold (http://raptorx2.uchicago.edu/ContactMap/) is a web server for protein contact prediction and contact-assisted de novo structure prediction. CoinFold predicts contacts by integrating joint multi-family evolutionary coupling (EC) analysis and supervised machine learning. This joint EC analysis is unique in that it not only uses residue coevolution information in the target protein family, but also that in the related families which may have divergent sequences but similar folds. The supervised learning further improves contact prediction accuracy by making use of sequence profile, contact (distance) potential and other information. Finally, this server predicts tertiary structure of a sequence by feeding its predicted contacts and secondary structure to the CNS suite. Tested on the CASP and CAMEO targets, this server shows significant advantages over existing ones of similar category in both contact and tertiary structure prediction.
Collapse
Affiliation(s)
- Sheng Wang
- Toyota Technological Institute at Chicago, Chicago, IL, USA Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Wei Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| | - Renyu Zhang
- Toyota Technological Institute at Chicago, Chicago, IL, USA
| | - Shiwang Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields. Sci Rep 2016; 6:18962. [PMID: 26752681 PMCID: PMC4707437 DOI: 10.1038/srep18962] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022] Open
Abstract
Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.
Collapse
|
26
|
Ma J, Wang S, Wang Z, Xu J. Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning. Bioinformatics 2015; 31:3506-13. [PMID: 26275894 DOI: 10.1093/bioinformatics/btv472] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 08/08/2015] [Indexed: 02/07/2023] Open
Abstract
MOTIVATION Protein contact prediction is important for protein structure and functional study. Both evolutionary coupling (EC) analysis and supervised machine learning methods have been developed, making use of different information sources. However, contact prediction is still challenging especially for proteins without a large number of sequence homologs. RESULTS This article presents a group graphical lasso (GGL) method for contact prediction that integrates joint multi-family EC analysis and supervised learning to improve accuracy on proteins without many sequence homologs. Different from existing single-family EC analysis that uses residue coevolution information in only the target protein family, our joint EC analysis uses residue coevolution in both the target family and its related families, which may have divergent sequences but similar folds. To implement this, we model a set of related protein families using Gaussian graphical models and then coestimate their parameters by maximum-likelihood, subject to the constraint that these parameters shall be similar to some degree. Our GGL method can also integrate supervised learning methods to further improve accuracy. Experiments show that our method outperforms existing methods on proteins without thousands of sequence homologs, and that our method performs better on both conserved and family-specific contacts. AVAILABILITY AND IMPLEMENTATION See http://raptorx.uchicago.edu/ContactMap/ for a web server implementing the method. CONTACT j3xu@ttic.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jianzhu Ma
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave. Chicago, Illinois 60637 USA
| | - Sheng Wang
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave. Chicago, Illinois 60637 USA
| | - Zhiyong Wang
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave. Chicago, Illinois 60637 USA
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave. Chicago, Illinois 60637 USA
| |
Collapse
|
27
|
AcconPred: Predicting Solvent Accessibility and Contact Number Simultaneously by a Multitask Learning Framework under the Conditional Neural Fields Model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:678764. [PMID: 26339631 PMCID: PMC4538422 DOI: 10.1155/2015/678764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/11/2015] [Indexed: 12/14/2022]
Abstract
Motivation. The solvent accessibility of protein residues is one of the driving forces of protein folding, while the contact number of protein residues limits the possibilities of protein conformations. The de novo prediction of these properties from protein sequence is important for the study of protein structure and function. Although these two properties are certainly related with each other, it is challenging to exploit this dependency for the prediction. Method. We present a method AcconPred for predicting solvent accessibility and contact number simultaneously, which is based on a shared weight multitask learning framework under the CNF (conditional neural fields) model. The multitask learning framework on a collection of related tasks provides more accurate prediction than the framework trained only on a single task. The CNF method not only models the complex relationship between the input features and the predicted labels, but also exploits the interdependency among adjacent labels. Results. Trained on 5729 monomeric soluble globular protein datasets, AcconPred could reach 0.68 three-state accuracy for solvent accessibility and 0.75 correlation for contact number. Tested on the 105 CASP11 domain datasets for solvent accessibility, AcconPred could reach 0.64 accuracy, which outperforms existing methods.
Collapse
|
28
|
Elhefnawy W, Chen L, Han Y, Li Y. ICOSA: A Distance-Dependent, Orientation-Specific Coarse-Grained Contact Potential for Protein Structure Modeling. J Mol Biol 2015; 427:2562-2576. [DOI: 10.1016/j.jmb.2015.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022]
|
29
|
Tong J, Pei J, Otwinowski Z, Grishin NV. Refinement by shifting secondary structure elements improves sequence alignments. Proteins 2015; 83:411-27. [PMID: 25546158 DOI: 10.1002/prot.24746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/25/2014] [Accepted: 12/10/2014] [Indexed: 01/09/2023]
Abstract
Constructing a model of a query protein based on its alignment to a homolog with experimentally determined spatial structure (the template) is still the most reliable approach to structure prediction. Alignment errors are the main bottleneck for homology modeling when the query is distantly related to the template. Alignment methods often misalign secondary structural elements by a few residues. Therefore, better alignment solutions can be found within a limited set of local shifts of secondary structures. We present a refinement method to improve pairwise sequence alignments by evaluating alignment variants generated by local shifts of template-defined secondary structures. Our method SFESA is based on a novel scoring function that combines the profile-based sequence score and the structure score derived from residue contacts in a template. Such a combined score frequently selects a better alignment variant among a set of candidate alignments generated by local shifts and leads to overall increase in alignment accuracy. Evaluation of several benchmarks shows that our refinement method significantly improves alignments made by automatic methods such as PROMALS, HHpred and CNFpred. The web server is available at http://prodata.swmed.edu/sfesa.
Collapse
Affiliation(s)
- Jing Tong
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390; Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390
| | | | | | | |
Collapse
|
30
|
Bhowmick A, Head-Gordon T. A Monte Carlo Method for Generating Side Chain Structural Ensembles. Structure 2015; 23:44-55. [DOI: 10.1016/j.str.2014.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
|
31
|
Thompson JJ, Tabatabaei Ghomi H, Lill MA. Application of information theory to a three-body coarse-grained representation of proteins in the PDB: insights into the structural and evolutionary roles of residues in protein structure. Proteins 2014; 82:3450-65. [PMID: 25269778 DOI: 10.1002/prot.24698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/09/2014] [Accepted: 09/19/2014] [Indexed: 01/03/2023]
Abstract
Knowledge-based methods for analyzing protein structures, such as statistical potentials, primarily consider the distances between pairs of bodies (atoms or groups of atoms). Considerations of several bodies simultaneously are generally used to characterize bonded structural elements or those in close contact with each other, but historically do not consider atoms that are not in direct contact with each other. In this report, we introduce an information-theoretic method for detecting and quantifying distance-dependent through-space multibody relationships between the sidechains of three residues. The technique introduced is capable of producing convergent and consistent results when applied to a sufficiently large database of randomly chosen, experimentally solved protein structures. The results of our study can be shown to reproduce established physico-chemical properties of residues as well as more recently discovered properties and interactions. These results offer insight into the numerous roles that residues play in protein structure, as well as relationships between residue function, protein structure, and evolution. The techniques and insights presented in this work should be useful in the future development of novel knowledge-based tools for the evaluation of protein structure.
Collapse
Affiliation(s)
- Jared J Thompson
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | | | | |
Collapse
|
32
|
Schneider M, Brock O. Combining physicochemical and evolutionary information for protein contact prediction. PLoS One 2014; 9:e108438. [PMID: 25338092 PMCID: PMC4206277 DOI: 10.1371/journal.pone.0108438] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
We introduce a novel contact prediction method that achieves high prediction accuracy by combining evolutionary and physicochemical information about native contacts. We obtain evolutionary information from multiple-sequence alignments and physicochemical information from predicted ab initio protein structures. These structures represent low-energy states in an energy landscape and thus capture the physicochemical information encoded in the energy function. Such low-energy structures are likely to contain native contacts, even if their overall fold is not native. To differentiate native from non-native contacts in those structures, we develop a graph-based representation of the structural context of contacts. We then use this representation to train an support vector machine classifier to identify most likely native contacts in otherwise non-native structures. The resulting contact predictions are highly accurate. As a result of combining two sources of information--evolutionary and physicochemical--we maintain prediction accuracy even when only few sequence homologs are present. We show that the predicted contacts help to improve ab initio structure prediction. A web service is available at http://compbio.robotics.tu-berlin.de/epc-map/.
Collapse
Affiliation(s)
- Michael Schneider
- Robotics and Biology Laboratory, Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
| | - Oliver Brock
- Robotics and Biology Laboratory, Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
33
|
Park J, Saitou K. ROTAS: a rotamer-dependent, atomic statistical potential for assessment and prediction of protein structures. BMC Bioinformatics 2014; 15:307. [PMID: 25236673 PMCID: PMC4262145 DOI: 10.1186/1471-2105-15-307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022] Open
Abstract
Background Multibody potentials accounting for cooperative effects of molecular interactions have shown better accuracy than typical pairwise potentials. The main challenge in the development of such potentials is to find relevant structural features that characterize the tightly folded proteins. Also, the side-chains of residues adopt several specific, staggered conformations, known as rotamers within protein structures. Different molecular conformations result in different dipole moments and induce charge reorientations. However, until now modeling of the rotameric state of residues had not been incorporated into the development of multibody potentials for modeling non-bonded interactions in protein structures. Results In this study, we develop a new multibody statistical potential which can account for the influence of rotameric states on the specificity of atomic interactions. In this potential, named “rotamer-dependent atomic statistical potential” (ROTAS), the interaction between two atoms is specified by not only the distance and relative orientation but also by two state parameters concerning the rotameric state of the residues to which the interacting atoms belong. It was clearly found that the rotameric state is correlated to the specificity of atomic interactions. Such rotamer-dependencies are not limited to specific type or certain range of interactions. The performance of ROTAS was tested using 13 sets of decoys and was compared to those of existing atomic-level statistical potentials which incorporate orientation-dependent energy terms. The results show that ROTAS performs better than other competing potentials not only in native structure recognition, but also in best model selection and correlation coefficients between energy and model quality. Conclusions A new multibody statistical potential, ROTAS accounting for the influence of rotameric states on the specificity of atomic interactions was developed and tested on decoy sets. The results show that ROTAS has improved ability to recognize native structure from decoy models compared to other potentials. The effectiveness of ROTAS may provide insightful information for the development of many applications which require accurate side-chain modeling such as protein design, mutation analysis, and docking simulation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2105-15-307) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Kazuhiro Saitou
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Ma J, Wang S, Wang Z, Xu J. MRFalign: protein homology detection through alignment of Markov random fields. PLoS Comput Biol 2014; 10:e1003500. [PMID: 24675572 PMCID: PMC3967925 DOI: 10.1371/journal.pcbi.1003500] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022] Open
Abstract
Sequence-based protein homology detection has been extensively studied and so far the most sensitive method is based upon comparison of protein sequence profiles, which are derived from multiple sequence alignment (MSA) of sequence homologs in a protein family. A sequence profile is usually represented as a position-specific scoring matrix (PSSM) or an HMM (Hidden Markov Model) and accordingly PSSM-PSSM or HMM-HMM comparison is used for homolog detection. This paper presents a new homology detection method MRFalign, consisting of three key components: 1) a Markov Random Fields (MRF) representation of a protein family; 2) a scoring function measuring similarity of two MRFs; and 3) an efficient ADMM (Alternating Direction Method of Multipliers) algorithm aligning two MRFs. Compared to HMM that can only model very short-range residue correlation, MRFs can model long-range residue interaction pattern and thus, encode information for the global 3D structure of a protein family. Consequently, MRF-MRF comparison for remote homology detection shall be much more sensitive than HMM-HMM or PSSM-PSSM comparison. Experiments confirm that MRFalign outperforms several popular HMM or PSSM-based methods in terms of both alignment accuracy and remote homology detection and that MRFalign works particularly well for mainly beta proteins. For example, tested on the benchmark SCOP40 (8353 proteins) for homology detection, PSSM-PSSM and HMM-HMM succeed on 48% and 52% of proteins, respectively, at superfamily level, and on 15% and 27% of proteins, respectively, at fold level. In contrast, MRFalign succeeds on 57.3% and 42.5% of proteins at superfamily and fold level, respectively. This study implies that long-range residue interaction patterns are very helpful for sequence-based homology detection. The software is available for download at http://raptorx.uchicago.edu/download/. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2–5. Sequence-based protein homology detection has been extensively studied, but it remains very challenging for remote homologs with divergent sequences. So far the most sensitive methods employ HMM-HMM comparison, which models a protein family using HMM (Hidden Markov Model) and then detects homologs using HMM-HMM alignment. HMM cannot model long-range residue interaction patterns and thus, carries very little information regarding the global 3D structure of a protein family. As such, HMM comparison is not sensitive enough for distantly-related homologs. In this paper, we present an MRF-MRF comparison method for homology detection. In particular, we model a protein family using Markov Random Fields (MRF) and then detect homologs by MRF-MRF alignment. Compared to HMM, MRFs are able to model long-range residue interaction pattern and thus, contains information for the overall 3D structure of a protein family. Consequently, MRF-MRF comparison is much more sensitive than HMM-HMM comparison. To implement MRF-MRF comparison, we have developed a new scoring function to measure the similarity of two MRFs and also an efficient ADMM algorithm to optimize the scoring function. Experiments confirm that MRF-MRF comparison indeed outperforms HMM-HMM comparison in terms of both alignment accuracy and remote homology detection, especially for mainly beta proteins.
Collapse
Affiliation(s)
- Jianzhu Ma
- Toyota Technological Institute at Chicago, Chicago, Illinois, United States of America
| | - Sheng Wang
- Toyota Technological Institute at Chicago, Chicago, Illinois, United States of America
| | - Zhiyong Wang
- Toyota Technological Institute at Chicago, Chicago, Illinois, United States of America
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Improvement in low-homology template-based modeling by employing a model evaluation method with focus on topology. PLoS One 2014; 9:e89935. [PMID: 24587135 PMCID: PMC3935967 DOI: 10.1371/journal.pone.0089935] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/24/2014] [Indexed: 01/22/2023] Open
Abstract
Many template-based modeling (TBM) methods have been developed over the recent years that allow for protein structure prediction and for the study of structure-function relationships for proteins. One major problem all TBM algorithms face, however, is their unsatisfactory performance when proteins under consideration are low-homology. To improve the performance of TBM methods for such targets, a novel model evaluation method was developed here, and named MEFTop. Our novel method focuses on evaluating the topology by using two novel groups of features. These novel features included secondary structure element (SSE) contact information and 3-dimensional topology information. By combining MEFTop algorithm with FR-t5, a threading program developed by our group, we found that this modified TBM program, which was named FR-t5-M, exhibited significant improvements in predictive abilities for low-homology protein targets. We further showed that the MEFTop could be a generalized method to improve threading programs for low-homology protein targets. The softwares (FR-t5-M and MEFTop) are available to non-commercial users at our website: http://jianglab.ibp.ac.cn/lims/FRt5M/FRt5M.html.
Collapse
|
36
|
Reconstructing protein structures by neural network pairwise interaction fields and iterative decoy set construction. Biomolecules 2014; 4:160-80. [PMID: 24970210 PMCID: PMC4030983 DOI: 10.3390/biom4010160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/22/2014] [Accepted: 01/30/2014] [Indexed: 11/17/2022] Open
Abstract
Predicting the fold of a protein from its amino acid sequence is one of the grand problems in computational biology. While there has been progress towards a solution, especially when a protein can be modelled based on one or more known structures (templates), in the absence of templates, even the best predictions are generally much less reliable. In this paper, we present an approach for predicting the three-dimensional structure of a protein from the sequence alone, when templates of known structure are not available. This approach relies on a simple reconstruction procedure guided by a novel knowledge-based evaluation function implemented as a class of artificial neural networks that we have designed: Neural Network Pairwise Interaction Fields (NNPIF). This evaluation function takes into account the contextual information for each residue and is trained to identify native-like conformations from non-native-like ones by using large sets of decoys as a training set. The training set is generated and then iteratively expanded during successive folding simulations. As NNPIF are fast at evaluating conformations, thousands of models can be processed in a short amount of time, and clustering techniques can be adopted for model selection. Although the results we present here are very preliminary, we consider them to be promising, with predictions being generated at state-of-the-art levels in some of the cases.
Collapse
|
37
|
Ma J, Wang S. Algorithms, Applications, and Challenges of Protein Structure Alignment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 94:121-75. [DOI: 10.1016/b978-0-12-800168-4.00005-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Wang Z, Xu J. Predicting protein contact map using evolutionary and physical constraints by integer programming. Bioinformatics 2013; 29:i266-73. [PMID: 23812992 PMCID: PMC3694661 DOI: 10.1093/bioinformatics/btt211] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Motivation: Protein contact map describes the pairwise spatial and functional relationship of residues in a protein and contains key information for protein 3D structure prediction. Although studied extensively, it remains challenging to predict contact map using only sequence information. Most existing methods predict the contact map matrix element-by-element, ignoring correlation among contacts and physical feasibility of the whole-contact map. A couple of recent methods predict contact map by using mutual information, taking into consideration contact correlation and enforcing a sparsity restraint, but these methods demand for a very large number of sequence homologs for the protein under consideration and the resultant contact map may be still physically infeasible. Results: This article presents a novel method PhyCMAP for contact map prediction, integrating both evolutionary and physical restraints by machine learning and integer linear programming. The evolutionary restraints are much more informative than mutual information, and the physical restraints specify more concrete relationship among contacts than the sparsity restraint. As such, our method greatly reduces the solution space of the contact map matrix and, thus, significantly improves prediction accuracy. Experimental results confirm that PhyCMAP outperforms currently popular methods no matter how many sequence homologs are available for the protein under consideration. Availability:http://raptorx.uchicago.edu. Contact:jinboxu@gmail.com
Collapse
Affiliation(s)
- Zhiyong Wang
- Toyota Technological Institute at Chicago, 6045 S Kenwood, IL 60637, USA
| | | |
Collapse
|
39
|
Abstract
Motivation: Template-based modeling, including homology modeling and protein threading, is the most reliable method for protein 3D structure prediction. However, alignment errors and template selection are still the main bottleneck for current template-base modeling methods, especially when proteins under consideration are distantly related. Results: We present a novel context-specific alignment potential for protein threading, including alignment and template selection. Our alignment potential measures the log-odds ratio of one alignment being generated from two related proteins to being generated from two unrelated proteins, by integrating both local and global context-specific information. The local alignment potential quantifies how well one sequence residue can be aligned to one template residue based on context-specific information of the residues. The global alignment potential quantifies how well two sequence residues can be placed into two template positions at a given distance, again based on context-specific information. By accounting for correlation among a variety of protein features and making use of context-specific information, our alignment potential is much more sensitive than the widely used context-independent or profile-based scoring function. Experimental results confirm that our method generates significantly better alignments and threading results than the best profile-based methods on several large benchmarks. Our method works particularly well for distantly related proteins or proteins with sparse sequence profiles because of the effective integration of context-specific, structure and global information. Availability:http://raptorx.uchicago.edu/download/. Contact:jinboxu@gmail.com
Collapse
Affiliation(s)
- Jianzhu Ma
- Toyota Technological Institute at Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
40
|
Dong GQ, Fan H, Schneidman-Duhovny D, Webb B, Sali A. Optimized atomic statistical potentials: assessment of protein interfaces and loops. Bioinformatics 2013; 29:3158-66. [PMID: 24078704 PMCID: PMC3842762 DOI: 10.1093/bioinformatics/btt560] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/13/2013] [Accepted: 09/22/2013] [Indexed: 01/16/2023] Open
Abstract
MOTIVATION Statistical potentials have been widely used for modeling whole proteins and their parts (e.g. sidechains and loops) as well as interactions between proteins, nucleic acids and small molecules. Here, we formulate the statistical potentials entirely within a statistical framework, avoiding questionable statistical mechanical assumptions and approximations, including a definition of the reference state. RESULTS We derive a general Bayesian framework for inferring statistically optimized atomic potentials (SOAP) in which the reference state is replaced with data-driven 'recovery' functions. Moreover, we restrain the relative orientation between two covalent bonds instead of a simple distance between two atoms, in an effort to capture orientation-dependent interactions such as hydrogen bonds. To demonstrate this general approach, we computed statistical potentials for protein-protein docking (SOAP-PP) and loop modeling (SOAP-Loop). For docking, a near-native model is within the top 10 scoring models in 40% of the PatchDock benchmark cases, compared with 23 and 27% for the state-of-the-art ZDOCK and FireDock scoring functions, respectively. Similarly, for modeling 12-residue loops in the PLOP benchmark, the average main-chain root mean square deviation of the best scored conformations by SOAP-Loop is 1.5 Å, close to the average root mean square deviation of the best sampled conformations (1.2 Å) and significantly better than that selected by Rosetta (2.1 Å), DFIRE (2.3 Å), DOPE (2.5 Å) and PLOP scoring functions (3.0 Å). Our Bayesian framework may also result in more accurate statistical potentials for additional modeling applications, thus affording better leverage of the experimentally determined protein structures. AVAILABILITY AND IMPLEMENTATION SOAP-PP and SOAP-Loop are available as part of MODELLER (http://salilab.org/modeller).
Collapse
Affiliation(s)
- Guang Qiang Dong
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
41
|
Zhou J, Yan W, Hu G, Shen B. SVR_CAF: An integrated score function for detecting native protein structures among decoys. Proteins 2013; 82:556-64. [DOI: 10.1002/prot.24421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/30/2013] [Accepted: 09/10/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Jianhong Zhou
- Center for Systems Biology; Soochow University; Suzhou Jiangsu 215006 China
| | - Wenying Yan
- Center for Systems Biology; Soochow University; Suzhou Jiangsu 215006 China
| | - Guang Hu
- Center for Systems Biology; Soochow University; Suzhou Jiangsu 215006 China
| | - Bairong Shen
- Center for Systems Biology; Soochow University; Suzhou Jiangsu 215006 China
| |
Collapse
|
42
|
Mirzaie M, Sadeghi M. Delaunay-based nonlocal interactions are sufficient and accurate in protein fold recognition. Proteins 2013; 82:415-23. [DOI: 10.1002/prot.24407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/12/2013] [Accepted: 08/21/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Mehdi Mirzaie
- Department of Basic Sciences, Faculty of Paramedical Sciences; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Bioinformatics; School of Computer Science, Institute for Research in Fundamental Sciences (IPM); Tehran Iran
| | - Mehdi Sadeghi
- Department of Bioinformatics, National Institute of Genetic Engineering and Biotechnology; Tehran Iran
| |
Collapse
|