1
|
Al-Danakh A, Safi M, Jian Y, Yang L, Zhu X, Chen Q, Yang K, Wang S, Zhang J, Yang D. Aging-related biomarker discovery in the era of immune checkpoint inhibitors for cancer patients. Front Immunol 2024; 15:1348189. [PMID: 38590525 PMCID: PMC11000233 DOI: 10.3389/fimmu.2024.1348189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.
Collapse
Affiliation(s)
- Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Safi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Linlin Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xinqing Zhu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kangkang Yang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Surgery, Healinghands Clinic, Dalian, Liaoning, China
| |
Collapse
|
2
|
Zwolak A, Chan SR, Harvilla P, Mahady S, Armstrong AA, Luistro L, Tamot N, Yamada D, Derebe M, Pomerantz S, Chiu M, Ganesan R, Chowdhury P. A stable, engineered TL1A ligand co-stimulates T cells via specific binding to DR3. Sci Rep 2022; 12:20538. [PMID: 36446890 PMCID: PMC9709071 DOI: 10.1038/s41598-022-24984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
TL1A (TNFSF15) is a TNF superfamily ligand which can bind the TNFRSF member death receptor 3 (DR3) on T cells and the soluble decoy receptor DcR3. Engagement of DR3 on CD4+ or CD8+ effector T cells by TL1A induces downstream signaling, leading to proliferation and an increase in secretion of inflammatory cytokines. We designed a stable recombinant TL1A molecule that (1) displays high monodispersity and stability, (2) displays the ability to activate T cells in vitro and in vivo, and (3) lacks binding to DcR3 while retaining functional activity via DR3. Together these results suggest the TL1A ligand can be amenable to therapeutic development on its own or paired with a tumor-targeting moiety.
Collapse
Affiliation(s)
- Adam Zwolak
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Szeman Ruby Chan
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Paul Harvilla
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Sally Mahady
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Anthony A. Armstrong
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Leopoldo Luistro
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Ninkka Tamot
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Douglas Yamada
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Mehabaw Derebe
- grid.417993.10000 0001 2260 0793Merck Research Laboratories, Discovery Biologics, Protein Sciences, South San Francisco, CA USA
| | - Steven Pomerantz
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Mark Chiu
- Tavotek Biotherapeutics, Spring House, PA USA
| | - Rajkumar Ganesan
- grid.417886.40000 0001 0657 5612Immunotherapeutics, Amgen, South San Francisco, CA USA
| | - Partha Chowdhury
- grid.497530.c0000 0004 0389 4927Cell Engineering and Early Development, Janssen Research & Development, Spring House, PA USA
| |
Collapse
|
3
|
Ware CF, Croft M, Neil GA. Realigning the LIGHT signaling network to control dysregulated inflammation. J Exp Med 2022; 219:213236. [PMID: 35604387 PMCID: PMC9130030 DOI: 10.1084/jem.20220236] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Advances in understanding the physiologic functions of the tumor necrosis factor superfamily (TNFSF) of ligands, receptors, and signaling networks are providing deeper insight into pathogenesis of infectious and autoimmune diseases and cancer. LIGHT (TNFSF14) has emerged as an important modulator of critical innate and adaptive immune responses. LIGHT and its signaling receptors, herpesvirus entry mediator (TNFRSF14), and lymphotoxin β receptor, form an immune regulatory network with two co-receptors of herpesvirus entry mediator, checkpoint inhibitor B and T lymphocyte attenuator, and CD160. Deciphering the fundamental features of this network reveals new understanding to guide therapeutic development. Accumulating evidence from infectious diseases points to the dysregulation of the LIGHT network as a disease-driving mechanism in autoimmune and inflammatory reactions in barrier organs, including coronavirus disease 2019 pneumonia and inflammatory bowel diseases. Recent clinical results warrant further investigation of the LIGHT regulatory network and application of target-modifying therapeutics for disease intervention.
Collapse
Affiliation(s)
- Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA
| | | |
Collapse
|
4
|
Suo F, Zhou X, Setroikromo R, Quax WJ. Receptor Specificity Engineering of TNF Superfamily Ligands. Pharmaceutics 2022; 14:181. [PMID: 35057080 PMCID: PMC8781899 DOI: 10.3390/pharmaceutics14010181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF) ligand family has nine ligands that show promiscuity in binding multiple receptors. As different receptors transduce into diverse pathways, the study on the functional role of natural ligands is very complex. In this review, we discuss the TNF ligands engineering for receptor specificity and summarize the performance of the ligand variants in vivo and in vitro. Those variants have an increased binding affinity to specific receptors to enhance the cell signal conduction and have reduced side effects due to a lowered binding to untargeted receptors. Refining receptor specificity is a promising research strategy for improving the application of multi-receptor ligands. Further, the settled variants also provide experimental guidance for engineering receptor specificity on other proteins with multiple receptors.
Collapse
Affiliation(s)
- Fengzhi Suo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xinyu Zhou
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
5
|
Liu W, Maben Z, Wang C, Lindquist KC, Li M, Rayannavar V, Lopez Armenta I, Nager A, Pascua E, Dominik PK, Oyen D, Wang H, Roach RC, Allan CM, Mosyak L, Chaparro-Riggers J. Structural delineation and phase-dependent activation of the costimulatory CD27:CD70 complex. J Biol Chem 2021; 297:101102. [PMID: 34419446 PMCID: PMC8484739 DOI: 10.1016/j.jbc.2021.101102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
CD27 is a tumor necrosis factor (TNF) receptor, which stimulates lymphocytes and promotes their differentiation upon activation by TNF ligand CD70. Activation of the CD27 receptor provides a costimulatory signal to promote T cell, B cell, and NK cell activity to facilitate antitumor and anti-infection immunity. Aberrant increased and focused expression of CD70 on many tumor cells renders CD70 an attractive therapeutic target for direct tumor killing. However, despite their use as drug targets to treat cancers, the molecular basis and atomic details of CD27 and CD70 interaction remain elusive. Here we report the crystal structure of human CD27 in complex with human CD70. Analysis of our structure shows that CD70 adopts a classical TNF ligand homotrimeric assembly to engage CD27 receptors in a 3:3 stoichiometry. By combining structural and rational mutagenesis data with reported disease-correlated mutations, we identified the key amino acid residues of CD27 and CD70 that control this interaction. We also report increased potency for plate-bound CD70 constructs compared with solution-phase ligand in a functional activity to stimulate T-cells in vitro. These findings offer new mechanistic insight into this critical costimulatory interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hui Wang
- Pfizer, Inc, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
6
|
Yu X, James S, Felce JH, Kellermayer B, Johnston DA, Chan HTC, Penfold CA, Kim J, Inzhelevskaya T, Mockridge CI, Watanabe Y, Crispin M, French RR, Duriez PJ, Douglas LR, Glennie MJ, Cragg MS. TNF receptor agonists induce distinct receptor clusters to mediate differential agonistic activity. Commun Biol 2021; 4:772. [PMID: 34162985 PMCID: PMC8222242 DOI: 10.1038/s42003-021-02309-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
Monoclonal antibodies (mAb) and natural ligands targeting costimulatory tumor necrosis factor receptors (TNFR) exhibit a wide range of agonistic activities and antitumor responses. The mechanisms underlying these differential agonistic activities remain poorly understood. Here, we employ a panel of experimental and clinically-relevant molecules targeting human CD40, 4-1BB and OX40 to examine this issue. Confocal and STORM microscopy reveal that strongly agonistic reagents induce clusters characterized by small area and high receptor density. Using antibody pairs differing only in isotype we show that hIgG2 confers significantly more receptor clustering than hIgG1 across all three receptors, explaining its greater agonistic activity, with receptor clustering shielding the receptor-agonist complex from further molecular access. Nevertheless, discrete receptor clustering patterns are observed with different hIgG2 mAb, with a unique rod-shaped assembly observed with the most agonistic mAb. These findings dispel the notion that larger receptor clusters elicit greater agonism, and instead point to receptor density and subsequent super-structure as key determinants.
Collapse
Affiliation(s)
- Xiaojie Yu
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK.
| | - Sonya James
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | | | | | - David A Johnston
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - H T Claude Chan
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Christine A Penfold
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Jinny Kim
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Ruth R French
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Patrick J Duriez
- CRUK Protein Core Facility, University of Southampton Faculty of Medicine, Southampton, UK
| | - Leon R Douglas
- CRUK Protein Core Facility, University of Southampton Faculty of Medicine, Southampton, UK
| | - Martin J Glennie
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
7
|
Su Z, Wu Y. A Systematic Test of Receptor Binding Kinetics for Ligands in Tumor Necrosis Factor Superfamily by Computational Simulations. Int J Mol Sci 2020; 21:ijms21051778. [PMID: 32150842 PMCID: PMC7084274 DOI: 10.3390/ijms21051778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/29/2023] Open
Abstract
Ligands in the tumor necrosis factor (TNF) superfamily are one major class of cytokines that bind to their corresponding receptors in the tumor necrosis factor receptor (TNFR) superfamily and initiate multiple intracellular signaling pathways during inflammation, tissue homeostasis, and cell differentiation. Mutations in the genes that encode TNF ligands or TNFR receptors result in a large variety of diseases. The development of therapeutic treatment for these diseases can be greatly benefitted from the knowledge on binding properties of these ligand–receptor interactions. In order to complement the limitations in the current experimental methods that measure the binding constants of TNF/TNFR interactions, we developed a new simulation strategy to computationally estimate the association and dissociation between a ligand and its receptor. We systematically tested this strategy to a comprehensive dataset that contained structures of diverse complexes between TNF ligands and their corresponding receptors in the TNFR superfamily. We demonstrated that the binding stabilities inferred from our simulation results were compatible with existing experimental data. We further compared the binding kinetics of different TNF/TNFR systems, and explored their potential functional implication. We suggest that the transient binding between ligands and cell surface receptors leads into a dynamic nature of cross-membrane signal transduction, whereas the slow but strong binding of these ligands to the soluble decoy receptors is naturally designed to fulfill their functions as inhibitors of signal activation. Therefore, our computational approach serves as a useful addition to current experimental techniques for the quantitatively comparison of interactions across different members in the TNF and TNFR superfamily. It also provides a mechanistic understanding to the functions of TNF-associated cell signaling pathways.
Collapse
|
8
|
Su Z, Wu Y. A computational model for understanding the oligomerization mechanisms of TNF receptor superfamily. Comput Struct Biotechnol J 2020; 18:258-270. [PMID: 32021664 PMCID: PMC6994755 DOI: 10.1016/j.csbj.2019.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 01/07/2023] Open
Abstract
By recognizing members in the tumor necrosis factor (TNF) receptor superfamily, TNF ligand proteins function as extracellular cytokines to activate various signaling pathways involved in inflammation, proliferation, and apoptosis. Most ligands in TNF superfamily are trimeric and can simultaneously bind to three receptors on cell surfaces. It has been experimentally observed that the formation of these molecular complexes further triggers the oligomerization of TNF receptors, which in turn regulate the intracellular signaling processes by providing transient compartmentalization in the membrane proximal regions of cytoplasm. In order to decode the molecular mechanisms of oligomerization in TNF receptor superfamily, we developed a new computational method that can physically simulate the spatial-temporal process of binding between TNF ligands and their receptors. The simulations show that the TNF receptors can be organized into hexagonal oligomers. The formation of this spatial pattern is highly dependent not only on the molecular properties such as the affinities of trans and cis binding, but also on the cellular factors such as the concentration of TNF ligands in the extracellular area or the density of TNF receptors on cell surfaces. Moreover, our model suggests that if TNF receptors are pre-organized into dimers before ligand binding, these lateral interactions between receptor monomers can play a positive role in stabilizing the ligand-receptor interactions, as well as in regulating the kinetics of receptor oligomerization. Altogether, this method throws lights on the mechanisms of TNF ligand-receptor interactions in cellular environments.
Collapse
|
9
|
Shi W, Shao T, Li JY, Fan DD, Lin AF, Xiang LX, Shao JZ. BTLA-HVEM Checkpoint Axis Regulates Hepatic Homeostasis and Inflammation in a ConA-Induced Hepatitis Model in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2019; 203:2425-2442. [PMID: 31562209 DOI: 10.4049/jimmunol.1900458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
The BTLA-HVEM checkpoint axis plays extensive roles in immunomodulation and diseases, including cancer and autoimmune disorders. However, the functions of this checkpoint axis in hepatitis remain limited. In this study, we explored the regulatory role of the Btla-Hvem axis in a ConA-induced hepatitis model in zebrafish. Results showed that Btla and Hvem were differentially expressed on intrahepatic Cd8+ T cells and hepatocytes. Knockdown of Btla or Hvem significantly promoted hepatic inflammation. Btla was highly expressed in Cd8+ T cells in healthy liver but was downregulated in inflamed liver, as evidenced by a disparate proportion of Cd8+Btla+ and Cd8+Btla- T cells in individuals without or with ConA stimulation. Cd8+Btla+ T cells showed minimal cytotoxicity to hepatocytes, whereas Cd8+Btla- T cells were strongly reactive. The depletion of Cd8+Btla- T cells reduced hepatitis, whereas their transfer enhanced hepatic inflammation. These observations indicate that Btla endowed Cd8+Btla+ T cells with self-tolerance, thereby preventing them from attacking hepatocytes. Btla downregulation deprived this tolerization. Mechanistically, Btla-Hvem interaction contributed to Cd8+Btla+ T cell tolerization, which was impaired by Hvem knockdown but rescued by soluble Hvem protein administration. Notably, Light was markedly upregulated on Cd8+Btla- T cells, accompanied by the transition of Cd8+Btla+Light- to Cd8+Btla-Light+ T cells during hepatitis, which could be modulated by Cd4+ T cells. Light blockade attenuated hepatitis, thereby suggesting the positive role of Light in hepatic inflammation. These findings provide insights into a previously unrecognized Btla-Hvem-Light regulatory network in hepatic homeostasis and inflammation, thus adding a new potential therapeutic intervention for hepatitis.
Collapse
Affiliation(s)
- Wei Shi
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Tong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Jiang-Yuan Li
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Dong-Dong Fan
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Ai-Fu Lin
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Li-Xin Xiang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Jian-Zhong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
10
|
Zhu HF, Liu YP, Liu DL, Ma YD, Hu ZY, Wang XY, Gu CS, Zhong Y, Long T, Kan HP, Li ZG. Role of TGFβ3-Smads-Sp1 axis in DcR3-mediated immune escape of hepatocellular carcinoma. Oncogenesis 2019; 8:43. [PMID: 31409774 PMCID: PMC6692328 DOI: 10.1038/s41389-019-0152-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/04/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of tumour-associated mortality worldwide, but no significant improvement in treating HCC has been reported with currently available systemic therapies. Immunotherapy represents a new frontier in tumour therapy. Therefore, the immunobiology of hepatocarcinoma has been under intensive investigation. Decoy receptor 3 (DcR3), a member of the tumour necrosis factor receptor (TNFR) superfamily, is an immune suppressor associated with tumourigenesis and cancer metastasis. However, little is known about the role of DcR3 in the immunobiology of hepatocarcinoma. In this study, we found that overexpression of DcR3 in HCC is mediated by the TGFβ3-Smad-Sp1 signalling pathway, which directly targets DcR3 promoter regions. Moreover, overexpression of DcR3 in HCC tissues is associated with tumour invasion and metastasis and significantly promotes the differentiation and secretion of Th2 and Treg cells while inhibiting the differentiation and secretion of Th1 cells. Conversely, knockdown of DcR3 expression in HCC significantly restored the immunity of CD4+ T cells. Inhibition of DcR3 expression may provide a novel immunotherapeutic approach to restoring immunity in HCC patients.
Collapse
Affiliation(s)
- Hui-Fang Zhu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1023 South Shatai Rd, Baiyun District, 510515, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, 453003, Xinxiang, Henan, China
| | - Yan-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1023 South Shatai Rd, Baiyun District, 510515, Guangzhou, Guangdong, China
| | - Ding-Li Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, 1023 South Shatai Road, Baiyun District, 510515, Guangzhou, Guangdong, China
| | - Yi-Dan Ma
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1023 South Shatai Rd, Baiyun District, 510515, Guangzhou, Guangdong, China
| | - Zhi-Yan Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1023 South Shatai Rd, Baiyun District, 510515, Guangzhou, Guangdong, China
| | - Xiao-Yan Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1023 South Shatai Rd, Baiyun District, 510515, Guangzhou, Guangdong, China
| | - Chuan-Sha Gu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1023 South Shatai Rd, Baiyun District, 510515, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, 453003, Xinxiang, Henan, China
| | - Yan Zhong
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1023 South Shatai Rd, Baiyun District, 510515, Guangzhou, Guangdong, China
| | - Ting Long
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1023 South Shatai Rd, Baiyun District, 510515, Guangzhou, Guangdong, China
| | - He-Ping Kan
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, 1023 South Shatai Rd, Baiyun District, 510515, Guangzhou, Guangdong, China.
| | - Zu-Guo Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1023 South Shatai Rd, Baiyun District, 510515, Guangzhou, Guangdong, China. .,Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xin-hu Road, Bao'an District, 518100, Shenzhen, Guangdong, China. .,Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center, Shenzhen Hospital, Southern Medical University, 1333 Xin-hu Road, Bao'an District, 518100, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Liu W, Garrett SC, Fedorov EV, Ramagopal UA, Garforth SJ, Bonanno JB, Almo SC. Structural Basis of CD160:HVEM Recognition. Structure 2019; 27:1286-1295.e4. [PMID: 31230945 PMCID: PMC7477951 DOI: 10.1016/j.str.2019.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/18/2019] [Accepted: 05/22/2019] [Indexed: 01/07/2023]
Abstract
CD160 is a signaling molecule that interacts with herpes virus entry mediator (HVEM) and contributes to a wide range of immune responses, including T cell inhibition, natural killer cell activation, and mucosal immunity. GPI-anchored and transmembrane isoforms of CD160 share the same ectodomain responsible for HVEM engagement, which leads to bidirectional signaling. Despite the importance of the CD160:HVEM signaling axis and its therapeutic relevance, the structural and mechanistic basis underlying CD160-HVEM engagement has not been described. We report the crystal structures of the human CD160 extracellular domain and its complex with human HVEM. CD160 adopts a unique variation of the immunoglobulin fold and exists as a monomer in solution. The CD160:HVEM assembly exhibits a 1:1 stoichiometry and a binding interface similar to that observed in the BTLA:HVEM complex. Our work reveals the chemical and physical determinants underlying CD160:HVEM recognition and initiation of associated signaling processes.
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Present address: Pfizer Inc., 230 East Grand Avenue. South San Francisco, CA 94080, USA
| | - Sarah C. Garrett
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Elena V. Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Udupi A. Ramagopal
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Present address: Poomaprajna Institute of Scientific Research, #4, 16th Cross, Sadashivanagar, Bangalore 560064, India
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Lead Contact,Correspondence:
| |
Collapse
|
12
|
Lin S, Wu B, Lin Y, Wang M, Zhu Y, Jiang J, Zhang L, Lin J. Expression and Clinical Significance of Decoy Receptor 3 in Acute-on-Chronic Liver Failure. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9145736. [PMID: 31317042 PMCID: PMC6604490 DOI: 10.1155/2019/9145736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
AIMS To explore the expression level and clinical significance of decoy receptor 3 (DcR3) in patients with acute-on-chronic liver failure (ACLF). METHODS Serum DcR3 levels were measured by enzyme-linked immunosorbent assay (ELISA) in 76 patients with ACLF and 41 non-ACLF patients with chronic liver disease. Blood routine and liver functions were accessed for their correlations with DcR3. RESULTS Serum DcR3 in ACLF patients was significantly higher than that in non-ACLF patients. It was positively correlated with neutrophilic granulocyte, aspartate aminotransferase, prothrombin time, and international standardized ratio, but negatively correlated with platelet and serum albumin. At the early stage, the level of DcR3 was not significantly different between the survival and nonsurvival group of ACLF. However, at the late stage, DcR3 increased in nonsurvival and gradually decreased in survivals. The baseline DcR3 could not sufficiently predict the outcome of ACLF, while the change of DcR3 within the first week displayed a better predictive value than model for end-stage liver disease (MELD) score. CONCLUSIONS DcR3 was highly expressed in patients with ACLF and correlated with several clinical indices. Dynamic change of DcR3 might predict the prognosis of ACLF.
Collapse
Affiliation(s)
- Su Lin
- Liver Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Bing Wu
- Fujian Key Lab of Individualized Active Immunotherapy and Key Lab of Radiation Biology of Fujian Province Universities, Fuzhou 350005, China
| | - Yehong Lin
- Liver Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Mingfang Wang
- Liver Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Yueyong Zhu
- Liver Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Jiaji Jiang
- Liver Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Lurong Zhang
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
- Lab of Radiation Biology, Fujian Provincial Tumor Hospital, Fuzhou 350006, China
| | - Jianhua Lin
- Fujian Key Lab of Individualized Active Immunotherapy and Key Lab of Radiation Biology of Fujian Province Universities, Fuzhou 350005, China
| |
Collapse
|
13
|
Abstract
Somatic mutations in cancer cells may influence tumor growth, survival, or immune interactions in their microenvironment. The tumor necrosis factor receptor family member HVEM (TNFRSF14) is frequently mutated in cancers and has been attributed a tumor suppressive role in some cancer contexts. HVEM functions both as a ligand for the lymphocyte checkpoint proteins BTLA and CD160, and as a receptor that activates NF-κB signaling pathways in response to BTLA and CD160 and the TNF ligands LIGHT and LTα. BTLA functions to inhibit lymphocyte activation, but has also been ascribed a role in stimulating cell survival. CD160 functions to co-stimulate lymphocyte function, but has also been shown to activate inhibitory signaling in CD4+ T cells. Thus, the role of HVEM within diverse cancers and in regulating the immune responses to these tumors is likely context specific. Additionally, development of therapeutics that target proteins within this network of interacting proteins will require a deeper understanding of how these proteins function in a cancer-specific manner. However, the prominent role of the HVEM network in anti-cancer immune responses indicates a promising area for drug development.
Collapse
|
14
|
Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab. Nat Commun 2018; 9:4679. [PMID: 30410017 PMCID: PMC6224509 DOI: 10.1038/s41467-018-07136-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
4-1BB (CD137, TNFRSF9) is an inducible costimulatory receptor expressed on activated T cells. Clinical trials of two agonist antibodies, utomilumab (PF-05082566) and urelumab (BMS-663513), are ongoing in multiple cancer indications, and both antibodies demonstrate distinct activities in the clinic. To understand these differences, we solved structures of the human 4-1BB/4-1BBL complex, the 4-1BBL trimer alone, and 4-1BB bound to utomilumab or urelumab. The 4-1BB/4-1BBL complex displays a unique interaction between receptor and ligand when compared with other TNF family members. Furthermore, our ligand-only structure differs from previously published data. Utomilumab, a ligand-blocking antibody, binds 4-1BB between CRDs 3 and 4. In contrast, urelumab binds 4-1BB CRD-1, away from the ligand binding site. Finally, cell-based assays demonstrate utomilumab is a milder agonist than urelumab. Collectively, our data provide a deeper understanding of the 4-1BB signaling complex, providing a template for future development of next generation 4-1BB targeted biologics.
Collapse
|
15
|
Gilbreth RN, Oganesyan VY, Amdouni H, Novarra S, Grinberg L, Barnes A, Baca M. Crystal structure of the human 4-1BB/4-1BBL complex. J Biol Chem 2018; 293:9880-9891. [PMID: 29720399 DOI: 10.1074/jbc.ra118.002803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 11/06/2022] Open
Abstract
4-1BBL is a member of the tumor necrosis factor (TNF) superfamily and is the ligand for the TNFR superfamily receptor, 4-1BB. 4-1BB plays an immunomodulatory role in T cells and NK cells, and agonists of this receptor have garnered strong attention as potential immunotherapy agents. Broadly speaking, the structural features of TNF superfamily members, their receptors, and ligand-receptor complexes are similar. However, a published crystal structure of human 4-1BBL suggests that it may be unique in this regard, exhibiting a three-bladed propeller-like trimer assembly that is distinctly different from that observed in other family members. This unusual structure also suggests that the human 4-1BB/4-1BBL complex may be structurally unique within the TNF/TNFR superfamily, but to date no structural data have been reported. Here we report the crystal structure of the human 4-1BB/4-1BBL complex at 2.4-Å resolution. In this structure, 4-1BBL does not adopt the unusual trimer assembly previously reported, but instead forms a canonical bell-shaped trimer typical of other TNF superfamily members. The structure of 4-1BB is also largely canonical as is the 4-1BB/4-1BBL complex. Mutational data support the 4-1BBL structure reported here as being biologically relevant, suggesting that the previously reported structure is not. Together, the data presented here offer insight into structure/function relationships in the 4-1BB/4-1BBL system and improve our structural understanding of the TNF/TNFR superfamily more broadly.
Collapse
Affiliation(s)
- Ryan N Gilbreth
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Vaheh Y Oganesyan
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Hamza Amdouni
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Shabazz Novarra
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Luba Grinberg
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Arnita Barnes
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Manuel Baca
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| |
Collapse
|
16
|
Xu YC, Cui J, Zhang LJ, Zhang DX, Xing BC, Huang XWY, Wu JX, Liang CJ, Li GM. Anti-apoptosis Effect of Decoy Receptor 3 in Cholangiocarcinoma Cell Line TFK-1. Chin Med J (Engl) 2018; 131:82-87. [PMID: 29271385 PMCID: PMC5754963 DOI: 10.4103/0366-6999.221271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Decoy receptor 3 (DcR3) is a protein with anti-apoptotic effect that belongs to the tumor necrosis factor receptor superfamily. DcR3 is highly expressed in a variety of malignant tumors including cholangiocarcinoma and its expression was found to be related to the clinical stage, the invasion, and the metastasis of the tumor. This in vitro study aimed to investigate the effect of downregulated expression of DcR3 on cell viability, cell apoptosis, and cell cycle in cholangiocarcinoma cell line TFK-1. Methods: Three different cell lines were cultured: human cholangiocarcinoma TFK-1, human biliary epithelial carcinoma HuCCT-1, and human cholangiocarcinoma RBE. The cholangiocarcinoma cell line with the highest expression of DcR3 was selected for further investigation. The expression of DcR3 was silenced/knocked down by transfection with DcR3-siRNA in the selected cell line. Various biological phenotype parameters such as cell viability, apoptosis, and cell cycle were observed. Results: The mRNA and protein levels of DcR3 were measured in the three cell lines, and TFK-1 was selected. After the treatment with DcR3-siRNA for 48 h, DcR3 mRNA and protein expression in the treatment group were 38.45% (P < 0.01) and 48.03% (P < 0.05) of that of the control, respectively. It was found that the cell viability decreased to 61.87% of the control group (P < 0.01) after the downregulation of DcR3 in cholangiocarcinoma cell line TFK-1 by transfection with DcR3-siRNA, while the percentage of apoptotic cells was 2.98 times as compared with the control group (P < 0.05). Compared with the control group the ratio of G0/G1 increased, and the ratio of G2/M decreased in the treatment group. However, the differences were not statistically significant. Conclusions: The effect of DcR3 on the growth and apoptosis of cholangiocarcinoma has been demonstrated. DcR3 is not only a predictive marker for malignant tumor but it is also likely to be a potential target for cancer gene therapy. Further studies should focus on exploring the binding ligand of DcR3, the signaling pathway involved, and the molecular mechanism for the regulation of DcR3 expression in cholangiocarcinoma.
Collapse
Affiliation(s)
- Ying-Chen Xu
- Department of Hepatobiliary Surgery, Surgical Laboratory, Beijing Tong Ren Hospital, Capital Medical University, Beijing 100730, China
| | - Jing Cui
- Department of Pathology, Capital Medical University, Beijing 100069, China
| | - Li-Jun Zhang
- Department of Hepatobiliary Surgery, Surgical Laboratory, Beijing Tong Ren Hospital, Capital Medical University, Beijing 100730, China
| | - Dong-Xin Zhang
- Department of Hepatobiliary Surgery, Surgical Laboratory, Beijing Tong Ren Hospital, Capital Medical University, Beijing 100730, China
| | - Bing-Chen Xing
- Department of Hepatobiliary Surgery, Surgical Laboratory, Beijing Tong Ren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiong-Wei-Ye Huang
- Department of Pathology, Capital Medical University, Beijing 100069, China
| | - Ji-Xiang Wu
- Department of Hepatobiliary Surgery, Surgical Laboratory, Beijing Tong Ren Hospital, Capital Medical University, Beijing 100730, China
| | - Chao-Jie Liang
- Department of Hepatobiliary Surgery, Surgical Laboratory, Beijing Tong Ren Hospital, Capital Medical University, Beijing 100730, China
| | - Guang-Ming Li
- Department of Hepatobiliary Surgery, Surgical Laboratory, Beijing Tong Ren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
17
|
Vanamee ÉS, Faustman DL. Structural principles of tumor necrosis factor superfamily signaling. Sci Signal 2018; 11:11/511/eaao4910. [PMID: 29295955 DOI: 10.1126/scisignal.aao4910] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tumor necrosis factor (TNF) ligand and receptor superfamilies play an important role in cell proliferation, survival, and death. Stimulating or inhibiting TNF superfamily signaling pathways is expected to have therapeutic benefit for patients with various diseases, including cancer, autoimmunity, and infectious diseases. We review our current understanding of the structure and geometry of TNF superfamily ligands, receptors, and their interactions. A trimeric ligand and three receptors, each binding at the interface of two ligand monomers, form the basic unit of signaling. Clustering of multiple receptor subunits is necessary for efficient signaling. Current reports suggest that the receptors are prearranged on the cell surface in a "nonsignaling," resting state in a large hexagonal structure of antiparallel dimers. Receptor activation requires ligand binding, and cross-linking antibodies can stabilize the receptors, thereby maintaining the active, signaling state. On the other hand, an antagonist antibody that locks receptor arrangement in antiparallel dimers effectively blocks signaling. This model may aid the design of more effective TNF signaling-targeted therapies.
Collapse
Affiliation(s)
- Éva S Vanamee
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Denise L Faustman
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
18
|
Ward-Kavanagh LK, Lin WW, Šedý JR, Ware CF. The TNF Receptor Superfamily in Co-stimulating and Co-inhibitory Responses. Immunity 2017; 44:1005-19. [PMID: 27192566 DOI: 10.1016/j.immuni.2016.04.019] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 02/08/2023]
Abstract
Cytokines related to tumor necrosis factor (TNF) provide a communication network essential for coordinating multiple cell types into an effective host defense system against pathogens and malignant cells. The pathways controlled by the TNF superfamily differentiate both innate and adaptive immune cells and modulate stromal cells into microenvironments conducive to host defenses. Members of the TNF receptor superfamily activate diverse cellular functions from the production of type 1 interferons to the modulation of survival of antigen-activated T cells. Here, we focus attention on the subset of TNF superfamily receptors encoded in the immune response locus in chromosomal region 1p36. Recent studies have revealed that these receptors use diverse mechanisms to either co-stimulate or restrict immune responses. Translation of the fundamental mechanisms of TNF superfamily is leading to the design of therapeutics that can alter pathogenic processes in several autoimmune diseases or promote immunity to tumors.
Collapse
Affiliation(s)
- Lindsay K Ward-Kavanagh
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wai Wai Lin
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John R Šedý
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
19
|
Liu W, Ramagopal U, Cheng H, Bonanno JB, Toro R, Bhosle R, Zhan C, Almo SC. Crystal Structure of the Complex of Human FasL and Its Decoy Receptor DcR3. Structure 2017; 24:2016-2023. [PMID: 27806260 DOI: 10.1016/j.str.2016.09.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/31/2016] [Accepted: 09/30/2016] [Indexed: 01/27/2023]
Abstract
The apoptotic effect of FasL:Fas signaling is disrupted by DcR3, a unique secreted member of the tumor necrosis factor receptor superfamily, which also binds and neutralizes TL1A and LIGHT. DcR3 is highly elevated in patients with various tumors and contributes to mechanisms by which tumor cells to evade host immune surveillance. Here we report the crystal structure of FasL in complex with DcR3. Comparison of FasL:DcR3 structure with our earlier TL1A:DcR3 and LIGHT:DcR3 structures supports a paradigm involving the recognition of invariant main-chain and conserved side-chain functionalities, which is responsible for the recognition of multiple TNF ligands exhibited by DcR3. The FasL:DcR3 structure also provides insight into the FasL:Fas recognition surface. We demonstrate that the ability of recombinant FasL to induce Jurkat cell apoptosis is significantly enhanced by native glycosylation or by structure-inspired mutations, both of which result in reduced tendency to aggregate. All of these activities are efficiently inhibited by recombinant DcR3.
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Udupi Ramagopal
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Huiyong Cheng
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Rafael Toro
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Rahul Bhosle
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Chenyang Zhan
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
20
|
Mechanisms of immunomodulation by mammalian and viral decoy receptors: insights from structures. Nat Rev Immunol 2016; 17:112-129. [PMID: 28028310 DOI: 10.1038/nri.2016.134] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immune responses are regulated by effector cytokines and chemokines that signal through cell surface receptors. Mammalian decoy receptors - which are typically soluble or inactive versions of cell surface receptors or soluble protein modules termed binding proteins - modulate and antagonize signalling by canonical effector-receptor complexes. Viruses have developed a diverse array of molecular decoys to evade host immune responses; these include viral homologues of host cytokines, chemokines and chemokine receptors; variants of host receptors with new functions; and novel decoy receptors that do not have host counterparts. Over the past decade, the number of known mammalian and viral decoy receptors has increased considerably, yet a comprehensive curation of the corresponding structure-mechanism relationships has not been carried out. In this Review, we provide a comprehensive resource on this topic with a view to better understanding the roles and evolutionary relationships of mammalian and viral decoy receptors, and the opportunities for leveraging their therapeutic potential.
Collapse
|
21
|
Fellermeier S, Beha N, Meyer JE, Ring S, Bader S, Kontermann RE, Müller D. Advancing targeted co-stimulation with antibody-fusion proteins by introducing TNF superfamily members in a single-chain format. Oncoimmunology 2016; 5:e1238540. [PMID: 27999756 DOI: 10.1080/2162402x.2016.1238540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 01/12/2023] Open
Abstract
Co-stimulation via receptors of the tumor necrosis factor superfamily (TNFSF) emerges as promising strategy to support antitumor immune responses. Targeted strategies with antibody-fusion proteins composed of a tumor-directed antibody part and the extracellular domain of a co-stimulatory ligand of the TNFSF constitute an attractive option to focus the co-stimulatory activity to the tumor site. Since TNFSF members intrinsically form functional units of non-covalently linked homotrimers, the protein engineering of suitable antibody-fusion proteins is challenging. Aiming for molecules of simple and stable configuration, we used TNFSF ligands in a single-chain format (scTNFSF), i.e., three units of the ectodomain connected by polypeptide linkers, folding into an intramolecular trimer. By fusing tumor-directed scFv antibody fragments directed against EpCAM or FAP to co-stimulatory scTNFSF molecules (sc4-1BBL, scOX40L, scGITRL or scLIGHT), a set of monomeric scFv-scTNFSF fusion proteins was generated. In comparison to the scFv-TNFSF format, defined by intermolecular homotrimerization via the TNFSF part, scFv-scTNFSF showed equal or enhanced co-stimulatory activity despite reduced avidity in antibody binding. In addition, enhanced serum stability and improved bioavailability in mice were observed. We show that the scFv-scTNFSF format can be applied to various members of the TNFSF, presenting targeting-dependent co-stimulatory activity. Hence, this format exhibits favorable properties that make it a promising choice for further therapeutic fusion protein development.
Collapse
Affiliation(s)
- Sina Fellermeier
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | - Nadine Beha
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | - Jan-Erik Meyer
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | - Sarah Ring
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | - Stefan Bader
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| |
Collapse
|
22
|
Fu Z, Chen S, Liu S, Han S, Gao X, Li D, Li D. DcR3 gene polymorphisms are associated with sporadic breast infiltrating ductal carcinoma in Northeast Chinese women. Oncotarget 2016; 7:57970-57977. [PMID: 27517320 PMCID: PMC5295404 DOI: 10.18632/oncotarget.11153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 07/26/2016] [Indexed: 01/31/2023] Open
Abstract
Decoy Receptor 3 (DcR3), also called TNFRSF6β, is a member of the tumor necrosis factor receptor superfamily and is a soluble receptor for FasL. DcR3 is overexpressed in cancers and contributes to tumorigenesis through immune suppression and promotion of angiogenesis. We found that DcR3 is overexpressed in breast infiltrating ductal carcinoma (IDC) cells as compared with normal controls. We also conducted a case-control study analyzing associations of DcR3 polymorphisms with breast IDC risk. Subjects included 531 females with breast IDC and 592 age-matched healthy controls. Four DcR3 single nucleotide polymorphism loci with minor frequencies of more than 5% (rs3208008, rs41309931, rs2297441 and rs1291207) were genotyped using polymerase chain reaction restriction fragment length polymorphism and sequencing. Our results revealed significant differences in rs41309931genotypes and alleles (P < 0.01). Based on Haploview software analysis, the haplotype block Ars3208008 Grs41309931 Grs2297441 Ars1291207 exhibited the highest frequency, but, haplotype blocks Ars3208008 Trs41309931 Grs2297441 Ars1291207 and Crs3208008 Grs41309931 Grs2297441 Ars1291207 were associated with breast IDC risk. This study also detected associations between DcR3 gene polymorphisms and the clinicopathological features of breast IDC, including lymph node metastasis and C-erbB2, P53, estrogen receptor and progesterone receptor status. These data indicate that DcR3 gene polymorphisms are associated with sporadic breast IDC risk in Northeast Chinese females.
Collapse
Affiliation(s)
- Zhenkun Fu
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University and Heilongjiang Academy of Medical Science, 150081 Harbin, China
| | - Shuang Chen
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University and Heilongjiang Academy of Medical Science, 150081 Harbin, China.,Department of Immunology, Harbin Medical University and Heilongjiang Academy of Medical Science, 150081 Harbin, China
| | - Shengwei Liu
- Department of Immunology, Harbin Medical University and Heilongjiang Academy of Medical Science, 150081 Harbin, China
| | - Shaoli Han
- Department of Immunology, Harbin Medical University and Heilongjiang Academy of Medical Science, 150081 Harbin, China
| | - Xiang Gao
- Department of Immunology, Harbin Medical University and Heilongjiang Academy of Medical Science, 150081 Harbin, China
| | - Dalin Li
- Department of Breast Surgery, The Third Affiliated Hospital of Harbin Medical University, 150081 Harbin, China
| | - Dianjun Li
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University and Heilongjiang Academy of Medical Science, 150081 Harbin, China.,Department of Immunology, Harbin Medical University and Heilongjiang Academy of Medical Science, 150081 Harbin, China
| |
Collapse
|
23
|
Comparative genomic analysis of eutherian tumor necrosis factor ligand genes. Immunogenetics 2015; 68:125-32. [PMID: 26646413 DOI: 10.1007/s00251-015-0887-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
Abstract
The present analysis made attempts to resolve discrepancies in descriptions of eutherian tumor necrosis factor ligand genes implicated in cell signalling pathways, as well as in major physiological and pathological processes. Among 455 potential coding sequences, the eutherian comparative genomic analysis protocol annotated 211 complete coding sequences using public genomic sequence assemblies. The most comprehensive third party data gene data set first described 8 superclusters of eutherian tumor necrosis factor ligand genes, including 18 major gene clusters. The integrated gene annotations, phylogenetic analysis, and protein molecular evolution analysis proposed new classification and nomenclature of eutherian tumor necrosis factor ligand genes, as new framework of future experiments.
Collapse
|
24
|
Ramamurthy V, Yamniuk AP, Lawrence EJ, Yong W, Schneeweis LA, Cheng L, Murdock M, Corbett MJ, Doyle ML, Sheriff S. The structure of the death receptor 4-TNF-related apoptosis-inducing ligand (DR4-TRAIL) complex. Acta Crystallogr F Struct Biol Commun 2015; 71:1273-81. [PMID: 26457518 PMCID: PMC4601591 DOI: 10.1107/s2053230x15016416] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/02/2015] [Indexed: 12/28/2022] Open
Abstract
The structure of death receptor 4 (DR4) in complex with TNF-related apoptosis-inducing ligand (TRAIL) has been determined at 3 Å resolution and compared with those of previously determined DR5-TRAIL complexes. Consistent with the high sequence similarity between DR4 and DR5, the overall arrangement of the DR4-TRAIL complex does not differ substantially from that of the DR5-TRAIL complex. However, subtle differences are apparent. In addition, solution interaction studies were carried out that show differences in the thermodynamics of binding DR4 or DR5 with TRAIL.
Collapse
Affiliation(s)
- Vidhyashankar Ramamurthy
- Molecular Structure and Design, Bristol-Myers Squibb R&D, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Aaron P. Yamniuk
- Protein Science, Bristol-Myers Squibb R&D, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Eric J. Lawrence
- Protein Science, Bristol-Myers Squibb R&D, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Wei Yong
- Molecular Structure and Design, Bristol-Myers Squibb R&D, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Lumelle A. Schneeweis
- Protein Science, Bristol-Myers Squibb R&D, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Lin Cheng
- Protein Science, Bristol-Myers Squibb R&D, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Melissa Murdock
- Protein Science, Bristol-Myers Squibb R&D, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Martin J. Corbett
- Protein Science, Bristol-Myers Squibb R&D, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Michael L. Doyle
- Protein Science, Bristol-Myers Squibb R&D, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Steven Sheriff
- Molecular Structure and Design, Bristol-Myers Squibb R&D, PO Box 4000, Princeton, NJ 08543-4000, USA
| |
Collapse
|
25
|
Wajant H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ 2015; 22:1727-41. [PMID: 26292758 PMCID: PMC4648319 DOI: 10.1038/cdd.2015.109] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022] Open
Abstract
From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting antibodies.
Collapse
Affiliation(s)
- H Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Liu W, Vigdorovich V, Zhan C, Patskovsky Y, Bonanno JB, Nathenson SG, Almo SC. Increased Heterologous Protein Expression in Drosophila S2 Cells for Massive Production of Immune Ligands/Receptors and Structural Analysis of Human HVEM. Mol Biotechnol 2015. [DOI: 10.1007/s12033-015-9881-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Whalen DM, Hymowitz SG. Shining LIGHT on functional promiscuity in the TNF and TNFR superfamilies. Structure 2015; 22:1221-1222. [PMID: 25185824 DOI: 10.1016/j.str.2014.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this issue of Structure, Liu and colleagues report the structure of the TNF superfamily member LIGHT bound to decoy receptor 3 (DcR3). Both LIGHT and DcR3 interact with multiple binding partners. The authors identify a conserved interaction important for affinity as well as additional interactions that can be targeted to introduce selectivity.
Collapse
Affiliation(s)
- Daniel M Whalen
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Sarah G Hymowitz
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|