1
|
Aleksashin NA, Langeberg CJ, Shelke RR, Yin T, Cate JHD. RNA elements required for the high efficiency of West Nile Virus-induced ribosomal frameshifting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618579. [PMID: 39464146 PMCID: PMC11507841 DOI: 10.1101/2024.10.16.618579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
West Nile Virus (WNV), a member of the Flaviviridae family, requires programmed -1 ribosomal frameshifting (PRF) for translation of the viral genome. The efficiency of WNV frameshifting is among the highest observed to date. Despite structural similarities to frameshifting sites in other viruses, it remains unclear why WNV exhibits such a high frameshifting efficiency. Here we employed dual-luciferase reporter assays in multiple human cell lines to probe the RNA requirements for highly efficient frameshifting by the WNV genome. We find that both the sequence and structure of a predicted RNA pseudoknot downstream of the slippery sequence-the codons in the genome on which frameshifting occurs-are required for efficient frameshifting. We also show that multiple proposed RNA secondary structures downstream of the slippery sequence are inconsistent with efficient frameshifting. We mapped the most favorable distance between the slippery site and the pseudoknot essential for optimal frameshifting, and found the base of the pseudoknot structure likely is unfolded prior to frameshifting. Finally, we find that many mutations in the WNV slippery sequence allow efficient frameshifting, but often result in aberrant shifting into other reading frames. Mutations in the slippery sequence also support a model in which frameshifting occurs concurrent with or after translocation of the mRNA and tRNA on the ribosome. These results provide a comprehensive analysis of the molecular determinants of WNV-programmed ribosomal frameshifting and provide a foundation for the development of new antiviral strategies targeting viral gene expression.
Collapse
|
2
|
Mattingly JM, Nguyen HA, Roy B, Fredrick K, Dunham CM. Structural analysis of noncanonical translation initiation complexes. J Biol Chem 2024; 300:107743. [PMID: 39222680 PMCID: PMC11497404 DOI: 10.1016/j.jbc.2024.107743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G (called tRNAfMet M1) reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between the gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of Escherichia coli 70S initiation complexes containing the fMet-tRNAfMet M1 variant paired to the noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact the start codon selection.
Collapse
Affiliation(s)
- Jacob M Mattingly
- Department of Chemistry, Emory University, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Ha An Nguyen
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Bappaditya Roy
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Kurt Fredrick
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
3
|
Fedorova AD, Kiniry SJ, Andreev DE, Mudge JM, Baranov PV. Thousands of human non-AUG extended proteoforms lack evidence of evolutionary selection among mammals. Nat Commun 2022; 13:7910. [PMID: 36564405 PMCID: PMC9789052 DOI: 10.1038/s41467-022-35595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The synthesis of most proteins begins at AUG codons, yet a small number of non-AUG initiated proteoforms are also known. Here we analyse a large number of publicly available Ribo-seq datasets to identify novel, previously uncharacterised non-AUG proteoforms using Trips-Viz implementation of a novel algorithm for detecting translated ORFs. In parallel we analyse genomic alignment of 120 mammals to identify evidence of protein coding evolution in sequences encoding potential extensions. Unexpectedly we find that the number of non-AUG proteoforms identified with ribosome profiling data greatly exceeds those with strong phylogenetic support suggesting their recent evolution. Our study argues that the protein coding potential of human genome greatly exceeds that detectable through comparative genomics and exposes the existence of multiple proteins encoded by the same genomic loci.
Collapse
Affiliation(s)
- Alla D Fedorova
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
- SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork, Ireland.
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Dmitry E Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
4
|
Singh J, Raina R, Vinothkumar KR, Anand R. Decoding the Mechanism of Specific RNA Targeting by Ribosomal Methyltransferases. ACS Chem Biol 2022; 17:829-839. [PMID: 35316014 DOI: 10.1021/acschembio.1c00732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methylation of specific nucleotides is integral for ribosomal biogenesis and also serves as a common mechanism to confer antibiotic resistance by pathogenic bacteria. Here, by determining the high-resolution structure of the 30S-KsgA complex by cryo-electron microscopy, a state was captured, where KsgA juxtaposes between helices h44 and h45 of the 30S ribosome, separating them, thereby enabling remodeling of the surrounded rRNA and allowing the cognate site to enter the methylation pocket. With the structure as a guide, several mutant versions of the ribosomes, where interacting bases in the catalytic helix h45 and surrounding helices h44, h24, and h27, were mutated and evaluated for their methylation efficiency revealing factors that direct the enzyme to its cognate site with high fidelity. The biochemical studies show that the three-dimensional environment of the ribosome enables the interaction of select loop regions in KsgA with the ribosome helices paramount to maintain selectivity.
Collapse
Affiliation(s)
- Juhi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Rahul Raina
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Kutti R. Vinothkumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
- DBT-Wellcome Trust India Alliance Senior Fellow, Mumbai400076, India
| |
Collapse
|
5
|
Carbone CE, Demo G, Madireddy R, Svidritskiy E, Korostelev AA. ArfB can displace mRNA to rescue stalled ribosomes. Nat Commun 2020; 11:5552. [PMID: 33144582 PMCID: PMC7641280 DOI: 10.1038/s41467-020-19370-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal α-helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 Å and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths.
Collapse
Affiliation(s)
- Christine E Carbone
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
| | - Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Rohini Madireddy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
- Medicago Inc., 7 Triangle drive, Durham, NC, 27713, USA
| | - Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States.
- Sanofi, 49 New York Ave, Suite 3660, Framingham, MA, 01701, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States.
| |
Collapse
|
6
|
Cao X, Slavoff SA. Non-AUG start codons: Expanding and regulating the small and alternative ORFeome. Exp Cell Res 2020; 391:111973. [PMID: 32209305 DOI: 10.1016/j.yexcr.2020.111973] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 01/17/2023]
Abstract
Recent ribosome profiling and proteomic studies have revealed the presence of thousands of novel coding sequences, referred to as small open reading frames (sORFs), in prokaryotic and eukaryotic genomes. These genes have defied discovery via traditional genomic tools not only because they tend to be shorter than standard gene annotation length cutoffs, but also because they are, as a class, enriched in sequence properties previously assumed to be unusual, including non-AUG start codons. In this review, we summarize what is currently known about the incidence, efficiency, and mechanism of non-AUG start codon usage in prokaryotes and eukaryotes, and provide examples of regulatory and functional sORFs that initiate at non-AUG codons. While only a handful of non-AUG-initiated novel genes have been characterized in detail to date, their participation in important biological processes suggests that an improved understanding of this class of genes is needed.
Collapse
Affiliation(s)
- Xiongwen Cao
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States; Chemical Biology Institute, Yale University, West Haven, CT, 06516, United States
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States; Chemical Biology Institute, Yale University, West Haven, CT, 06516, United States; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06529, United States.
| |
Collapse
|
7
|
Wong HE, Huang CJ, Zhang Z. Amino Acid Misincorporation Propensities Revealed through Systematic Amino Acid Starvation. Biochemistry 2018; 57:6767-6779. [DOI: 10.1021/acs.biochem.8b00976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- H. Edward Wong
- Process Development, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Chung-Jr Huang
- Process Development, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
8
|
Conformational Control of Translation Termination on the 70S Ribosome. Structure 2018; 26:821-828.e3. [PMID: 29731232 DOI: 10.1016/j.str.2018.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 04/05/2018] [Indexed: 11/20/2022]
Abstract
Translation termination ensures proper lengths of cellular proteins. During termination, release factor (RF) recognizes a stop codon and catalyzes peptide release. Conformational changes in RF are thought to underlie accurate translation termination. However, structural studies of ribosome termination complexes have only captured RFs in a conformation that is consistent with the catalytically active state. Here, we employ a hyper-accurate RF1 variant to obtain crystal structures of 70S termination complexes that suggest a structural pathway for RF1 activation. We trapped RF1 conformations with the catalytic domain outside of the peptidyl-transferase center, while the codon-recognition domain binds the stop codon. Stop-codon recognition induces 30S decoding-center rearrangements that precede accommodation of the catalytic domain. The separation of codon recognition from the opening of the catalytic domain suggests how rearrangements in RF1 and in the ribosomal decoding center coordinate stop-codon recognition with peptide release, ensuring accurate translation termination.
Collapse
|
9
|
Florin T, Maracci C, Graf M, Karki P, Klepacki D, Berninghausen O, Beckmann R, Vázquez-Laslop N, Wilson DN, Rodnina MV, Mankin AS. An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. Nat Struct Mol Biol 2017; 24:752-757. [PMID: 28741611 PMCID: PMC5589491 DOI: 10.1038/nsmb.3439] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Many antibiotics stop bacterial growth by inhibiting different steps of protein synthesis. However, no specific inhibitors of translation termination are known. Proline-rich antimicrobial peptides, a component of the antibacterial defense system of multicellular organisms, interfere with bacterial growth by inhibiting translation. Here we show that Api137, a derivative of the insect-produced antimicrobial peptide apidaecin, arrests terminating ribosomes using a unique mechanism of action. Api137 binds to the Escherichia coli ribosome and traps release factors 1 or 2 subsequent to release of the nascent polypeptide chain. A high-resolution cryo-EM structure of the ribosome complexed with release factor 1 and Api137 reveals the molecular interactions that lead to release factor trapping. Api137-mediated depletion of the cellular pool of free release factors causes the majority of ribosomes to stall at stop codons prior to polypeptide release, thereby resulting in a global shutdown of translation termination.
Collapse
Affiliation(s)
- Tanja Florin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Graf
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany
| | - Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Otto Berninghausen
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany
| | - Roland Beckmann
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel N Wilson
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany.,Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Byrne A, Burke CS, Keyes TE. Precision targeted ruthenium(ii) luminophores; highly effective probes for cell imaging by stimulated emission depletion (STED) microscopy. Chem Sci 2016; 7:6551-6562. [PMID: 28042459 PMCID: PMC5131359 DOI: 10.1039/c6sc02588a] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022] Open
Abstract
Fluorescence microscopy has undergone a dramatic evolution over the past two decades with development of super-resolution far-field microscopy methods that break the light diffraction limited resolution of conventional microscopy, offering unprecedented opportunity to interrogate cellular processes at the nanoscale. However, these methods make special demands of the luminescent agents used for contrast and development of probes suited to super-resolution fluorescent methods is still relatively in its infancy. In spite of their many photophysical advantages, metal complex luminophores have not yet been considered as probes in this regard, where to date, only organic fluorophores have been applied. Here, we report the first examples of metal complex luminophores applied as probes for use in stimulated emission depletion (STED) microscopy. Exemplified with endoplasmic reticulum and nuclear targeting complexes we demonstrate that luminescent Ru(ii) polypyridyl complexes can, through signal peptide targeting, be precisely and selectively delivered to key cell organelles without the need for membrane permeabilization, to give high quality STED images of these organelles. Detailed features of the tubular ER structure are revealed and in the case of the nuclear targeting probe we exploit the molecular light switch properties of a dipyrido[3,2-a:2',3'-c]phenazine containing complex which emits only on DNA/RNA binding to give outstanding STED contrast and resolution of the chromosomes within the nucleus. Comparing performance with a member of the AlexaFluor family commonly recommended for STED, we find that the performance of the ruthenium complexes is superior across both CW and gated STED microscopy methods in terms of image resolution and photostability. The large Stokes shifts of the Ru probes permit excellent matching of the stimulating depletion laser with their emission whilst avoiding anti-Stokes excitation. Their long lifetimes make them particularly amenable to gated STED, giving a much wider window for gating than traditional probes. Our findings indicate that ruthenium polypyridyl peptide targeted probes are a powerful new partner to STED microscopy, opening up new approaches to probe design for STED microscopy.
Collapse
Affiliation(s)
- Aisling Byrne
- School of Chemical Sciences , National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland . ; National Biophotonics and Imaging Platform , DCU , Ireland
| | - Christopher S Burke
- School of Chemical Sciences , National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland . ; National Biophotonics and Imaging Platform , DCU , Ireland
| | - Tia E Keyes
- School of Chemical Sciences , National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland . ; National Biophotonics and Imaging Platform , DCU , Ireland
| |
Collapse
|
11
|
Rozov A, Demeshkina N, Westhof E, Yusupov M, Yusupova G. New Structural Insights into Translational Miscoding. Trends Biochem Sci 2016; 41:798-814. [PMID: 27372401 DOI: 10.1016/j.tibs.2016.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/02/2016] [Indexed: 01/16/2023]
Abstract
The fidelity of translation depends strongly on the selection of the correct aminoacyl-tRNA that is complementary to the mRNA codon present in the ribosomal decoding center. The ribosome occasionally makes mistakes by selecting the wrong substrate from the pool of aminoacyl-tRNAs. Here, we summarize recent structural advances that may help to clarify the origin of missense errors that occur during decoding. These developments suggest that discrimination between tRNAs is based primarily on steric complementarity and shape acceptance rather than on the number of hydrogen bonds between the molding of the decoding center and the codon-anticodon duplex. They strengthen the hypothesis that spatial mimicry, due either to base tautomerism or ionization, drives infidelity in ribosomal translation.
Collapse
Affiliation(s)
- Alexey Rozov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France
| | - Natalia Demeshkina
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France
| | - Eric Westhof
- Architecture and Reactivity of RNA, Institute of Molecular and Cellular Biology of the CNRS UPR9002/University of Strasbourg, Strasbourg, France
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France.
| |
Collapse
|
12
|
Tzani I, Ivanov IP, Andreev DE, Dmitriev RI, Dean KA, Baranov PV, Atkins JF, Loughran G. Systematic analysis of the PTEN 5' leader identifies a major AUU initiated proteoform. Open Biol 2016; 6:rsob.150203. [PMID: 27249819 PMCID: PMC4892431 DOI: 10.1098/rsob.150203] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/26/2016] [Indexed: 12/22/2022] Open
Abstract
Abundant evidence for translation within the 5' leaders of many human genes is rapidly emerging, especially, because of the advent of ribosome profiling. In most cases, it is believed that the act of translation rather than the encoded peptide is important. However, the wealth of available sequencing data in recent years allows phylogenetic detection of sequences within 5' leaders that have emerged under coding constraint and therefore allow for the prediction of functional 5' leader translation. Using this approach, we previously predicted a CUG-initiated, 173 amino acid N-terminal extension to the human tumour suppressor PTEN. Here, a systematic experimental analysis of translation events in the PTEN 5' leader identifies at least two additional non-AUG-initiated PTEN proteoforms that are expressed in most human cell lines tested. The most abundant extended PTEN proteoform initiates at a conserved AUU codon and extends the canonical AUG-initiated PTEN by 146 amino acids. All N-terminally extended PTEN proteoforms tested retain the ability to downregulate the PI3K pathway. We also provide evidence for the translation of two conserved AUG-initiated upstream open reading frames within the PTEN 5' leader that control the ratio of PTEN proteoforms.
Collapse
Affiliation(s)
- Ioanna Tzani
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dmitri E Andreev
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ruslan I Dmitriev
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Kellie A Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Svidritskiy E, Madireddy R, Korostelev AA. Structural Basis for Translation Termination on a Pseudouridylated Stop Codon. J Mol Biol 2016; 428:2228-36. [PMID: 27107638 DOI: 10.1016/j.jmb.2016.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/27/2022]
Abstract
Pseudouridylation of messenger RNA emerges as an abundant modification involved in gene expression regulation. Pseudouridylation of stop codons in eukaryotic and bacterial cells results in stop-codon read through. The structural mechanism of this phenomenon is not known. Here we present a 3.1-Å crystal structure of Escherichia coli release factor 1 (RF1) bound to the 70S ribosome in response to the ΨAA codon. The structure reveals that recognition of a modified stop codon does not differ from that of a canonical stop codon. Our in vitro biochemical results support this finding by yielding nearly identical rates for peptide release from E. coli ribosomes programmed with pseudouridylated and canonical stop codons. The crystal structure also brings insight into E. coli RF1-specific interactions and suggests involvement of L27 in bacterial translation termination. Our results are consistent with a mechanism in which read through of a pseudouridylated stop codon in bacteria results from increased decoding by near-cognate tRNAs (miscoding) rather than from decreased efficiency of termination.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Rohini Madireddy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|