1
|
Balourdas DI, Markl AM, Krämer A, Settanni G, Joerger AC. Structural basis of p53 inactivation by cavity-creating cancer mutations and its implications for the development of mutant p53 reactivators. Cell Death Dis 2024; 15:408. [PMID: 38862470 PMCID: PMC11166945 DOI: 10.1038/s41419-024-06739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
The cavity-creating p53 cancer mutation Y220C is an ideal paradigm for developing small-molecule drugs based on protein stabilization. Here, we have systematically analyzed the structural and stability effects of all oncogenic Tyr-to-Cys mutations (Y126C, Y163C, Y205C, Y220C, Y234C, and Y236C) in the p53 DNA-binding domain (DBD). They were all highly destabilizing, drastically lowering the melting temperature of the protein by 8-17 °C. In contrast, two non-cancerous mutations, Y103C and Y107C, had only a moderate effect on protein stability. Differential stabilization of the mutants upon treatment with the anticancer agent arsenic trioxide and stibogluconate revealed an interesting proximity effect. Crystallographic studies complemented by MD simulations showed that two of the mutations, Y234C and Y236C, create internal cavities of different size and shape, whereas the others induce unique surface lesions. The mutation-induced pockets in the Y126C and Y205C mutant were, however, relatively small compared with that of the already druggable Y220C mutant. Intriguingly, our structural studies suggest a pronounced plasticity of the mutation-induced pocket in the frequently occurring Y163C mutant, which may be exploited for the development of small-molecule stabilizers. We point out general principles for reactivating thermolabile cancer mutants and highlight special cases where mutant-specific drugs are needed for the pharmacological rescue of p53 function in tumors.
Collapse
Affiliation(s)
- Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Anja M Markl
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Giovanni Settanni
- Faculty of Physics and Astronomy, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
- Physics Department, University of Mainz, Staudingerweg 7, 55099, Mainz, Germany
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Fernando D, Ahmed AU, Williams BRG. Therapeutically targeting the unique disease landscape of pediatric high-grade gliomas. Front Oncol 2024; 14:1347694. [PMID: 38525424 PMCID: PMC10957575 DOI: 10.3389/fonc.2024.1347694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Pediatric high-grade gliomas (pHGG) are a rare yet devastating malignancy of the central nervous system's glial support cells, affecting children, adolescents, and young adults. Tumors of the central nervous system account for the leading cause of pediatric mortality of which high-grade gliomas present a significantly grim prognosis. While the past few decades have seen many pediatric cancers experiencing significant improvements in overall survival, the prospect of survival for patients diagnosed with pHGGs has conversely remained unchanged. This can be attributed in part to tumor heterogeneity and the existence of the blood-brain barrier. Advances in discovery research have substantiated the existence of unique subgroups of pHGGs displaying alternate responses to different therapeutics and varying degrees of overall survival. This highlights a necessity to approach discovery research and clinical management of the disease in an alternative subtype-dependent manner. This review covers traditional approaches to the therapeutic management of pHGGs, limitations of such methods and emerging alternatives. Novel mutations which predominate the pHGG landscape are highlighted and the therapeutic potential of targeting them in a subtype specific manner discussed. Collectively, this provides an insight into issues in need of transformative progress which arise during the management of pHGGs.
Collapse
Affiliation(s)
- Dasun Fernando
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Afsar U. Ahmed
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Bryan R. G. Williams
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Raab M, Kostova I, Peña‐Llopis S, Fietz D, Kressin M, Aberoumandi SM, Ullrich E, Becker S, Sanhaji M, Strebhardt K. Rescue of p53 functions by in vitro-transcribed mRNA impedes the growth of high-grade serous ovarian cancer. Cancer Commun (Lond) 2024; 44:101-126. [PMID: 38140698 PMCID: PMC10794014 DOI: 10.1002/cac2.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The cellular tumor protein p53 (TP53) is a tumor suppressor gene that is frequently mutated in human cancers. Among various cancer types, the very aggressive high-grade serous ovarian carcinoma (HGSOC) exhibits the highest prevalence of TP53 mutations, present in >96% of cases. Despite intensive efforts to reactivate p53, no clinical drug has been approved to rescue p53 function. In this study, our primary objective was to administer in vitro-transcribed (IVT) wild-type (WT) p53-mRNA to HGSOC cell lines, primary cells, and orthotopic mouse models, with the aim of exploring its impact on inhibiting tumor growth and dissemination, both in vitro and in vivo. METHODS To restore the activity of p53, WT p53 was exogenously expressed in HGSOC cell lines using a mammalian vector system. Moreover, IVT WT p53 mRNA was delivered into different HGSOC model systems (primary cells and patient-derived organoids) using liposomes and studied for proliferation, cell cycle progression, apoptosis, colony formation, and chromosomal instability. Transcriptomic alterations induced by p53 mRNA were analyzed using RNA sequencing in OVCAR-8 and primary HGSOC cells, followed by ingenuity pathway analysis. In vivo effects on tumor growth and metastasis were studied using orthotopic xenografts and metastatic intraperitoneal mouse models. RESULTS Reactivation of the TP53 tumor suppressor gene was explored in different HGSOC model systems using newly designed IVT mRNA-based methods. The introduction of WT p53 mRNA triggered dose-dependent apoptosis, cell cycle arrest, and potent long-lasting inhibition of HGSOC cell proliferation. Transcriptome analysis of OVCAR-8 cells upon mRNA-based p53 reactivation revealed significant alterations in gene expression related to p53 signaling, such as apoptosis, cell cycle regulation, and DNA damage. Restoring p53 function concurrently reduces chromosomal instability within the HGSOC cells, underscoring its crucial contribution in safeguarding genomic integrity by moderating the baseline occurrence of double-strand breaks arising from replication stress. Furthermore, in various mouse models, treatment with p53 mRNA reduced tumor growth and inhibited tumor cell dissemination in the peritoneal cavity in a dose-dependent manner. CONCLUSIONS The IVT mRNA-based reactivation of p53 holds promise as a potential therapeutic strategy for HGSOC, providing valuable insights into the molecular mechanisms underlying p53 function and its relevance in ovarian cancer treatment.
Collapse
Affiliation(s)
- Monika Raab
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Izabela Kostova
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Samuel Peña‐Llopis
- Translational Genomics in Solid TumorsWest German Cancer CenterUniversity HospitalEssenGermany
- German Cancer Consortium (DKTK)EssenGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Daniela Fietz
- Histology and EmbryologyInstitute for Veterinary AnatomyGiessenGermany
| | - Monika Kressin
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
- Histology and EmbryologyInstitute for Veterinary AnatomyGiessenGermany
| | - Seyed Mohsen Aberoumandi
- Histology and EmbryologyInstitute for Veterinary AnatomyGiessenGermany
- Franfurt Cancer Institute (FCI)Goethe UniversityFrankfurt am MainGermany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital FrankfurtFrankfurt am MainGermany
| | - Evelyn Ullrich
- Franfurt Cancer Institute (FCI)Goethe UniversityFrankfurt am MainGermany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital FrankfurtFrankfurt am MainGermany
- Experimental ImmunologyDepartment for Children and Adolescents MedicineUniversity Hospital FrankfurtGoethe UniversityFrankfurt am MainGermany
| | - Sven Becker
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Mourad Sanhaji
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Klaus Strebhardt
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
4
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
5
|
Grasso D, Galderisi S, Santucci A, Bernini A. Pharmacological Chaperones and Protein Conformational Diseases: Approaches of Computational Structural Biology. Int J Mol Sci 2023; 24:ijms24065819. [PMID: 36982893 PMCID: PMC10054308 DOI: 10.3390/ijms24065819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Whenever a protein fails to fold into its native structure, a profound detrimental effect is likely to occur, and a disease is often developed. Protein conformational disorders arise when proteins adopt abnormal conformations due to a pathological gene variant that turns into gain/loss of function or improper localization/degradation. Pharmacological chaperones are small molecules restoring the correct folding of a protein suitable for treating conformational diseases. Small molecules like these bind poorly folded proteins similarly to physiological chaperones, bridging non-covalent interactions (hydrogen bonds, electrostatic interactions, and van der Waals contacts) loosened or lost due to mutations. Pharmacological chaperone development involves, among other things, structural biology investigation of the target protein and its misfolding and refolding. Such research can take advantage of computational methods at many stages. Here, we present an up-to-date review of the computational structural biology tools and approaches regarding protein stability evaluation, binding pocket discovery and druggability, drug repurposing, and virtual ligand screening. The tools are presented as organized in an ideal workflow oriented at pharmacological chaperones' rational design, also with the treatment of rare diseases in mind.
Collapse
Affiliation(s)
- Daniela Grasso
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Silvia Galderisi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Andrea Bernini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
6
|
Chhetri A, Roy M, Mishra P, Halder AK, Basak S, Gangopadhyay A, Saha A, Bhattacharya P. Genetic algorithm- de novo, molecular dynamics and MMGBSA based modelling of a novel Benz-pyrazole based anticancer ligand to functionally revert mutant P53 into wild type P53. MOLECULAR SIMULATION 2023. [DOI: 10.1080/08927022.2023.2185079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Ashik Chhetri
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, India
| | - Moloy Roy
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, India
| | - Puja Mishra
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, India
| | - Amit Kumar Halder
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, India
| | - Souvik Basak
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, India
| | - Aditi Gangopadhyay
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Plaban Bhattacharya
- Department of Chemical Technology, University of Calcutta, Kolkata, India
- Orange Business, Vishwaroop IT Park, Navi Mumbai, India
| |
Collapse
|
7
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
8
|
Vaas S, Zimmermann MO, Klett T, Boeckler FM. Synthesis of Amino Acids Bearing Halodifluoromethyl Moieties and Their Application to p53-Derived Peptides Binding to Mdm2/Mdm4. Drug Des Devel Ther 2023; 17:1247-1274. [PMID: 37128274 PMCID: PMC10148652 DOI: 10.2147/dddt.s406703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023] Open
Abstract
Introduction Therapeutic peptides are a significant class of drugs in the treatment of a wide range of diseases. To enhance their properties, such as stability or binding affinity, they are usually chemically modified. This includes, among other techniques, cyclization of the peptide chain by bridging, modifications to the backbone, and incorporation of unnatural amino acids. One approach previously established, is the use of halogenated aromatic amino acids. In principle, they are thereby enabled to form halogen bonds (XB). In this study, we focus on the -R-CF2X moiety (R = O, NHCO; X = Cl, Br) as an uncommon halogen bond donor. These groups enable more spatial variability in protein-protein interactions. The chosen approach via Fmoc-protected building blocks allows for the incorporation of these modified amino acids in peptides using solid-phase peptide synthesis. Results and Discussion Using a competitive fluorescence polarization assay to monitor binding to Mdm4, we demonstrate that a p53-derived peptide with Lys24Nle(εNHCOCF2X) exhibits an improved inhibition constant Ki compared to the unmodified peptide. Decreasing Ki values observed with the increasing XB capacity of the halogen atoms (F ≪ Cl < Br) indicates the formation of a halogen bond. By reducing the side chain length of Nle(εNHCOCF2X) to Abu(γNHCOCF2X) as control experiments and through quantum mechanical calculations, we suggest that the observed affinity enhancement is related to halogen bond-induced intramolecular stabilization of the α-helical binding mode of the peptide or a direct interaction with His54 in human Mdm4.
Collapse
Affiliation(s)
- Sebastian Vaas
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Laboratory for Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Markus O Zimmermann
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Laboratory for Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Theresa Klett
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Laboratory for Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Frank M Boeckler
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Laboratory for Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
- Correspondence: Frank M Boeckler, Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8 (Haus B), Tübingen, D-72076, Germany, Tel +49 7071 29 74567, Fax +49 7071 29 5637, Email
| |
Collapse
|
9
|
Stephenson Clarke J, Douglas LR, Duriez PJ, Balourdas DI, Joerger AC, Khadiullina R, Bulatov E, Baud MGJ. Discovery of Nanomolar-Affinity Pharmacological Chaperones Stabilizing the Oncogenic p53 Mutant Y220C. ACS Pharmacol Transl Sci 2022; 5:1169-1180. [PMID: 36407959 PMCID: PMC9667543 DOI: 10.1021/acsptsci.2c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/28/2022]
Abstract
The tumor suppressor protein p53 is inactivated in the majority of human cancers and remains a prime target for developing new drugs to reactivate its tumor suppressing activity for anticancer therapies. The oncogenic p53 mutant Y220C accounts for approximately 125,000 new cancer cases per annum and is one of the most prevalent p53 mutants overall. It harbors a narrow, mutationally induced pocket at the surface of the DNA-binding domain that destabilizes p53, leading to its rapid denaturation and aggregation. Here, we present the structure-guided development of high-affinity small molecules stabilizing p53-Y220C in vitro, along with the synthetic routes developed in the process, in vitro structure-activity relationship data, and confirmation of their binding mode by protein X-ray crystallography. We disclose two new chemical probes displaying sub-micromolar binding affinity in vitro, marking an important milestone since the discovery of the first small-molecule ligand of Y220C in 2008. New chemical probe JC744 displayed a K d = 320 nM, along with potent in vitro protein stabilization. This study, therefore, represents a significant advance toward high-affinity Y220C ligands for clinical evaluation.
Collapse
Affiliation(s)
- Joseph
R. Stephenson Clarke
- School of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Leon R. Douglas
- Cancer
Research UK, Somers Building, University
Hospital Southampton, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Patrick J. Duriez
- Centre
for Cancer Immunology, University Hospital
Southampton, Coxford
Road, Southampton SO16
6YD, United Kingdom
| | - Dimitrios-Ilias Balourdas
- Institute
of Pharmaceutical Chemistry, Johann Wolfgang
Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Buchmann
Institute for Molecular Life Sciences and Structural Genomics Consortium, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Andreas C. Joerger
- Institute
of Pharmaceutical Chemistry, Johann Wolfgang
Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Buchmann
Institute for Molecular Life Sciences and Structural Genomics Consortium, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Raniya Khadiullina
- Institute
of Fundamental Medicine and Biology, Kazan
Federal University, Kazan 420008, Russia
| | - Emil Bulatov
- Institute
of Fundamental Medicine and Biology, Kazan
Federal University, Kazan 420008, Russia
| | - Matthias G. J. Baud
- School of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
10
|
Anticancer Therapeutic Strategies Targeting p53 Aggregation. Int J Mol Sci 2022; 23:ijms231911023. [PMID: 36232329 PMCID: PMC9569952 DOI: 10.3390/ijms231911023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
p53 is a tumor suppressor protein that is mutated in more than 50% of cancer cases. When mutated, it frequently results in p53 oncogenic gain of function (GOF), resulting in a greater tendency to aggregate in the phase separation and phase transition pathway. GOFs related to p53 aggregation include chemoresistance, which makes therapy even more difficult. The therapies available for the treatment of cancer are still quite limited, so the study of new molecules and therapeutic targets focusing on p53 aggregates is a promising strategy against cancer. In this review, we classify anticancer molecules with antiaggregation properties into four categories: thiol alkylating agents, designed peptides, agents with chaperone-based mechanisms that inhibit p53 aggregation, and miscellaneous compounds with anti-protein aggregation properties that have been studied in neurodegenerative diseases. Furthermore, we highlight autophagy as a possible degradation pathway for aggregated p53. Here, considering cancer as a protein aggregation disease, we review strategies that have been used to disrupt p53 aggregates, leading to cancer regression.
Collapse
|
11
|
Nurhayati APD, Rihandoko A, Fadlan A, Ghaissani SS, Jadid N, Setiawan E. Anti-cancer potency by induced apoptosis by molecular docking P53, caspase, cyclin D1, cytotoxicity analysis and phagocytosis activity of trisindoline 1,3 and 4. Saudi Pharm J 2022; 30:1345-1359. [PMID: 36249936 PMCID: PMC9563049 DOI: 10.1016/j.jsps.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 06/17/2022] [Indexed: 11/27/2022] Open
|
12
|
Chee Wezen X, Chandran A, Eapen RS, Waters E, Bricio-Moreno L, Tosi T, Dolan S, Millership C, Kadioglu A, Gründling A, Itzhaki LS, Welch M, Rahman T. Structure-Based Discovery of Lipoteichoic Acid Synthase Inhibitors. J Chem Inf Model 2022; 62:2586-2599. [PMID: 35533315 PMCID: PMC9131456 DOI: 10.1021/acs.jcim.2c00300] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 01/20/2023]
Abstract
Lipoteichoic acid synthase (LtaS) is a key enzyme for the cell wall biosynthesis of Gram-positive bacteria. Gram-positive bacteria that lack lipoteichoic acid (LTA) exhibit impaired cell division and growth defects. Thus, LtaS appears to be an attractive antimicrobial target. The pharmacology around LtaS remains largely unexplored with only two small-molecule LtaS inhibitors reported, namely "compound 1771" and the Congo red dye. Structure-based drug discovery efforts against LtaS remain unattempted due to the lack of an inhibitor-bound structure of LtaS. To address this, we combined the use of a molecular docking technique with molecular dynamics (MD) simulations to model a plausible binding mode of compound 1771 to the extracellular catalytic domain of LtaS (eLtaS). The model was validated using alanine mutagenesis studies combined with isothermal titration calorimetry. Additionally, lead optimization driven by our computational model resulted in an improved version of compound 1771, namely, compound 4 which showed greater affinity for binding to eLtaS than compound 1771 in biophysical assays. Compound 4 reduced LTA production in S. aureus dose-dependently, induced aberrant morphology as seen for LTA-deficient bacteria, and significantly reduced bacteria titers in the lung of mice infected with S. aureus. Analysis of our MD simulation trajectories revealed the possible formation of a transient cryptic pocket in eLtaS. Virtual screening (VS) against the cryptic pocket led to the identification of a new class of inhibitors that could potentiate β-lactams against methicillin-resistant S. aureus. Our overall workflow and data should encourage further drug design campaign against LtaS. Finally, our work reinforces the importance of considering protein conformational flexibility to a successful VS endeavor.
Collapse
Affiliation(s)
- Xavier Chee Wezen
- Science
Program, School of Chemical Engineering and Science, Faculty of Engineering,
Computing and Science, Swinburne University
of Technology Sarawak, Kuching 93350, Malaysia
| | - Aneesh Chandran
- Department
of Biotechnology & Microbiology, Kannur
University, Kannur 670 661, Kerala, India
| | | | - Elaine Waters
- Department
of Clinical Infection Microbiology and Immunology, Institute of Infection
and Global Health, University of Liverpool, Liverpool L69 7BE, U.K.
| | - Laura Bricio-Moreno
- Department
of Clinical Infection Microbiology and Immunology, Institute of Infection
and Global Health, University of Liverpool, Liverpool L69 7BE, U.K.
| | - Tommaso Tosi
- Section
of Molecular Microbiology and MRC Centre for Molecular Bacteriology
and Infection, Imperial College London, London SW7 2AZ, U.K.
| | - Stephen Dolan
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K.
| | - Charlotte Millership
- Section
of Molecular Microbiology and MRC Centre for Molecular Bacteriology
and Infection, Imperial College London, London SW7 2AZ, U.K.
| | - Aras Kadioglu
- Department
of Clinical Infection Microbiology and Immunology, Institute of Infection
and Global Health, University of Liverpool, Liverpool L69 7BE, U.K.
| | - Angelika Gründling
- Section
of Molecular Microbiology and MRC Centre for Molecular Bacteriology
and Infection, Imperial College London, London SW7 2AZ, U.K.
| | - Laura S. Itzhaki
- Department
of PharmacologyUniversity of CambridgeCambridgeCB2 1PDU.K.
| | - Martin Welch
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K.
| | - Taufiq Rahman
- Department
of PharmacologyUniversity of CambridgeCambridgeCB2 1PDU.K.
| |
Collapse
|
13
|
Klimovich B, Meyer L, Merle N, Neumann M, König AM, Ananikidis N, Keber CU, Elmshäuser S, Timofeev O, Stiewe T. Partial p53 reactivation is sufficient to induce cancer regression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:80. [PMID: 35232479 PMCID: PMC8889716 DOI: 10.1186/s13046-022-02269-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/20/2022] [Indexed: 01/21/2023]
Abstract
Background Impaired p53 function is one of the central molecular features of a tumor cell and even a partial reduction in p53 activity can increase the cancer risk in mice and men. From a therapeutic perspective it is noteworthy that tumor cells often become addicted to the absence of p53 providing a rationale for developing p53 reactivating compounds to treat cancer patients. Unfortunately, many of the compounds that are currently undergoing preclinical and clinical testing fail to fully reactivate mutant p53 proteins, raising the crucial question: how much p53 activity is needed to elicit a therapeutic effect? Methods We have genetically modelled partial p53 reactivation using knock-in mice with inducible expression of the p53 variant E177R. This variant has a reduced ability to bind and transactivate target genes and consequently causes moderate cancer susceptibility. We have generated different syngeneically transplanted and autochthonous mouse models of p53-deficient acute myeloid leukemia and B or T cell lymphoma. After cancer manifestation we have activated E177R expression and analyzed the in vivo therapy response by bioluminescence or magnetic resonance imaging. The molecular response was further characterized in vitro by assays for gene expression, proliferation, senescence, differentiation, apoptosis and clonogenic growth. Results We report the conceptually intriguing observation that the p53 variant E177R, which promotes de novo leukemia and lymphoma formation, inhibits proliferation and viability, induces immune cell infiltration and triggers cancer regression in vivo when introduced into p53-deficient leukemia and lymphomas. p53-deficient cancer cells proved to be so addicted to the absence of p53 that even the low-level activity of E177R is detrimental to cancer growth. Conclusions The observation that a partial loss-of-function p53 variant promotes tumorigenesis in one setting and induces regression in another, underlines the highly context-specific effects of individual p53 mutants. It further highlights the exquisite sensitivity of cancer cells to even small changes in p53 activity and reveals that changes in activity level are more important than the absolute level. As such, the study encourages ongoing research efforts into mutant p53 reactivating drugs by providing genetic proof-of-principle evidence that incomplete p53 reactivation may suffice to elicit a therapeutic response. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02269-6.
Collapse
Affiliation(s)
- Boris Klimovich
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany
| | - Laura Meyer
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany
| | - Nastasja Merle
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany
| | - Michelle Neumann
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany
| | - Alexander M König
- Clinic of Diagnostic and Interventional Radiology, Core Facility 7T-small animal MRI, Philipps-University, Marburg, Germany
| | - Nikolaos Ananikidis
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany
| | - Corinna U Keber
- Institute for Pathology, University Hospital Marburg, Philipps-University, Marburg, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany
| | - Oleg Timofeev
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany. .,German Center for Lung Research (DZL), Philipps-University, Marburg, Germany.
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany. .,German Center for Lung Research (DZL), Philipps-University, Marburg, Germany. .,Genomics Core Facility, Philipps-University, Marburg, Germany.
| |
Collapse
|
14
|
Barros EP, Demir Ö, Soto J, Cocco MJ, Amaro RE. Markov state models and NMR uncover an overlooked allosteric loop in p53. Chem Sci 2020; 12:1891-1900. [PMID: 34163952 PMCID: PMC8179107 DOI: 10.1039/d0sc05053a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The tumor suppressor p53 is the most frequently mutated gene in human cancer, and thus reactivation of mutated p53 is a promising avenue for cancer therapy. Analysis of wildtype p53 and the Y220C cancer mutant long-timescale molecular dynamics simulations with Markov state models and validation by NMR relaxation studies has uncovered the involvement of loop L6 in the slowest motions of the protein. Due to its distant location from the DNA-binding surface, the conformational dynamics of this loop has so far remained largely unexplored. We observe mutation-induced stabilization of alternate L6 conformations, distinct from all experimentally-determined structures, in which the loop is both extended and located further away from the DNA-interacting surface. Additionally, the effect of the L6-adjacent Y220C mutation on the conformational landscape of the functionally-important loop L1 suggests an allosteric role to this dynamic loop and the inactivation mechanism of the mutation. Finally, the simulations reveal a novel Y220C cryptic pocket that can be targeted for p53 rescue efforts. Our approach exemplifies the power of the MSM methodology for uncovering intrinsic dynamic and kinetic differences among distinct protein ensembles, such as for the investigation of mutation effects on protein function. Wildtype and Y220C L1 and L6 loops conformational landscape, with MSM-identified L6 states highlighted on the right.![]()
Collapse
Affiliation(s)
- Emilia P Barros
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA +1-858-534-9645 +1-858-534-9629
| | - Özlem Demir
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA +1-858-534-9645 +1-858-534-9629
| | - Jenaro Soto
- Department of Pharmaceutical Sciences, University of California Irvine Irvine CA 92697 USA
| | - Melanie J Cocco
- Department of Pharmaceutical Sciences, University of California Irvine Irvine CA 92697 USA.,Department of Molecular Biology and Biochemistry, University of California Irvine Irvine 92697 CA USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA +1-858-534-9645 +1-858-534-9629
| |
Collapse
|
15
|
Shah HD, Saranath D, Murthy V. A molecular dynamics and docking study to screen anti-cancer compounds targeting mutated p53. J Biomol Struct Dyn 2020; 40:2407-2416. [PMID: 33111621 DOI: 10.1080/07391102.2020.1839559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The p53 gene is mutated in greater than 50% of several human cancers including bladder urothelial carcinoma, lung adenocarcinoma, colorectal carcinoma, and oral cancer. Mutations in the p53 gene occur predominantly in the DNA-binding domain causing loss of function and accumulation of dysfunctional p53 protein in tumors by hetero-oligomerization with the wild type p53. Thus an in silico approach for the rational design of potent, pharmacologically active small drug-like compounds targeting mutated p53 was undertaken. Molecular dynamics simulations of the wild type p53 monomer and p53 mutants R175H and R248Q were performed using Discovery Studio v3.5. Phase was used to generate pharmacophore models and the sitemap generated pocket was used to screen the Maybridge HitFinderTM library using Schrodinger Suite. We identified ten compounds (Cmpd-1 to Cmpd-10) that showed preferential binding to p53 mutants, and their pharmacokinetic profiles complied with the ADMET rules. Cmpd-4 and Cmpd-8 demonstrated binding with mutated p53 at cysteine 124, similar to the mutant p53 reactivating compound APR-246 (PRIMA-1Met) for functional restoration of the mutant p53. We propose the identified compounds as suitable drug candidates against mutated p53 protein, with the specific small drug-like molecules as either single drugs or in combination with lower doses of additional cytotoxic drugs, consequently reducing adverse side effects in patients.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hetal Damani Shah
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Vile Parle (West), Mumbai, India
| | - Dhananjaya Saranath
- Cancer Patients Aid Association, Dr. Vithaldas Parmar Research & Medical Centre, Worli, Mumbai, India
| | - Vinuthaa Murthy
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, Australia
| |
Collapse
|
16
|
A structure-guided molecular chaperone approach for restoring the transcriptional activity of the p53 cancer mutant Y220C. Future Med Chem 2020; 11:2491-2504. [PMID: 31633398 PMCID: PMC6803818 DOI: 10.4155/fmc-2019-0181] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: The p53 cancer mutation Y220C creates a conformationally unstable protein with a unique elongated surface crevice that can be targeted by molecular chaperones. We report the structure-guided optimization of the carbazole-based stabilizer PK083. Materials & methods: Biophysical, cellular and x-ray crystallographic techniques have been employed to elucidate the mode of action of the carbazole scaffolds. Results: Targeting an unoccupied subsite of the surface crevice with heterocycle-substituted PK083 analogs resulted in a 70-fold affinity increase to single-digit micromolar levels, increased thermal stability and decreased rate of aggregation of the mutant protein. PK9318, one of the most potent binders, restored p53 signaling in the liver cancer cell line HUH-7 with homozygous Y220C mutation. Conclusion: The p53-Y220C mutant is an excellent paradigm for the development of mutant p53 rescue drugs via protein stabilization. Similar rescue strategies may be applicable to other cavity-creating p53 cancer mutations.
Collapse
|
17
|
Tan YS, Mhoumadi Y, Verma CS. Roles of computational modelling in understanding p53 structure, biology, and its therapeutic targeting. J Mol Cell Biol 2020; 11:306-316. [PMID: 30726928 PMCID: PMC6487789 DOI: 10.1093/jmcb/mjz009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
The transcription factor p53 plays pivotal roles in numerous biological processes, including the suppression of tumours. The rich availability of biophysical data aimed at understanding its structure–function relationships since the 1990s has enabled the application of a variety of computational modelling techniques towards the establishment of mechanistic models. Together they have provided deep insights into the structure, mechanics, energetics, and dynamics of p53. In parallel, the observation that mutations in p53 or changes in its associated pathways characterize several human cancers has resulted in a race to develop therapeutic modulators of p53, some of which have entered clinical trials. This review describes how computational modelling has played key roles in understanding structural-dynamic aspects of p53, formulating hypotheses about domains that are beyond current experimental investigations, and the development of therapeutic molecules that target the p53 pathway.
Collapse
Affiliation(s)
- Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore
| | - Yasmina Mhoumadi
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| |
Collapse
|
18
|
Bauer MR, Krämer A, Settanni G, Jones RN, Ni X, Khan Tareque R, Fersht AR, Spencer J, Joerger AC. Targeting Cavity-Creating p53 Cancer Mutations with Small-Molecule Stabilizers: the Y220X Paradigm. ACS Chem Biol 2020; 15:657-668. [PMID: 31990523 PMCID: PMC7307883 DOI: 10.1021/acschembio.9b00748] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have previously shown that the thermolabile, cavity-creating p53 cancer mutant Y220C can be reactivated by small-molecule stabilizers. In our ongoing efforts to unearth druggable variants of the p53 mutome, we have now analyzed the effects of other cancer-associated mutations at codon 220 on the structure, stability, and dynamics of the p53 DNA-binding domain (DBD). We found that the oncogenic Y220H, Y220N, and Y220S mutations are also highly destabilizing, suggesting that they are largely unfolded under physiological conditions. A high-resolution crystal structure of the Y220S mutant DBD revealed a mutation-induced surface crevice similar to that of Y220C, whereas the corresponding pocket's accessibility to small molecules was blocked in the structure of the Y220H mutant. Accordingly, a series of carbazole-based small molecules, designed for stabilizing the Y220C mutant, also bound to and stabilized the folded state of the Y220S mutant, albeit with varying affinities due to structural differences in the binding pocket of the two mutants. Some of the compounds also bound to and stabilized the Y220N mutant, but not the Y220H mutant. Our data validate the Y220S and Y220N mutants as druggable targets and provide a framework for the design of Y220S or Y220N-specific compounds as well as compounds with dual Y220C/Y220S specificity for use in personalized cancer therapy.
Collapse
Affiliation(s)
- Matthias R. Bauer
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Giovanni Settanni
- Physics Department, Johannes Gutenberg University, Staudingerweg 7, 55099 Mainz, Germany
| | - Rhiannon N. Jones
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, United Kingdom
| | - Xiaomin Ni
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Raysa Khan Tareque
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, United Kingdom
| | - Alan R. Fersht
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, United Kingdom
| | - Andreas C. Joerger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Loh SN. Follow the Mutations: Toward Class-Specific, Small-Molecule Reactivation of p53. Biomolecules 2020; 10:biom10020303. [PMID: 32075132 PMCID: PMC7072143 DOI: 10.3390/biom10020303] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
The mutational landscape of p53 in cancer is unusual among tumor suppressors because most of the alterations are of the missense type and localize to a single domain: the ~220 amino acid DNA-binding domain. Nearly all of these mutations produce the common effect of reducing p53’s ability to interact with DNA and activate transcription. Despite this seemingly simple phenotype, no mutant p53-targeted drugs are available to treat cancer patients. One of the main reasons for this is that the mutations exert their effects via multiple mechanisms—loss of DNA contacts, reduction in zinc-binding affinity, and lowering of thermodynamic stability—each of which involves a distinct type of physical impairment. This review discusses how this knowledge is informing current efforts to develop small molecules that repair these defects and restore function to mutant p53. Categorizing the spectrum of p53 mutations into discrete classes based on their inactivation mechanisms is the initial step toward personalized cancer therapy based on p53 allele status.
Collapse
Affiliation(s)
- Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
20
|
Miller JJ, Blanchet A, Orvain C, Nouchikian L, Reviriot Y, Clarke RM, Martelino D, Wilson D, Gaiddon C, Storr T. Bifunctional ligand design for modulating mutant p53 aggregation in cancer. Chem Sci 2019; 10:10802-10814. [PMID: 32055386 PMCID: PMC7006507 DOI: 10.1039/c9sc04151f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/06/2019] [Indexed: 12/19/2022] Open
Abstract
Protein misfolding and aggregation contributes to the development of a wide range of diseases. In cancer, over 50% of diagnoses are attributed to p53 malfunction due to missense mutations, many of which result in protein misfolding and accelerated aggregation. p53 mutations also frequently result in alteration or loss of zinc at the DNA-binding site, which increases aggregation via nucleation with zinc-bound p53. Herein, we designed two novel bifunctional ligands, LI and LH , to modulate mutant p53 aggregation and restore zinc binding using a metallochaperone approach. Interestingly, only the incorporation of iodine function in LI resulted in modulation of mutant p53 aggregation, both in recombinant and cellular environments. Native mass spectrometry shows a protein-ligand interaction for LI , as opposed to LH , which is hypothesized to lead to the distinct difference in the p53 aggregation profile for the two ligands. Incorporation of a di-2-picolylamine binding unit into the ligand design provided efficient intracellular zinc uptake, resulting in metallochaperone capability for both LI and LH . The ability of LI to reduce mutant p53 aggregation results in increased restoration of p53 transcriptional function and mediates both caspase-dependent and -independent cell death pathways. We further demonstrate that LI exhibits minimal toxicity in non-cancerous organoids, and that it is well tolerated in mice. These results demonstrate that iodination of our ligand framework restores p53 function by interacting with and inhibiting mutant p53 aggregation and highlights LI as a suitable candidate for comprehensive in vivo anticancer preclinical evaluations.
Collapse
Affiliation(s)
- Jessica J Miller
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Anaïs Blanchet
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Christophe Orvain
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Lucienne Nouchikian
- Chemistry Department , York University , 6 Thompson Road , Toronto , Ontario M3J 1L3 , Canada
| | - Yasmin Reviriot
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Ryan M Clarke
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Diego Martelino
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Derek Wilson
- Chemistry Department , York University , 6 Thompson Road , Toronto , Ontario M3J 1L3 , Canada
| | - Christian Gaiddon
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| |
Collapse
|
21
|
Loss of p53 function at late stages of tumorigenesis confers ARF-dependent vulnerability to p53 reactivation therapy. Proc Natl Acad Sci U S A 2019; 116:22288-22293. [PMID: 31611375 PMCID: PMC6825290 DOI: 10.1073/pnas.1910255116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mouse studies demonstrating regression of p53-null tumors following reinstatement of functional p53 have fueled the development of p53 reactivating drugs. However, successful p53 reactivation responses have only been formally demonstrated in tumor models where p53 inactivation served as the initiating event. Our study provides the first proof-of-principle evidence that p53 inactivation at late stages of tumorigenesis can also generate a vulnerability to p53 reactivation. However, this is dependent on intact ARF function highlighting ARF as a potential biomarker for p53 reactivation responses in tumors with late-stage p53 inactivation. It furthermore suggests the use of Mdm2 inhibitors as ARF mimetics for sensitizing ARF-deficient tumors to p53-reactivating drugs. Cancer development is driven by activated oncogenes and loss of tumor suppressors. While oncogene inhibitors have entered routine clinical practice, tumor suppressor reactivation therapy remains to be established. For the most frequently inactivated tumor suppressor p53, genetic mouse models have demonstrated regression of p53-null tumors upon p53 reactivation. While this was shown in tumor models driven by p53 loss as the initiating lesion, many human tumors initially develop in the presence of wild-type p53, acquire aberrations in the p53 pathway to bypass p53-mediated tumor suppression, and inactivate p53 itself only at later stages during metastatic progression or therapy. To explore the efficacy of p53 reactivation in this scenario, we used a reversibly switchable p53 (p53ERTAM) mouse allele to generate Eµ-Myc–driven lymphomas in the presence of active p53 and, after full lymphoma establishment, switched off p53 to model late-stage p53 inactivation. Although these lymphomas had evolved in the presence of active p53, later loss and subsequent p53 reactivation surprisingly activated p53 target genes triggering massive apoptosis, tumor regression, and long-term cure of the majority of animals. Mechanistically, the reactivation response was dependent on Cdkn2a/p19Arf, which is commonly silenced in p53 wild-type lymphomas, but became reexpressed upon late-stage p53 inactivation. Likewise, human p53 wild-type tumor cells with CRISPR-engineered switchable p53ERTAM alleles responded to p53 reactivation when CDKN2A/p14ARF function was restored or mimicked with Mdm2 inhibitors. Together, these experiments provide genetic proof of concept that tumors can respond, in an ARF-dependent manner, to p53 reactivation even if p53 inactivation has occurred late during tumor evolution.
Collapse
|
22
|
Pradhan MR, Siau JW, Kannan S, Nguyen MN, Ouaray Z, Kwoh CK, Lane DP, Ghadessy F, Verma CS. Simulations of mutant p53 DNA binding domains reveal a novel druggable pocket. Nucleic Acids Res 2019; 47:1637-1652. [PMID: 30649466 PMCID: PMC6393305 DOI: 10.1093/nar/gky1314] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/25/2018] [Accepted: 01/09/2019] [Indexed: 01/01/2023] Open
Abstract
The DNA binding domain (DBD) of the tumor suppressor p53 is the site of several oncogenic mutations. A subset of these mutations lowers the unfolding temperature of the DBD. Unfolding leads to the exposure of a hydrophobic β-strand and nucleates aggregation which results in pathologies through loss of function and dominant negative/gain of function effects. Inspired by the hypothesis that structural changes that are associated with events initiating unfolding in DBD are likely to present opportunities for inhibition, we investigate the dynamics of the wild type (WT) and some aggregating mutants through extensive all atom explicit solvent MD simulations. Simulations reveal differential conformational sampling between the WT and the mutants of a turn region (S6-S7) that is contiguous to a known aggregation-prone region (APR). The conformational properties of the S6-S7 turn appear to be modulated by a network of interacting residues. We speculate that changes that take place in this network as a result of the mutational stress result in the events that destabilize the DBD and initiate unfolding. These perturbations also result in the emergence of a novel pocket that appears to have druggable characteristics. FDA approved drugs are computationally screened against this pocket.
Collapse
Affiliation(s)
- Mohan R Pradhan
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Jia Wei Siau
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Minh N Nguyen
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Zohra Ouaray
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Chemistry, University of Southampton, SO17 1BJ, United Kingdom
| | - Chee Keong Kwoh
- School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - David P Lane
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Farid Ghadessy
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Department of Biological sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,School of Biological sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551
| |
Collapse
|
23
|
Hitting on the move: Targeting intrinsically disordered protein states of the MDM2-p53 interaction. Eur J Med Chem 2019; 182:111588. [PMID: 31421630 DOI: 10.1016/j.ejmech.2019.111588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 01/17/2023]
Abstract
Intrinsically disordered proteins are an emerging class of proteins without a folded structure and currently disorder-based drug targeting remains a challenge. p53 is the principal regulator of cell division and growth whereas MDM2 consists its main negative regulator. The MDM2-p53 recognition is a dynamic and multistage process that amongst other, employs the dissociation of a transient α-helical N-terminal ''lid'' segment of MDM2 from the proximity of the p53-complementary interface. Several small molecule inhibitors have been reported to inhibit the formation of the p53-MDM2 complex with the vast majority mimicking the p53 residues Phe19, Trp23 and Leu26. Recently, we have described the transit from the 3-point to 4-point pharmacophore model stabilizing this intrinsically disordered N-terminus by increasing the binding affinity by a factor of 3. Therefore, we performed a thorough SAR analysis, including chiral separation of key compound which was evaluated by FP and 2D NMR. Finally, p53-specific anti-cancer activity towards p53-wild-type cancer cells was observed for several representative compounds.
Collapse
|
24
|
Cicaloni V, Trezza A, Pettini F, Spiga O. Applications of in Silico Methods for Design and Development of Drugs Targeting Protein-Protein Interactions. Curr Top Med Chem 2019; 19:534-554. [PMID: 30836920 DOI: 10.2174/1568026619666190304153901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/02/2019] [Accepted: 01/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Identification of Protein-Protein Interactions (PPIs) is a major challenge in modern molecular biology and biochemistry research, due to the unquestionable role of proteins in cells, biological process and pathological states. Over the past decade, the PPIs have evolved from being considered a highly challenging field of research to being investigated and examined as targets for pharmacological intervention. OBJECTIVE Comprehension of protein interactions is crucial to known how proteins come together to build signalling pathways, to carry out their functions, or to cause diseases, when deregulated. Multiplicity and great amount of PPIs structures offer a huge number of new and potential targets for the treatment of different diseases. METHODS Computational techniques are becoming predominant in PPIs studies for their effectiveness, flexibility, accuracy and cost. As a matter of fact, there are effective in silico approaches which are able to identify PPIs and PPI site. Such methods for computational target prediction have been developed through molecular descriptors and data-mining procedures. RESULTS In this review, we present different types of interactions between protein-protein and the application of in silico methods for design and development of drugs targeting PPIs. We described computational approaches for the identification of possible targets on protein surface and to detect of stimulator/ inhibitor molecules. CONCLUSION A deeper study of the most recent bioinformatics methodologies for PPIs studies is vital for a better understanding of protein complexes and for discover new potential PPI modulators in therapeutic intervention.
Collapse
Affiliation(s)
- Vittoria Cicaloni
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy.,Toscana Life Sciences Foundation, via Fiorentina 1, 53100 Siena, Italy
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Francesco Pettini
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
25
|
Wang Y, Fu Q, Zhou Y, Du Y, Huang N. Replacement of Protein Binding-Site Waters Contributes to Favorable Halogen Bond Interactions. J Chem Inf Model 2019; 59:3136-3143. [PMID: 31187992 DOI: 10.1021/acs.jcim.9b00128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Halogen bond interaction between a protein electronegative atom and a ligand halogen atom is increasingly attracting attention in the field of structure-based drug design. Nevertheless, gaps in understanding make it desirable to better examine the role of forces governing the formation of favorable halogen bond interactions, and the development of effective and efficient computational approaches to "design in" favorable halogen bond interactions in lead optimization process are warranted. Here, we analyzed the binding-site water properties of crystal structures with characterized halogen bond interactions between ligand halogen atoms and protein backbone carbonyl groups and, thus, found that halogen atoms involved in halogen bond interactions frequently replace calculated binding-site waters upon ligand binding. Moreover, we observed that the preferential directionality of halogen bond interactions aligns well with the orientations of these replaced waters, and these replaced waters exhibited differential energetic characteristics as compared to waters that are displaced by halogen atoms that do not form halogen bond interactions. Our discovery that replacement of calculated binding-site waters contributes to the formation of favorable halogen bond interactions suggests a practical approach for rational drug design utilizing halogen bond interactions with protein backbone carbonyl groups.
Collapse
Affiliation(s)
- Yuanxun Wang
- School of Pharmaceutical Science & Technology , Tianjin University , Tianjin 300072 , China.,National Institute of Biological Sciences , Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park , Beijing 102206 , China
| | - Qiuyu Fu
- National Institute of Biological Sciences , Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park , Beijing 102206 , China.,College of Biological Sciences , China Agricultural University , Beijing 100193 , China
| | - Yu Zhou
- National Institute of Biological Sciences , Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park , Beijing 102206 , China
| | - Yunfei Du
- School of Pharmaceutical Science & Technology , Tianjin University , Tianjin 300072 , China
| | - Niu Huang
- National Institute of Biological Sciences , Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park , Beijing 102206 , China.,Tsinghua Institute of Multidisciplinary Biomedical Research , Tsinghua University , Beijing 102206 , China
| |
Collapse
|
26
|
Alallah MI, Alhemaid F, Bai F, Mothana RA, Elshikh MS, Abul Farah M, Ali MA, Lee J, Al-Anazi KM. The binding proximity of methyl β-lilacinobioside isolated from Caralluma retrospiciens with topoisomerase II attributes apoptosis in breast cancer cell line. Saudi J Biol Sci 2018; 25:1826-1833. [PMID: 30591807 PMCID: PMC6303161 DOI: 10.1016/j.sjbs.2018.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/01/2022] Open
Abstract
The alterations in somatic genomes that controls the mechanism of cell division as a main cause of cancer, and then the drug that specifically toxic to the cancer cells further complicates the process of the development of the widely effective potential anticancer drug. The side effects of the drug as well as the radiotherapy used for the treatment of cancer is severe; therefore, the search of the natural products from the sources of wild plants having anticancer potential is become immense importance today. The ethno-medicinal survey undertaken in Al-Fayfa and Wadi-E-Damad region of southern Saudi Arabia revealed that the Caralluma retrospiciens (Ehrenb.) N.E.Br. (family Apocynaceae) is being used for the treatment of cancer by the native inhabitants. The biological evaluation of anticancer potential of bioassay-guided fractionations of methanolic extract of whole plant of C. retrospiciens against human breast adenocarcinoma cell line (MCF-7) followed by characterization using spectroscopic methods confirmed the presence of methyl β-lilacinobioside, a novel active constituent reported for the first time from C. retrospiciens, is capable of inhibition of cell proliferation and induction of apoptosis in MCF-7 cells by regulating ROS mediated autophagy, and thus validated the folkloric claim. Based on a small-scale computational target screening, Topoisomerase II was identified as the potential binding target of methyl β-lilacinobioside.
Collapse
Affiliation(s)
- Mohammad Ibrahim Alallah
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad Alhemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fang Bai
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Ramzi Ahmed Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Pedrote MM, de Oliveira GAP, Felix AL, Mota MF, Marques MDA, Soares IN, Iqbal A, Norberto DR, Gomes AMO, Gratton E, Cino EA, Silva JL. Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer. J Biol Chem 2018; 293:11374-11387. [PMID: 29853637 PMCID: PMC6065177 DOI: 10.1074/jbc.ra118.003285] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
The functionality of the tumor suppressor p53 is altered in more than 50% of human cancers, and many individuals with cancer exhibit amyloid-like buildups of aggregated p53. An understanding of what triggers the pathogenic amyloid conversion of p53 is required for the further development of cancer therapies. Here, perturbation of the p53 core domain (p53C) with subdenaturing concentrations of guanidine hydrochloride and high hydrostatic pressure revealed native-like molten globule (MG) states, a subset of which were highly prone to amyloidogenic aggregation. We found that MG conformers of p53C, probably representing population-weighted averages of multiple states, have different volumetric properties, as determined by pressure perturbation and size-exclusion chromatography. We also found that they bind the fluorescent dye 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and have a native-like tertiary structure that occludes the single Trp residue in p53. Fluorescence experiments revealed conformational changes of the single Trp and Tyr residues before p53 unfolding and the presence of MG conformers, some of which were highly prone to aggregation. p53C exhibited marginal unfolding cooperativity, which could be modulated from unfolding to aggregation pathways with chemical or physical forces. We conclude that trapping amyloid precursor states in solution is a promising approach for understanding p53 aggregation in cancer. Our findings support the use of single-Trp fluorescence as a probe for evaluating p53 stability, effects of mutations, and the efficacy of therapeutics designed to stabilize p53.
Collapse
Affiliation(s)
- Murilo M Pedrote
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908.
| | - Adriani L Felix
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Michelle F Mota
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Mayra de A Marques
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Iaci N Soares
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Anwar Iqbal
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Douglas R Norberto
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Andre M O Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, California 92697-2717
| | - Elio A Cino
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil.
| |
Collapse
|
28
|
Baud MGJ, Bauer MR, Verduci L, Dingler FA, Patel KJ, Horil Roy D, Joerger AC, Fersht AR. Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant Y220C and show anticancer activity in p53-Y220C cell lines. Eur J Med Chem 2018; 152:101-114. [PMID: 29702446 PMCID: PMC5986712 DOI: 10.1016/j.ejmech.2018.04.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Many cancers have the tumor suppressor p53 inactivated by mutation, making reactivation of mutant p53 with small molecules a promising strategy for the development of novel anticancer therapeutics. The oncogenic p53 mutation Y220C, which accounts for approximately 100,000 cancer cases per year, creates an extended surface crevice in the DNA-binding domain, which destabilizes p53 and causes denaturation and aggregation. Here, we describe the structure-guided design of a novel class of small-molecule Y220C stabilizers and the challenging synthetic routes developed in the process. The synthesized chemical probe MB710, an aminobenzothiazole derivative, binds tightly to the Y220C pocket and stabilizes p53-Y220C in vitro. MB725, an ethylamide analogue of MB710, induced selective viability reduction in several p53-Y220C cancer cell lines while being well tolerated in control cell lines. Reduction of viability correlated with increased and selective transcription of p53 target genes such as BTG2, p21, PUMA, FAS, TNF, and TNFRSF10B, which promote apoptosis and cell cycle arrest, suggesting compound-mediated transcriptional activation of the Y220C mutant. Our data provide a framework for the development of a class of potent, non-toxic compounds for reactivating the Y220C mutant in anticancer therapy.
Collapse
Affiliation(s)
- Matthias G J Baud
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom; Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Matthias R Bauer
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Lorena Verduci
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Felix A Dingler
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Ketan J Patel
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Deeptee Horil Roy
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Andreas C Joerger
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom; German Cancer Consortium (DKTK), German Cancer Center (DKFZ), 69120 Heidelberg, Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
| | - Alan R Fersht
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom.
| |
Collapse
|
29
|
Stiewe T, Haran TE. How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist Updat 2018; 38:27-43. [PMID: 29857816 DOI: 10.1016/j.drup.2018.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/31/2022]
Abstract
The tumor suppressive transcription factor p53 regulates a wide array of cellular processes that confer upon cells an essential protection against cancer development. Wild-type p53 regulates gene expression by directly binding to DNA in a sequence-specific manner. p53 missense mutations are the most common mutations in malignant cells and can be regarded as synonymous with anticancer drug resistance and poor prognosis. The current review provides an overview of how the extraordinary variety of more than 2000 different mutant p53 proteins, known as the p53 mutome, affect the interaction of p53 with DNA. We discuss how the classification of p53 mutations to loss of function (LOF), gain of function (GOF), and dominant-negative (DN) inhibition of a remaining wild-type allele, hides a complex p53 mutation spectrum that depends on the distinctive nature of each mutant protein, requiring different therapeutic strategies for each mutant p53 protein. We propose to regard the different mutant p53 categories as continuous variables, that may not be independent of each other. In particular, we suggest here to consider GOF mutations as a special subset of LOF mutations, especially when mutant p53 binds to DNA through cooperation with other transcription factors, and we present a model for GOF mechanism that consolidates many observations on the GOF phenomenon. We review how novel mutant p53 targeting approaches aim to restore a wild-type-like DNA interaction and to overcome resistance to cancer therapy.
Collapse
Affiliation(s)
- Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35037 Marburg, Germany.
| | - Tali E Haran
- Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
30
|
Iglesias J, Saen‐oon S, Soliva R, Guallar V. Computational structure‐based drug design: Predicting target flexibility. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | | | - Victor Guallar
- Life Science DepartmentBarcelonaSpain
- ICREA, Passeig Lluís Companys 23BarcelonaSpain
| |
Collapse
|
31
|
Silva JL, Cino EA, Soares IN, Ferreira VF, A. P. de Oliveira G. Targeting the Prion-like Aggregation of Mutant p53 to Combat Cancer. Acc Chem Res 2018; 51:181-190. [PMID: 29260852 DOI: 10.1021/acs.accounts.7b00473] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prion-like behavior of several amyloidogenic proteins has been demonstrated in recent years. Despite having functional roles in some cases, irregular aggregation can have devastating consequences. The most commonly known amyloid diseases are Alzheimer's, Parkinson's, and Transmissible Spongiform Encephalopathies (TSEs). The pathophysiology of prion-like diseases involves the structural transformation of wild-type (wt) proteins to transmissible forms that can convert healthy proteins, generating aggregates. The mutant form of tumor suppressor protein, p53, has recently been shown to exhibit prion-like properties. Within the context of p53 aggregation and the search for ways to avert it, this review emphasizes discoveries, approaches, and research from our laboratory and others. Although its standard functions are strongly connected to tumor suppression, p53 mutants and aggregates are involved in cancer progression. p53 aggregates are heterogeneous assemblies composed of amorphous aggregates, oligomers, and amyloid-like fibrils. Evidence of these structures in tumor tissues, the in vitro capability for p53 mutants to coaggregate with wt protein, and the detection of cell-to-cell transmission indicate that cancer has the basic characteristics of prion and prion-like diseases. Various approaches aim to restore p53 functions in cancer. Methods include the use of small-molecule and peptide stabilizers of mutant p53, zinc administration, gene therapy, alkylating and DNA intercalators, and blockage of p53-MDM2 interaction. A primary challenge in developing small-molecule inhibitors of p53 aggregation is the large number of p53 mutations. Another issue is the inability to recover p53 function by dissociating mature fibrils. Consequently, efforts have emerged to target the intermediate species of the aggregation reaction. Φ-value analysis has been used to characterize the kinetics of the early phases of p53 aggregation. Our experiments using high hydrostatic pressure (HHP) and chemical denaturants have helped to clarify excited conformers of p53 that are prone to aggregation. Molecular dynamics (MD) and phasor analysis of single Trp fluorescence signals point toward the presence of preamyloidogenic conformations of p53, which are not observed for p63 or p73. Exploring the features of competent preamyloidogenic states of wt and different p53 mutants may provide a framework for designing personalized drugs for the restoration of p53 function. Protection of backbone hydrogen bonds (BHBs) has been shown to be an important factor for the stability of amyloidogenic proteins and was employed to identify and stabilize the structural defect resulting from the p53 Y220C mutation. Using MD simulations, we compared BHB protection factors between p53 family members to determine the donor-acceptor pairs in p53 that exhibit lower protection. The identification of structurally vulnerable sites in p53 should provide new insights into rational designs that can rapidly be screened using our experimental methodology. Through continued and combined efforts, the outlook is positive for the development of strategies for regulating p53 amyloid transformation.
Collapse
Affiliation(s)
- Jerson L. Silva
- Instituto
de Bioquı́mica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Elio A. Cino
- Departamento
de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo
Horizonte, Brazil
| | - Iaci N. Soares
- Instituto
de Bioquı́mica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Vitor F. Ferreira
- Departamento
de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, 24220-900 Rio de Janeiro, Brazil
| | - Guilherme A. P. de Oliveira
- Instituto
de Bioquı́mica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Department
of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908-0733, United States
| |
Collapse
|
32
|
Simon L, Abdul Salam AA, Madan Kumar S, Shilpa T, Srinivasan KK, Byrappa K. Synthesis, anticancer, structural, and computational docking studies of 3-benzylchroman-4-one derivatives. Bioorg Med Chem Lett 2017; 27:5284-5290. [PMID: 29074256 DOI: 10.1016/j.bmcl.2017.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/28/2022]
Abstract
A series of 3-Benzylchroman-4-ones were synthesized and screened for anticancer activity by MTT assay. The compounds were evaluated against two cancerous cell lines BT549 (human breast carcinoma), HeLa (human cervical carcinoma), and one noncancerous cell line vero (normal kidney epithelial cells). 3b was found to be the most active molecule against BT549 cells (IC50 = 20.1 µM) and 3h against HeLa cells (IC50 = 20.45 µM). 3b also exhibited moderate activity against HeLa cells (IC50 = 42.8 µM). The molecular structures of 3h and 3i were solved by single crystal X-ray crystallographic technique. Additionally, the molecular docking studies between the tumour suppressor protein p53 with the lead compound 3h, which exhibited better anticancer activity against HeLa cells was examined.
Collapse
Affiliation(s)
- Lalitha Simon
- Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, India.
| | - S Madan Kumar
- PURSE Lab, Mangalagangotri, Mangalore University, Mangalore 574 199, India
| | - T Shilpa
- Department of Atomic and Molecular Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
| | - K K Srinivasan
- Department of Chemistry, Shri Madhwa Vadiraja Institute of Technology and Management, Vishwothama Nagar, Bantakal, Udupi 576 115, India
| | - K Byrappa
- Department of Material Science, Mangalagangotri, Mangalore University, Mangalore 574 199, India
| |
Collapse
|
33
|
Tiwari S, Awasthi M, Singh S, Pandey VP, Dwivedi UN. Modulation of interaction of mutant TP53 and wild type BRCA1 by alkaloids: a computational approach towards targeting protein-protein interaction as a futuristic therapeutic intervention strategy for breast cancer impediment. J Biomol Struct Dyn 2017; 36:3376-3387. [PMID: 28978265 DOI: 10.1080/07391102.2017.1388286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein-protein interactions (PPI) are a new emerging class of novel therapeutic targets. In order to probe these interactions, computational tools provide a convenient and quick method towards the development of therapeutics. Keeping this in view the present study was initiated to analyse interaction of tumour suppressor protein p53 (TP53) and breast cancer associated protein (BRCA1) as promising target against breast cancer. Using computational approaches such as protein-protein docking, hot spot analyses, molecular docking and molecular dynamics simulation (MDS), stepwise analyses of the interactions of the wild type and mutant TP53 with that of wild type BRCA1 and their modulation by alkaloids were done. Protein-protein docking method was used to generate both wild type and mutant complexes of TP53-BRCA1. Subsequently, the complexes were docked using sixteen different alkaloids, fulfilling ADMET and Lipinski's rule of five criteria, and were compared with that of a well-known inhibitor of PPI, namely nutlin. The alkaloid dicentrine was found to be the best docked alkaloid among all the docked alklaloids as well as that of nutlin. Furthermore, MDS analyses of both wild type and mutant complexes with the best docked alkaloid i.e. dicentrine, revealed higher stability of mutant complex than that of the wild one, in terms of average RMSD, RMSF and binding free energy, corroborating the results of docking. Results suggested more pronounced interaction of BRCA1 with mutant TP53 leading to increased expression of mutated TP53 thus showing a dominant negative gain of function and hampering wild type TP53 function leading to tumour progression.
Collapse
Affiliation(s)
- Sameeksha Tiwari
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| | - Manika Awasthi
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| | - Swati Singh
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| | - Veda P Pandey
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| | - Upendra N Dwivedi
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| |
Collapse
|
34
|
Bernini A, Galderisi S, Spiga O, Bernardini G, Niccolai N, Manetti F, Santucci A. Toward a generalized computational workflow for exploiting transient pockets as new targets for small molecule stabilizers: Application to the homogentisate 1,2-dioxygenase mutants at the base of rare disease Alkaptonuria. Comput Biol Chem 2017; 70:133-141. [PMID: 28869836 DOI: 10.1016/j.compbiolchem.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Alkaptonuria (AKU) is an inborn error of metabolism where mutation of homogentisate 1,2-dioxygenase (HGD) gene leads to a deleterious or misfolded product with subsequent loss of enzymatic degradation of homogentisic acid (HGA) whose accumulation in tissues causes ochronosis and degeneration. There is no licensed therapy for AKU. Many missense mutations have been individuated as responsible for quaternary structure disruption of the native hexameric HGD. A new approach to the treatment of AKU is here proposed aiming to totally or partially rescue enzyme activity by targeting of HGD with pharmacological chaperones, i.e. small molecules helping structural stability. Co-factor pockets from oligomeric proteins have already been successfully exploited as targets for such a strategy, but no similar sites are present at HGD surface; hence, transient pockets are here proposed as a target for pharmacological chaperones. Transient pockets are detected along the molecular dynamics trajectory of the protein and filtered down to a set of suitable sites for structural stabilization by mean of biochemical and pharmacological criteria. The result is a computational workflow relevant to other inborn errors of metabolism requiring rescue of oligomeric, misfolded enzymes.
Collapse
Affiliation(s)
- Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| | - Silvia Galderisi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Neri Niccolai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
35
|
Doveston RG, Kuusk A, Andrei SA, Leysen S, Cao Q, Castaldi MP, Hendricks A, Brunsveld L, Chen H, Boyd H, Ottmann C. Small-molecule stabilization of the p53 - 14-3-3 protein-protein interaction. FEBS Lett 2017. [DOI: 10.1002/1873-3468.12723] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard G. Doveston
- Laboratory of Chemical Biology; Department of Biomedical Engineering and Institute for Complex Molecular Systems; Eindhoven University of Technology; The Netherlands
| | - Ave Kuusk
- Laboratory of Chemical Biology; Department of Biomedical Engineering and Institute for Complex Molecular Systems; Eindhoven University of Technology; The Netherlands
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit; AstraZeneca R&D Gothenburg; Mölndal Sweden
| | - Sebastian A. Andrei
- Laboratory of Chemical Biology; Department of Biomedical Engineering and Institute for Complex Molecular Systems; Eindhoven University of Technology; The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology; Department of Biomedical Engineering and Institute for Complex Molecular Systems; Eindhoven University of Technology; The Netherlands
| | - Qing Cao
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Waltham MA USA
| | - Maria P. Castaldi
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Waltham MA USA
| | - Adam Hendricks
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Waltham MA USA
| | - Luc Brunsveld
- Laboratory of Chemical Biology; Department of Biomedical Engineering and Institute for Complex Molecular Systems; Eindhoven University of Technology; The Netherlands
| | - Hongming Chen
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit; AstraZeneca R&D Gothenburg; Mölndal Sweden
| | - Helen Boyd
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit; AstraZeneca R&D Gothenburg; Mölndal Sweden
| | - Christian Ottmann
- Laboratory of Chemical Biology; Department of Biomedical Engineering and Institute for Complex Molecular Systems; Eindhoven University of Technology; The Netherlands
- Department of Chemistry; University of Duisburg-Essen; Germany
| |
Collapse
|
36
|
Chillemi G, Kehrloesser S, Bernassola F, Desideri A, Dötsch V, Levine AJ, Melino G. Structural Evolution and Dynamics of the p53 Proteins. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a028308. [PMID: 27091942 DOI: 10.1101/cshperspect.a028308] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The family of the p53 tumor suppressive transcription factors includes p73 and p63 in addition to p53 itself. Given the high degree of amino-acid-sequence homology and structural organization shared by the p53 family members, they display some common features (i.e., induction of cell death, cell-cycle arrest, senescence, and metabolic regulation in response to cellular stress) as well as several distinct properties. Here, we describe the structural evolution of the family members with recent advances on the molecular dynamic studies of p53 itself. A crucial role of the carboxy-terminal domain in regulating the properties of the DNA-binding domain (DBD) supports an induced-fit mechanism, in which the binding of p53 on individual promoters is preferentially regulated by the KOFF over KON.
Collapse
Affiliation(s)
- Giovanni Chillemi
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Rome 00185, Italy
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," 00133 Rome, Italy
| | | | - Volker Dötsch
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Arnold J Levine
- Institute for Advanced Study, Princeton, New Jersey 08540.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
37
|
Lambrughi M, De Gioia L, Gervasio FL, Lindorff-Larsen K, Nussinov R, Urani C, Bruschi M, Papaleo E. DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions. Nucleic Acids Res 2016; 44:9096-9109. [PMID: 27604871 PMCID: PMC5100575 DOI: 10.1093/nar/gkw770] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/15/2022] Open
Abstract
Binding-induced conformational changes of a protein at regions distant from the binding site may play crucial roles in protein function and regulation. The p53 tumour suppressor is an example of such an allosterically regulated protein. Little is known, however, about how DNA binding can affect distal sites for transcription factors. Furthermore, the molecular details of how a local perturbation is transmitted through a protein structure are generally elusive and occur on timescales hard to explore by simulations. Thus, we employed state-of-the-art enhanced sampling atomistic simulations to unveil DNA-induced effects on p53 structure and dynamics that modulate the recruitment of cofactors and the impact of phosphorylation at Ser215. We show that DNA interaction promotes a conformational change in a region 3 nm away from the DNA binding site. Specifically, binding to DNA increases the population of an occluded minor state at this distal site by more than 4-fold, whereas phosphorylation traps the protein in its major state. In the minor conformation, the interface of p53 that binds biological partners related to p53 transcription-independent functions is not accessible. Significantly, our study reveals a mechanism of DNA-mediated protection of p53 from interactions with partners involved in the p53 transcription-independent signalling. This also suggests that conformational dynamics is tightly related to p53 signalling.
Collapse
Affiliation(s)
- Matteo Lambrughi
- Computational Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Francesco Luigi Gervasio
- Department of Chemistry and Institute of Structural and Molecular Biology, University College London, London WC1H 0AJ, UK
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chiara Urani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Maurizio Bruschi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Elena Papaleo
- Computational Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Full-length p53 tetramer bound to DNA and its quaternary dynamics. Oncogene 2016; 36:1451-1460. [PMID: 27641333 DOI: 10.1038/onc.2016.321] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/15/2016] [Indexed: 01/04/2023]
Abstract
P53 is a major tumor suppressor that is mutated and inactivated in ~50% of all human cancers. Thus, reactivation of mutant p53 using small molecules has been a long sought-after anticancer therapeutic strategy. Full structural characterization of the full-length oligomeric p53 is challenging because of its complex architecture and multiple highly flexible regions. To explore p53 structural dynamics, here we developed a series of atomistic integrative models with available crystal structures of the full-length p53 (fl-p53) tetramer bound to three different DNA sequences: a p21 response element, a puma response element and a nonspecific DNA sequence. Explicitly solvated, all-atom molecular dynamics simulations of the three complexes (totaling nearly 1 μs of aggregate simulation time) yield final structures consistent with electron microscopy maps and, for the first time, show the direct interactions of the p53 C-terminal with DNA. Through a collective principal component analysis, we identify sequence-dependent differential quaternary binding modes of the p53 tetramer interfacing with DNA. Additionally, L1 loop dynamics of fl-p53 in the presence of DNA is revealed, and druggable pockets of p53 are identified via solvent mapping to aid future drug discovery studies.
Collapse
|
39
|
Cino EA, Soares IN, Pedrote MM, de Oliveira GAP, Silva JL. Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds. Sci Rep 2016; 6:32535. [PMID: 27600721 PMCID: PMC5013286 DOI: 10.1038/srep32535] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/10/2016] [Indexed: 11/23/2022] Open
Abstract
The p53 family of proteins is comprised of p53, p63 and p73. Because the p53 DNA binding domain (DBD) is naturally unstable and possesses an amyloidogenic sequence, it is prone to form amyloid fibrils, causing loss of functions. To develop p53 therapies, it is necessary to understand the molecular basis of p53 instability and aggregation. Light scattering, thioflavin T (ThT) and high hydrostatic pressure (HHP) assays showed that p53 DBD aggregates faster and to a greater extent than p63 and p73 DBDs, and was more susceptible to denaturation. The aggregation tendencies of p53, p63, and p73 DBDs were strongly correlated with their thermal stabilities. Molecular Dynamics (MD) simulations indicated specific regions of structural heterogeneity unique to p53, which may be promoted by elevated incidence of exposed backbone hydrogen bonds (BHBs). The results indicate regions of structural vulnerability in the p53 DBD, suggesting new targetable sites for modulating p53 stability and aggregation, a potential approach to cancer therapy.
Collapse
Affiliation(s)
- Elio A Cino
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Iaci N Soares
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Murilo M Pedrote
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, RJ, Brazil
| |
Collapse
|
40
|
Németh E, Balogh RK, Borsos K, Czene A, Thulstrup PW, Gyurcsik B. Intrinsic protein disorder could be overlooked in cocrystallization conditions: An SRCD case study. Protein Sci 2016; 25:1977-1988. [PMID: 27508941 DOI: 10.1002/pro.3010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022]
Abstract
X-ray diffractometry dominates protein studies, as it can provide 3D structures of these diverse macromolecules or their molecular complexes with interacting partners: substrates, inhibitors, and/or cofactors. Here, we show that under cocrystallization conditions the results could reflect induced protein folds instead of the (partially) disordered original structures. The analysis of synchrotron radiation circular dichroism spectra revealed that the Im7 immunity protein stabilizes the native-like solution structure of unfolded NColE7 nuclease mutants via complex formation. This is consistent with the fact that among the several available crystal structures with its inhibitor or substrate, all NColE7 structures are virtually the same. Our results draw attention to the possible structural consequence of protein modifications, which is often hidden by compensational effects of intermolecular interactions. The growing evidence on the importance of protein intrinsic disorder thus, demands more extensive complementary experiments in solution phase with the unligated form of the protein of interest.
Collapse
Affiliation(s)
- Eszter Németh
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, 6720, Hungary.,MTA-SZTE, Bioinorganic Chemistry Research Group, Hungarian Academy of Sciences, Szeged, 6720, Hungary
| | - Ria K Balogh
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, 6720, Hungary
| | - Katalin Borsos
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, 6720, Hungary
| | - Anikó Czene
- MTA-SZTE, Bioinorganic Chemistry Research Group, Hungarian Academy of Sciences, Szeged, 6720, Hungary
| | - Peter W Thulstrup
- Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, 6720, Hungary. .,MTA-SZTE, Bioinorganic Chemistry Research Group, Hungarian Academy of Sciences, Szeged, 6720, Hungary.
| |
Collapse
|
41
|
Bauer MR, Jones RN, Baud MGJ, Wilcken R, Boeckler FM, Fersht AR, Joerger AC, Spencer J. Harnessing Fluorine-Sulfur Contacts and Multipolar Interactions for the Design of p53 Mutant Y220C Rescue Drugs. ACS Chem Biol 2016; 11:2265-74. [PMID: 27267810 PMCID: PMC4994063 DOI: 10.1021/acschembio.6b00315] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Many oncogenic mutants
of the tumor suppressor p53 are conformationally unstable, including
the frequently occurring Y220C mutant. We have previously developed
several small-molecule stabilizers of this mutant. One of these molecules,
PhiKan083, 1-(9-ethyl-9H-carbazole-3-yl)-N-methylmethanamine,
binds to a mutation-induced surface crevice with a KD = 150 μM, thereby increasing the melting temperature
of the protein and slowing its rate of aggregation. Incorporation
of fluorine atoms into small molecule ligands can substantially improve
binding affinity to their protein targets. We have, therefore, harnessed
fluorine–protein interactions to improve the affinity of this
ligand. Step-wise introduction of fluorines at the carbazole ethyl
anchor, which is deeply buried within the binding site in the Y220C–PhiKan083
complex, led to a 5-fold increase in affinity for a 2,2,2-trifluoroethyl
anchor (ligand efficiency of 0.3 kcal mol–1 atom–1). High-resolution crystal structures of the Y220C–ligand
complexes combined with quantum chemical calculations revealed favorable
interactions of the fluorines with protein backbone carbonyl groups
(Leu145 and Trp146) and the sulfur of Cys220 at the mutation site.
Affinity gains were, however, only achieved upon trifluorination,
despite favorable interactions of the mono- and difluorinated anchors
with the binding pocket, indicating a trade-off between energetically
favorable protein–fluorine interactions and increased desolvation
penalties. Taken together, the optimized carbazole scaffold provides
a promising starting point for the development of high-affinity ligands
to reactivate the tumor suppressor function of the p53 mutant Y220C
in cancer cells.
Collapse
Affiliation(s)
- Matthias R. Bauer
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Rhiannon N. Jones
- Department
of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, United Kingdom
| | - Matthias G. J. Baud
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Rainer Wilcken
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Frank M. Boeckler
- Molecular Design and Pharmaceutical Biophysics,
Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Alan R. Fersht
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Andreas C. Joerger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, United Kingdom
- Department
of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, United Kingdom
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe-University and Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - John Spencer
- Department
of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, United Kingdom
| |
Collapse
|
42
|
Joerger AC, Fersht AR. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annu Rev Biochem 2016; 85:375-404. [DOI: 10.1146/annurev-biochem-060815-014710] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany;
| | - Alan R. Fersht
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
43
|
Cox OB, Krojer T, Collins P, Monteiro O, Talon R, Bradley A, Fedorov O, Amin J, Marsden BD, Spencer J, von Delft F, Brennan PE. A poised fragment library enables rapid synthetic expansion yielding the first reported inhibitors of PHIP(2), an atypical bromodomain. Chem Sci 2016; 7:2322-2330. [PMID: 29910922 PMCID: PMC5977933 DOI: 10.1039/c5sc03115j] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/21/2015] [Indexed: 01/08/2023] Open
Abstract
Research into the chemical biology of bromodomains has been driven by the development of acetyl-lysine mimetics. The ligands are typically anchored by binding to a highly conserved asparagine residue. Atypical bromodomains, for which the asparagine is mutated, have thus far proven elusive targets, including PHIP(2) whose parent protein, PHIP, has been linked to disease progression in diabetes and cancers. The PHIP(2) binding site contains a threonine in place of asparagine, and solution screening have yielded no convincing hits. We have overcome this hurdle by combining the sensitivity of X-ray crystallography, used as the primary fragment screen, with a strategy for rapid follow-up synthesis using a chemically-poised fragment library, which allows hits to be readily modified by parallel chemistry both peripherally and in the core. Our approach yielded the first reported hit compounds of PHIP(2) with measurable IC50 values by an AlphaScreen competition assay. The follow-up libraries of four poised fragment hits improved potency into the sub-mM range while showing good ligand efficiency and detailed structural data.
Collapse
Affiliation(s)
- Oakley B Cox
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , Oxford OX3 7FZ , UK .
- Diamond Light Source (DLS) , Harwell Science and Innovation Campus , Didcot , OX11 0DE , UK .
| | - Tobias Krojer
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
| | - Patrick Collins
- Diamond Light Source (DLS) , Harwell Science and Innovation Campus , Didcot , OX11 0DE , UK .
| | - Octovia Monteiro
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , Oxford OX3 7FZ , UK .
| | - Romain Talon
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
| | - Anthony Bradley
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
| | - Oleg Fedorov
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , Oxford OX3 7FZ , UK .
| | - Jahangir Amin
- Department of Chemistry , School of Life Sciences , University of Sussex , Brighton , BN1 9QJ , UK
| | - Brian D Marsden
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
- Kennedy Institute of Rheumatology , Nuffield Department of Orthopaedics , Rheumatology and Musculoskeletal Sciences , University of Oxford , Roosevelt Drive, Headington , Oxford OX3 7FY , UK
| | - John Spencer
- Department of Chemistry , School of Life Sciences , University of Sussex , Brighton , BN1 9QJ , UK
| | - Frank von Delft
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
- Diamond Light Source (DLS) , Harwell Science and Innovation Campus , Didcot , OX11 0DE , UK .
- Department of Biochemistry , University of Johannesburg , Aukland Park 2006 , South Africa
| | - Paul E Brennan
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , Oxford OX3 7FZ , UK .
| |
Collapse
|