1
|
Dajka M, Rath T, Morgner N, Joseph B. Dynamic basis of lipopolysaccharide export by LptB 2FGC. eLife 2024; 13:RP99338. [PMID: 39374147 PMCID: PMC11458178 DOI: 10.7554/elife.99338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Lipopolysaccharides (LPS) confer resistance against harsh conditions, including antibiotics, in Gram-negative bacteria. The lipopolysaccharide transport (Lpt) complex, consisting of seven proteins (A-G), exports LPS across the cellular envelope. LptB2FG forms an ATP-binding cassette transporter that transfers LPS to LptC. How LptB2FG couples ATP binding and hydrolysis with LPS transport to LptC remains unclear. We observed the conformational heterogeneity of LptB2FG and LptB2FGC in micelles and/or proteoliposomes using pulsed dipolar electron spin resonance spectroscopy. Additionally, we monitored LPS binding and release using laser-induced liquid bead ion desorption mass spectrometry. The β-jellyroll domain of LptF stably interacts with the LptG and LptC β-jellyrolls in both the apo and vanadate-trapped states. ATP binding at the cytoplasmic side is allosterically coupled to the selective opening of the periplasmic LptF β-jellyroll domain. In LptB2FG, ATP binding closes the nucleotide binding domains, causing a collapse of the first lateral gate as observed in structures. However, the second lateral gate, which forms the putative entry site for LPS, exhibits a heterogeneous conformation. LptC binding limits the flexibility of this gate to two conformations, likely representing the helix of LptC as either released from or inserted into the transmembrane domains. Our results reveal the regulation of the LPS entry gate through the dynamic behavior of the LptC transmembrane helix, while its β-jellyroll domain is anchored in the periplasm. This, combined with long-range ATP-dependent allosteric gating of the LptF β-jellyroll domain, may ensure efficient and unidirectional transport of LPS across the periplasm.
Collapse
Affiliation(s)
- Marina Dajka
- Department of Physics, Freie Universität BerlinBerlinGermany
| | - Tobias Rath
- Institute of Physical and Theoretical Chemistry, Goethe Universität FrankfurtFrankfurtGermany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe Universität FrankfurtFrankfurtGermany
| | - Benesh Joseph
- Department of Physics, Freie Universität BerlinBerlinGermany
| |
Collapse
|
2
|
Martínez Felices JM, Barreto YB, Thangaratnarajah C, Whittaker JJ, Alencar AM, Guskov A, Slotboom DJ. Cobalamin decyanation by the membrane transporter BtuM. Structure 2024; 32:1165-1173.e3. [PMID: 38733996 DOI: 10.1016/j.str.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
BtuM is a bacterial cobalamin transporter that binds the transported substrate in the base-off state, with a cysteine residue providing the α-axial coordination of the central cobalt ion via a sulfur-cobalt bond. Binding leads to decyanation of cobalamin variants with a cyano group as the β-axial ligand. Here, we report the crystal structures of untagged BtuM bound to two variants of cobalamin, hydroxycobalamin and cyanocobalamin, and unveil the native residue responsible for the β-axial coordination, His28. This coordination had previously been obscured by non-native histidines of His-tagged BtuM. A model in which BtuM initially binds cobinamide reversibly with low affinity (KD = 4.0 μM), followed by the formation of a covalent bond (rate constant of 0.163 s-1), fits the kinetics data of substrate binding and decyanation of the cobalamin precursor cobinamide by BtuM. The covalent binding mode suggests a mechanism not used by any other transport protein.
Collapse
Affiliation(s)
- Jose M Martínez Felices
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, Groningen 9474 AG, the Netherlands
| | - Yan Borges Barreto
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, Groningen 9474 AG, the Netherlands; Instituto de Física, Universidade de São Paulo, São Paulo 05508-090, São Paulo, Brazil
| | - Chancievan Thangaratnarajah
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, Groningen 9474 AG, the Netherlands
| | - Jacob J Whittaker
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, Groningen 9474 AG, the Netherlands
| | - Adriano M Alencar
- Instituto de Física, Universidade de São Paulo, São Paulo 05508-090, São Paulo, Brazil
| | - Albert Guskov
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, Groningen 9474 AG, the Netherlands
| | - Dirk J Slotboom
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, Groningen 9474 AG, the Netherlands.
| |
Collapse
|
3
|
Frelet-Barrand A. Lactococcus lactis, an Attractive Cell Factory for the Expression of Functional Membrane Proteins. Biomolecules 2022; 12:180. [PMID: 35204681 PMCID: PMC8961550 DOI: 10.3390/biom12020180] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Membrane proteins play key roles in most crucial cellular processes, ranging from cell-to-cell communication to signaling processes. Despite recent improvements, the expression of functionally folded membrane proteins in sufficient amounts for functional and structural characterization remains a challenge. Indeed, it is still difficult to predict whether a protein can be overproduced in a functional state in some expression system(s), though studies of high-throughput screens have been published in recent years. Prokaryotic expression systems present several advantages over eukaryotic ones. Among them, Lactococcus lactis (L. lactis) has emerged in the last two decades as a good alternative expression system to E. coli. The purpose of this chapter is to describe L. lactis and its tightly inducible system, NICE, for the effective expression of membrane proteins from both prokaryotic and eukaryotic origins.
Collapse
Affiliation(s)
- Annie Frelet-Barrand
- FEMTO-ST Institute, UMR 6174, CNRS, Université Bourgogne Franche-Comté, 15B Avenue des Montboucons, CEDEX, 25030 Besançon, France
| |
Collapse
|
4
|
Setyawati I, Stanek WK, Majsnerowska M, Swier LJYM, Pardon E, Steyaert J, Guskov A, Slotboom DJ. In vitro reconstitution of dynamically interacting integral membrane subunits of energy-coupling factor transporters. eLife 2020; 9:64389. [PMID: 33350937 PMCID: PMC7755397 DOI: 10.7554/elife.64389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023] Open
Abstract
Energy-coupling factor (ECF) transporters mediate import of micronutrients in prokaryotes. They consist of an integral membrane S-component (that binds substrate) and ECF module (that powers transport by ATP hydrolysis). It has been proposed that different S-components compete for docking onto the same ECF module, but a minimal liposome-reconstituted system, required to substantiate this idea, is lacking. Here, we co-reconstituted ECF transporters for folate (ECF-FolT2) and pantothenate (ECF-PanT) into proteoliposomes, and assayed for crosstalk during active transport. The kinetics of transport showed that exchange of S-components is part of the transport mechanism. Competition experiments suggest much slower substrate association with FolT2 than with PanT. Comparison of a crystal structure of ECF-PanT with previously determined structures of ECF-FolT2 revealed larger conformational changes upon binding of folate than pantothenate, which could explain the kinetic differences. Our work shows that a minimal in vitro system with two reconstituted transporters recapitulates intricate kinetics behaviour observed in vivo.
Collapse
Affiliation(s)
- Inda Setyawati
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Biochemistry Department, Bogor Agricultural University, Bogor, Indonesia
| | - Weronika K Stanek
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Maria Majsnerowska
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Lotteke J Y M Swier
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium.,VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium.,VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Albert Guskov
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Sahu ID, Lorigan GA. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Biomolecules 2020; 10:E763. [PMID: 32414134 PMCID: PMC7278021 DOI: 10.3390/biom10050763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins possess a variety of functions essential to the survival of organisms. However, due to their inherent hydrophobic nature, it is extremely difficult to probe the structure and dynamic properties of membrane proteins using traditional biophysical techniques, particularly in their native environments. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a very powerful and rapidly growing biophysical technique to study pertinent structural and dynamic properties of membrane proteins with no size restrictions. In this review, we will briefly discuss the most commonly used EPR techniques and their recent applications for answering structure and conformational dynamics related questions of important membrane protein systems.
Collapse
Affiliation(s)
- Indra D. Sahu
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
6
|
Abstract
Energy-coupling factor (ECF)-type ATP-binding cassette (ABC) transporters catalyze membrane transport of micronutrients in prokaryotes. Crystal structures and biochemical characterization have revealed that ECF transporters are mechanistically distinct from other ABC transport systems. Notably, ECF transporters make use of small integral membrane subunits (S-components) that are predicted to topple over in the membrane when carrying the bound substrate from the extracellular side of the bilayer to the cytosol. Here, we review the phylogenetic diversity of ECF transporters as well as recent structural and biochemical advancements that have led to the postulation of conceptually different mechanistic models. These models can be described as power stroke and thermal ratchet. Structural data indicate that the lipid composition and bilayer structure are likely to have great impact on the transport function. We argue that study of ECF transporters could lead to generic insight into membrane protein structure, dynamics, and interaction.
Collapse
Affiliation(s)
- S Rempel
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , ,
| | - W K Stanek
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , ,
| | - D J Slotboom
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , , .,Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Bousis S, Setyawati I, Diamanti E, Slotboom DJ, Hirsch AKH. Energy-Coupling Factor Transporters as Novel Antimicrobial Targets. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Spyridon Bousis
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI); Department of Drug Design and Optimization; Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 9747AG Groningen The Netherlands
- Department of Pharmacy; Saarland University; Saarbrücken, Campus Building E8.1 66123 Saarbrücken Germany
| | - Inda Setyawati
- Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
- Department of Biochemistry; Bogor Agricultural University; Dramaga 16680 Bogor Indonesia
| | - Eleonora Diamanti
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI); Department of Drug Design and Optimization; Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 9747AG Groningen The Netherlands
| | - Dirk J. Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
- Department of Biochemistry; Bogor Agricultural University; Dramaga 16680 Bogor Indonesia
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI); Department of Drug Design and Optimization; Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 9747AG Groningen The Netherlands
- Department of Pharmacy; Saarland University; Saarbrücken, Campus Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
8
|
New limits of sensitivity of site-directed spin labeling electron paramagnetic resonance for membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:841-853. [DOI: 10.1016/j.bbamem.2017.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/27/2017] [Accepted: 12/09/2017] [Indexed: 01/27/2023]
|
9
|
Finkenwirth F, Kirsch F, Eitinger T. Complex Stability During the Transport Cycle of a Subclass I ECF Transporter. Biochemistry 2017; 56:4578-4583. [DOI: 10.1021/acs.biochem.7b00390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Friedrich Finkenwirth
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Franziska Kirsch
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
10
|
The Synergetic Effects of Combining Structural Biology and EPR Spectroscopy on Membrane Proteins. CRYSTALS 2017. [DOI: 10.3390/cryst7040117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein structures as provided by structural biology such as X-ray crystallography, cryo-electron microscopy and NMR spectroscopy are key elements to understand the function of a protein on the molecular level. Nonetheless, they might be error-prone due to crystallization artifacts or, in particular in case of membrane-imbedded proteins, a mostly artificial environment. In this review, we will introduce different EPR spectroscopy methods as powerful tools to complement and validate structural data gaining insights in the dynamics of proteins and protein complexes such that functional cycles can be derived. We will highlight the use of EPR spectroscopy on membrane-embedded proteins and protein complexes ranging from receptors to secondary active transporters as structural information is still limited in this field and the lipid environment is a particular challenge.
Collapse
|
11
|
Swier LJYM, Monjas L, Reeßing F, Oudshoorn RC, Aisyah, Primke T, Bakker MM, van Olst E, Ritschel T, Faustino I, Marrink SJ, Hirsch AKH, Slotboom DJ. Insight into the complete substrate-binding pocket of ThiT by chemical and genetic mutations. MEDCHEMCOMM 2017; 8:1121-1130. [PMID: 30108823 DOI: 10.1039/c7md00079k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/24/2017] [Indexed: 01/12/2023]
Abstract
Energy-coupling factor (ECF) transporters are involved in the uptake of micronutrients in bacteria. The transporters capture the substrate by high-affinity binding proteins, the so-called S-components. Here, we present the analysis of two regions of the substrate-binding pocket of the thiamine-specific S-component in Lactococcus lactis, ThiT. First, interaction of the thiazolium ring of thiamine with residues Trp34, His125 and Glu84 by π-π-stacking and cation-π is studied, and second, the part of the binding pocket that extends from the hydroxyl group. We mutated either the transported ligand (chemically) or the protein (genetically). Surprisingly, modifications in the thiazolium ring by introducing substituents with opposite electronic effects had similar effects on the binding affinity. We hypothesize that the electronic effects are superseeded by steric effects of the added substituents, which renders the study of isolated interactions difficult. Amino acid substitutions in ThiT indicate that the electrostatic interaction facilitated by residue Glu84 of ThiT and thiamine is necessary for picomolar affinity. Deazathiamine derivatives that explore the subpocket of the binding site extending from the hydroxyl group of thiamine bind with high affinity to ThiT and may be developed into selective inhibitors of thiamine transport by ECF transporters. Molecular-dynamics simulations suggest that two of these derivatives may not only bind to ThiT, but could also be transported.
Collapse
Affiliation(s)
- L J Y M Swier
- Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . ; Tel: +31 50 363 4187
| | - L Monjas
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands . ; Tel: +31 50 363 4275
| | - F Reeßing
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands . ; Tel: +31 50 363 4275
| | - R C Oudshoorn
- Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . ; Tel: +31 50 363 4187
| | - Aisyah
- Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . ; Tel: +31 50 363 4187
| | - T Primke
- Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . ; Tel: +31 50 363 4187
| | - M M Bakker
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands . ; Tel: +31 50 363 4275
| | - E van Olst
- Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . ; Tel: +31 50 363 4187
| | - T Ritschel
- Centre for Molecular and Biomolecular Informatics (CMBI) , Radboudumc , 6525 GA Nijmegen , The Netherlands
| | - I Faustino
- Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . ; Tel: +31 50 363 4187
| | - S J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . ; Tel: +31 50 363 4187
| | - A K H Hirsch
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands . ; Tel: +31 50 363 4275
| | - D J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . ; Tel: +31 50 363 4187
| |
Collapse
|
12
|
Karpowich NK, Song J, Wang DN. An Aromatic Cap Seals the Substrate Binding Site in an ECF-Type S Subunit for Riboflavin. J Mol Biol 2016; 428:3118-30. [PMID: 27312125 DOI: 10.1016/j.jmb.2016.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
ECF transporters are a family of active membrane transporters for essential micronutrients, such as vitamins and trace metals. Found exclusively in archaea and bacteria, these transporters are composed of four subunits: an integral membrane substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT), and two ATP-binding cassette ATPases (EcfA and EcfA'). We have characterized the structural basis of substrate binding by the EcfS subunit for riboflavin from Thermotoga maritima, TmRibU. TmRibU binds riboflavin with high affinity, and the protein-substrate complex is exceptionally stable in solution. The crystal structure of riboflavin-bound TmRibU reveals an electronegative binding pocket at the extracellular surface in which the substrate is completely buried. Analysis of the intermolecular contacts indicates that nearly every available substrate hydrogen bond is satisfied. A conserved aromatic residue at the extracellular end of TM5, Tyr130, caps the binding site to generate a substrate-bound, occluded state, and non-conservative mutation of Tyr130 reduces the stability of this conformation. Using a novel fluorescence binding assay, we find that an aromatic residue at this position is essential for high-affinity substrate binding. Comparison with other S subunit structures suggests that TM5 and Loop5-6 contain a dynamic, conserved motif that plays a key role in gating substrate entry and release by S subunits of ECF transporters.
Collapse
Affiliation(s)
- Nathan K Karpowich
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| | - Jinmei Song
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Da-Neng Wang
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
13
|
Structural insight in the toppling mechanism of an energy-coupling factor transporter. Nat Commun 2016; 7:11072. [PMID: 27026363 PMCID: PMC4820897 DOI: 10.1038/ncomms11072] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/17/2016] [Indexed: 11/08/2022] Open
Abstract
Energy-coupling factor (ECF) transporters mediate uptake of micronutrients in prokaryotes. The transporters consist of an S-component that binds the transported substrate and an ECF module (EcfAA′T) that binds and hydrolyses ATP. The mechanism of transport is poorly understood but presumably involves an unusual step in which the membrane-embedded S-component topples over to carry the substrate across the membrane. In many ECF transporters, the S-component dissociates from the ECF module after transport. Subsequently, substrate-bound S-components out-compete the empty proteins for re-binding to the ECF module in a new round of transport. Here we present crystal structures of the folate-specific transporter ECF–FolT from Lactobacillus delbrueckii. Interaction of the ECF module with FolT stabilizes the toppled state, and simultaneously destroys the high-affinity folate-binding site, allowing substrate release into the cytosol. We hypothesize that differences in the kinetics of toppling can explain how substrate-loaded FolT out-competes apo-FolT for association with the ECF module. Prokaryotes use energy-coupling factor transporters to uptake required micronutrients and an unusual toppling mechanism has been proposed for their function. Here, the authors provide structural support for this mechanism, allowing direct visualization of the toppled state.
Collapse
|
14
|
Liu H, Li D, Li Y, Hou T. Atomistic molecular dynamics simulations of ATP-binding cassette transporters. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hui Liu
- College of Pharmaceutical Sciences; Zhejiang University; Hangzhou China
| | - Dan Li
- College of Pharmaceutical Sciences; Zhejiang University; Hangzhou China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou China
| | - Tingjun Hou
- College of Pharmaceutical Sciences; Zhejiang University; Hangzhou China
| |
Collapse
|
15
|
Zhao Q, Wang C, Wang C, Guo H, Bao Z, Zhang M, Zhang P. Structures of FolT in substrate-bound and substrate-released conformations reveal a gating mechanism for ECF transporters. Nat Commun 2015. [PMID: 26198469 PMCID: PMC4525288 DOI: 10.1038/ncomms8661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Energy-coupling factor (ECF) transporters are a new family of ABC transporters that consist of four subunits, two cytoplasmic ATPases EcfA and EcfA' and two transmembrane proteins namely EcfS for substrate-specific binding and EcfT for energy coupling. Here, we report the 3.2-Å resolution crystal structure of the EcfS protein of a folate ECF transporter from Enterococcus faecalis-EfFolT, a close homologue of FolT from Lactobacillus brevis-LbFolT. Structural and biochemical analyses reveal the residues constituting the folate-binding pocket and determining the substrate-binding specificity. Structural comparison of the folate-bound EfFolT with the folate-free LbFolT contained in the holotransporter complex discloses significant conformational change at the L1 loop, and reveals a gating mechanism of ECF transporters in which the L1 loop of EcfS acts as a gate in the substrate binding and release. Substrate specificity of ECF transporters is determined by the transmembrane EcfS protein subunit. Here Zhao et al. present substrate-bound and substrate-released structures of a bacterial folate transporter EcfS and suggest a gating mechanism for ECF transporters.
Collapse
Affiliation(s)
- Qin Zhao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengcheng Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengyuan Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui Guo
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhihao Bao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Minhua Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Pyridoxamine is a substrate of the energy-coupling factor transporter HmpT. Cell Discov 2015; 1:15014. [PMID: 27462413 PMCID: PMC4860826 DOI: 10.1038/celldisc.2015.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/28/2015] [Indexed: 12/12/2022] Open
Abstract
Energy-coupling factor (ECF) transporters belong to a novel family of proteins that forms a subset within the ATP-binding cassette (ABC) transporter family. These proteins are responsible for the uptake of micronutrients in bacteria. ECF transporters are composed of four proteins: the A- and A′-components, the T-component and the S-component. One of the ECF transporters, named HmpT, was crystallized in the apo form with all four components. It is currently unknown whether HmpT serves as a transporter for hydroxymethyl pyrimidine or the different forms of vitamin B6 (pyridoxine, pyridoxal or pyridoxamine). Using a combination of molecular dynamics (MD) simulations and mass spectrometry, we have identified pyridoxamine to be the preferred substrate of HmpT. Mass spectra show that the mass of the substrate from the HmpT–substrate complex matches that of pyridoxamine. MD simulations likewise indicate that pyridoxamine interacts most strongly with most of the conserved residues of the S-component (Glu 41, His 84 and Gln 43) compared with the other vitamin B6 forms. Furthermore, the simulations have implied that loops 1 and 5 of the S-component can participate in the gating action for HmpT.
Collapse
|
17
|
ATP binding drives substrate capture in an ECF transporter by a release-and-catch mechanism. Nat Struct Mol Biol 2015; 22:565-71. [PMID: 26052893 PMCID: PMC4634891 DOI: 10.1038/nsmb.3040] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 05/05/2015] [Indexed: 01/07/2023]
Abstract
ECF transporters are a family of active transporters for vitamins. They are composed of four subunits: a membrane-embedded substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT) and two ATP-binding-cassette ATPases (EcfA and EcfA'). We have investigated the mechanism of the ECF transporter for riboflavin from the pathogen Listeria monocytogenes, LmECF-RibU. Using structural and biochemical approaches, we found that ATP binding to the EcfAA' ATPases drives a conformational change that dissociates the S subunit from the EcfAA'T ECF module. Upon release from the ECF module, the RibU S subunit then binds the riboflavin transport substrate. We also find that S subunits for distinct substrates compete for the ATP-bound state of the ECF module. Our results explain how ECF transporters capture the transport substrate and reproduce the in vivo observations on S-subunit competition for which the family was named.
Collapse
|
18
|
Finkenwirth F, Sippach M, Landmesser H, Kirsch F, Ogienko A, Grunzel M, Kiesler C, Steinhoff HJ, Schneider E, Eitinger T. ATP-dependent Conformational Changes Trigger Substrate Capture and Release by an ECF-type Biotin Transporter. J Biol Chem 2015; 290:16929-42. [PMID: 25991724 DOI: 10.1074/jbc.m115.654343] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Indexed: 11/06/2022] Open
Abstract
Energy-coupling factor (ECF) transporters for vitamins and metal ions in prokaryotes consist of two ATP-binding cassette-type ATPases, a substrate-specific transmembrane protein (S component) and a transmembrane protein (T component) that physically interacts with the ATPases and the S component. The mechanism of ECF transporters was analyzed upon reconstitution of a bacterial biotin transporter into phospholipid bilayer nanodiscs. ATPase activity was not stimulated by biotin and was only moderately reduced by vanadate. A non-hydrolyzable ATP analog was a competitive inhibitor. As evidenced by cross-linking of monocysteine variants and by site-specific spin labeling of the Q-helix followed by EPR-based interspin distance analyses, closure and reopening of the ATPase dimer (BioM2) was a consequence of ATP binding and hydrolysis, respectively. A previously suggested role of a stretch of small hydrophobic amino acid residues within the first transmembrane segment of the S units for S unit/T unit interactions was structurally and functionally confirmed for the biotin transporter. Cross-linking of this segment in BioY (S) using homobifunctional thiol-reactive reagents to a coupling helix of BioN (T) indicated a reorientation rather than a disruption of the BioY/BioN interface during catalysis. Fluorescence emission of BioY labeled with an environmentally sensitive fluorophore was compatible with an ATP-induced reorientation and consistent with a hypothesized toppling mechanism. As demonstrated by [(3)H]biotin capture assays, ATP binding stimulated substrate capture by the transporter, and subsequent ATP hydrolysis led to substrate release. Our study represents the first experimental insight into the individual steps during the catalytic cycle of an ECF transporter in a lipid environment.
Collapse
Affiliation(s)
| | - Michael Sippach
- the Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| | - Heidi Landmesser
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany and
| | | | | | | | | | - Heinz-Jürgen Steinhoff
- the Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| | - Erwin Schneider
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany and
| | | |
Collapse
|
19
|
Mikstiene V, Songailiene J, Byckova J, Rutkauskiene G, Jasinskiene E, Verkauskiene R, Lesinskas E, Utkus A. Thiamine responsive megaloblastic anemia syndrome: A novel homozygousSLC19A2gene mutation identified. Am J Med Genet A 2015; 167:1605-9. [DOI: 10.1002/ajmg.a.37015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/19/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Violeta Mikstiene
- Department of Human and Medical Genetics, Faculty of Medicine; Vilnius University; Vilnius Lithuania
| | - Jurgita Songailiene
- Department of Human and Medical Genetics, Faculty of Medicine; Vilnius University; Vilnius Lithuania
| | - Jekaterina Byckova
- Centre of Ear, Nose and Throat Diseases; Vilnius University Hospital Santariškių Clinics; Vilnius Lithuania
| | - Giedre Rutkauskiene
- Pediatric Oncology and Hematology Unit; Hospital of Lithuanian university of Health Sciences, Kaunas Clinics; Kaunas Lithuania
| | - Edita Jasinskiene
- Department of Endocrinology; Hospital of Lithuanian University of Health Science, Kaunas Clinics; Kaunas Lithuania
| | - Rasa Verkauskiene
- Department of Endocrinology; Hospital of Lithuanian University of Health Science, Kaunas Clinics; Kaunas Lithuania
| | - Eugenijus Lesinskas
- Centre of Ear, Nose and Throat Diseases; Vilnius University Hospital Santariškių Clinics; Vilnius Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Faculty of Medicine; Vilnius University; Vilnius Lithuania
| |
Collapse
|
20
|
Swier LJYM, Monjas L, Guskov A, de Voogd AR, Erkens GB, Slotboom DJ, Hirsch AKH. Structure-based design of potent small-molecule binders to the S-component of the ECF transporter for thiamine. Chembiochem 2015; 16:819-26. [PMID: 25676607 DOI: 10.1002/cbic.201402673] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Energy-coupling factor (ECF) transporters are membrane-protein complexes that mediate vitamin uptake in prokaryotes. They bind the substrate through the action of a specific integral membrane subunit (S-component) and power transport by hydrolysis of ATP in the three-subunit ECF module. Here, we have studied the binding of thiamine derivatives to ThiT, a thiamine-specific S-component. We designed and synthesized derivatives of thiamine that bind to ThiT with high affinity; this allowed us to evaluate the contribution of the functional groups to the binding affinity. We determined six crystal structures of ThiT in complex with our derivatives. The structure of the substrate-binding site in ThiT remains almost unchanged despite substantial differences in affinity. This work indicates that the structural organization of the binding site is robust and suggests that substrate release, which is required for transport, requires additional changes in conformation in ThiT that might be imposed by the ECF module.
Collapse
Affiliation(s)
- Lotteke J Y M Swier
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.rug.nl/research/membrane-enzymology/
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
ATP-binding cassette (ABC) transporters form a large superfamily of ATP-dependent protein complexes that mediate transport of a vast array of substrates across membranes. The 14 currently available structures of ABC transporters have greatly advanced insight into the transport mechanism and revealed a tremendous structural diversity. Whereas the domains that hydrolyze ATP are structurally related in all ABC transporters, the membrane-embedded domains, where the substrates are translocated, adopt four different unrelated folds. Here, we review the structural characteristics of ABC transporters and discuss the implications of this structural diversity for mechanistic diversity.
Collapse
Affiliation(s)
- Josy ter Beek
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | | | | |
Collapse
|
22
|
CFTR structure and cystic fibrosis. Int J Biochem Cell Biol 2014; 52:15-25. [PMID: 24534272 DOI: 10.1016/j.biocel.2014.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 12/31/2022]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is a member of the ATP-binding cassette family of membrane proteins. Although almost all members of this family are transporters, CFTR functions as a channel with specificity for anions, in particular chloride and bicarbonate. In this review we look at what is known about CFTR structure and function within the context of the ATP-binding cassette family. We also review current strategies aimed at obtaining the high resolution structure of the protein.
Collapse
|
23
|
Manzetti S, Zhang J, van der Spoel D. Thiamin Function, Metabolism, Uptake, and Transport. Biochemistry 2014; 53:821-35. [DOI: 10.1021/bi401618y] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sergio Manzetti
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
for Cell and Molecular Biology, University of Uppsala, Box 596, 751
24 Uppsala, Sweden
- Fjordforsk A.S., Fresvik 6896, Norway
| | - Jin Zhang
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
for Cell and Molecular Biology, University of Uppsala, Box 596, 751
24 Uppsala, Sweden
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - David van der Spoel
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
for Cell and Molecular Biology, University of Uppsala, Box 596, 751
24 Uppsala, Sweden
| |
Collapse
|
24
|
Structural and mechanistic insights into prokaryotic energy-coupling factor transporters. Nat Rev Microbiol 2013; 12:79-87. [PMID: 24362466 DOI: 10.1038/nrmicro3175] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Energy-coupling factor (ECF) transporters belong to the ATP-binding cassette (ABC)-transporter family and mediate the uptake of essential micronutrients in many prokaryotic species. Two crystal structures of bacterial ECF transporters have recently been obtained and suggest that transport involves an unprecedented re-orientation of a membrane protein in the lipid bilayer during catalysis. In this Progress article, I present the new structural insights, discuss a testable model for the transport mechanism and consider the more general implications of these findings for our understanding of membrane transporters.
Collapse
|
25
|
Song J, Ji C, Zhang JZH. Unveiling the gating mechanism of ECF transporter RibU. Sci Rep 2013; 3:3566. [PMID: 24356467 PMCID: PMC3868957 DOI: 10.1038/srep03566] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/04/2013] [Indexed: 11/11/2022] Open
Abstract
Energy-coupling factor (ECF) transporters are responsible for uptake of micronutrients in prokaryotes. The recently reported crystal structure of an ECF transporter RibU provided a foundation for understanding the structure and transport mechanism of ECF transporters. In the present study, molecular dynamics (MD) was carried out to study the conformational changes of the S component RibU upon binding by riboflavin. Our result and analysis revealed a critically important gating mechanism, in which part of loop5 (L5′) (eleven residues, missing in the crystal structure) between TM5 and TM6 is dynamically flexible and serves as a gate. Specifically, the L5′ opens a large cavity accessible to riboflavin from the extracellular space in Apo-RibU and closes the cavity upon riboflavin binding through hydrophobic packing with riboflavin. Thus, L5′is proposed to be the gate for riboflavin binding. In addition, steered molecular dynamics (SMD) simulation is employed to investigate the translocation dynamics of RibU during riboflavin transport. The simulation result does not show evidence that the S component alone can carry out the transport function. Since loop regions are very flexible and therefore could not be resolved by crystallography, their dynamics are hard to predict based on crystal structure alone.
Collapse
Affiliation(s)
- Jianing Song
- State Key Laboratory of Precision Spectroscopy, Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China
| | - Changge Ji
- 1] State Key Laboratory of Precision Spectroscopy, Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China [2] Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai 200062, China [3] NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China 200062
| | - John Z H Zhang
- 1] State Key Laboratory of Precision Spectroscopy, Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China [2] Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai 200062, China [3] NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China 200062
| |
Collapse
|
26
|
Zhang P. Structure and mechanism of energy-coupling factor transporters. Trends Microbiol 2013; 21:652-9. [DOI: 10.1016/j.tim.2013.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022]
|
27
|
Structural basis for a homodimeric ATPase subunit of an ECF transporter. Protein Cell 2013; 4:793-801. [PMID: 24104393 DOI: 10.1007/s13238-013-3915-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/09/2013] [Indexed: 01/25/2023] Open
Abstract
The transition metal cobalt, an essential cofactor for many enzymes in prokaryotes, is taken up by several specific transport systems. The CbiMNQO protein complex belongs to type-1 energy-coupling factor (ECF) transporters and is a widespread group of microbial cobalt transporters. CbiO is the ATPase subunit (A-component) of the cobalt transporting system in the gram-negative thermophilic bacterium Thermoanaerobacter tengcongensis. Here we report the crystal structure of a nucleotide-free CbiO at a resolution of 2.3 Å. CbiO contains an N-terminal canonical nucleotide-binding domain (NBD) and C-terminal helical domain. Structural and biochemical data show that CbiO forms a homodimer mediated by the NBD and the C-terminal domain. Interactions mainly via conserved hydrophobic amino acids between the two C-terminal domains result in formation of a four-helix bundle. Structural comparison with other ECF transporters suggests that non-conserved residues outside the T-component binding groove in the A component likely act as a specificity determinant for T components. Together, our data provide information on understanding of the structural organization and interaction of the CbiMNQO system.
Collapse
|