1
|
Rosa RSL, Leal da Silva M, Bernardi RC. Atomistic Insights into gp82 Binding: A Microsecond, Million-Atom Exploration of Trypanosoma cruzi Host-Cell Invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619626. [PMID: 39484421 PMCID: PMC11526924 DOI: 10.1101/2024.10.22.619626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi , affects millions globally, leading to severe cardiac and gastrointestinal complications in its chronic phase. The invasion of host cells by T. cruzi is mediated by the interaction between the parasite's glycoprotein gp82 and the human receptor lysosome-associated membrane protein 2 (LAMP2). While experimental studies have identified a few residues involved in this interaction, a comprehensive molecular-level understanding has been lacking. In this study, we present a 1.44-million-atom computational model of the gp82 complex, including over 3,300 lipids, glycosylation sites, and full molecular representations of gp82 and LAMP2, making it the most complete model of a parasite-host interaction to date. Using microsecond-long molecular dynamics simulations and dynamic network analysis, we identified critical residue interactions, including novel regions of contact that were previously uncharacterized. Our findings also highlight the significance of the transmembrane domain of LAMP2 in stabilizing the complex. These insights extend beyond traditional hydrogen bond interactions, revealing a complex network of cooperative motions that facilitate T. cruzi invasion. This study not only confirms key experimental observations but also uncovers new molecular targets for therapeutic intervention, offering a potential pathway to disrupt T. cruzi infection and combat Chagas disease.
Collapse
|
2
|
Rimbert A, Duval D, Trujillano D, Kyndt F, Jobbe-Duval A, Lindenbaum P, Tucker N, Lecointe S, Labbé P, Toquet C, Karakachoff M, Roussel JC, Baufreton C, Bruneval P, Cueff C, Donal E, Redon R, Olaso R, Boland A, Deleuze JF, Estivill X, Slaugenhaupt S, Markwald RR, Norris RA, Verhoye JP, Probst V, Hagège A, Levine R, Jeunemaitre X, Marec HL, Capoulade R, Bouatia-Naji N, Dina C, Milan D, Ossowski S, Schott JJ, Mérot J, Scouarnec SL, Tourneau TL. Isolated prolapse of the posterior mitral valve leaflet: phenotypic refinement, heritability and genetic etiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.16.24315096. [PMID: 39484266 PMCID: PMC11527059 DOI: 10.1101/2024.10.16.24315096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
BACKGROUND Isolated posterior leaflet mitral valve prolapse (PostMVP), a common form of MVP, often referred as fibroelastic deficiency, is considered a degenerative disease. PostMVP patients are usually asymptomatic and often undiagnosed until chordal rupture. The present study aims to characterize familial PostMVP phenotype and familial recurrence, its genetic background, and the pathophysiological processes involved. METHODS We prospectively enrolled 284 unrelated MVP probands, of whom 178 (63%) had bi-leaflet MVP and 106 had PostMVP (37%). Familial screening within PostMVP patients allowed the identification of 20 families with inherited forms of PostMVP for whom whole genome sequencing was carried out in probands. Functional in vivo and in vitro investigations were performed in zebrafishand in Hek293T cells. RESULTS In the 20 families with inherited form of PostMVP, 38.8% of relatives had a MVP/prodromal form, mainly of the posterior leaflet, with transmission consistent with an autosomal dominant mode of inheritance. Compared with control relatives, PostMVP family patients have clear posterior leaflet dystrophy on echocardiography. Patients with PostMVP present a burden of rare genetic variants in ARHGAP24. ARHGAP24 encodes the filamin A binding RhoGTPase-activating protein FilGAP and its silencing in zebrafish leads to atrioventricular regurgitation. In vitro functional studies showed that variants of FilGAP, found in PostMVP families, are loss-of-function variants impairing cellular adhesion and mechano-transduction capacities. CONCLUSIONS PostMVP should not only be considered an isolated degenerative pathology but as a specific heritable phenotypic trait with genetic and functional pathophysiological origins. The identification of loss-of-function variants in ARHGAP24 further reinforces the pivotal role of mechano-transduction pathways in the pathogenesis of MVP. CLINICAL PERSPECTIVE Isolated posterior mitral valve prolapse (PostMVP), often called fibro-elastic deficiency MVP, is at least in some patients, a specific inherited phenotypic traitPostMVP has both genetic and functional pathophysiological origins Genetic variants in the ARHGAP24 gene, which encodes for the FilGAP protein, cause progressive Post MVP in familial cases, and impair cell adhesion and mechano-transduction capacities.
Collapse
|
3
|
Gomes PSFC, Forrester M, Pace M, Gomes DEB, Bernardi RC. May the force be with you: The role of hyper-mechanostability of the bone sialoprotein binding protein during early stages of Staphylococci infections. Front Chem 2023; 11:1107427. [PMID: 36846849 PMCID: PMC9944720 DOI: 10.3389/fchem.2023.1107427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
The bone sialoprotein-binding protein (Bbp) is a mechanoactive MSCRAMM protein expressed on the surface of Staphylococcus aureus that mediates adherence of the bacterium to fibrinogen-α (Fgα), a component of the bone and dentine extracellular matrix of the host cell. Mechanoactive proteins like Bbp have key roles in several physiological and pathological processes. Particularly, the Bbp: Fgα interaction is important in the formation of biofilms, an important virulence factor of pathogenic bacteria. Here, we investigated the mechanostability of the Bbp: Fgα complex using in silico single-molecule force spectroscopy (SMFS), in an approach that combines results from all-atom and coarse-grained steered molecular dynamics (SMD) simulations. Our results show that Bbp is the most mechanostable MSCRAMM investigated thus far, reaching rupture forces beyond the 2 nN range in typical experimental SMFS pulling rates. Our results show that high force-loads, which are common during initial stages of bacterial infection, stabilize the interconnection between the protein's amino acids, making the protein more "rigid". Our data offer new insights that are crucial on the development of novel anti-adhesion strategies.
Collapse
Affiliation(s)
- Priscila S. F. C. Gomes
- Department of Physics, College of Sciences and Mathematics, Auburn University, Auburn, AL, United States
| | - Meredith Forrester
- Department of Physics, College of Sciences and Mathematics, Auburn University, Auburn, AL, United States
| | - Margaret Pace
- Department of Physics, College of Sciences and Mathematics, Auburn University, Auburn, AL, United States
| | - Diego E. B. Gomes
- Department of Physics, College of Sciences and Mathematics, Auburn University, Auburn, AL, United States
| | | |
Collapse
|
4
|
Delwarde C, Toquet C, Aumond P, Kayvanjoo AH, Foucal A, Le Vely B, Baudic M, Lauzier B, Blandin S, Véziers J, Paul-Gilloteaux P, Lecointe S, Baron E, Massaiu I, Poggio P, Rémy S, Anegon I, Le Marec H, Monassier L, Schott JJ, Mass E, Barc J, Le Tourneau T, Merot J, Capoulade R. Multimodality imaging and transciptomics to phenotype mitral valve dystrophy in a unique knock-in Filamin-A rat model. Cardiovasc Res 2022; 119:759-771. [PMID: 36001550 DOI: 10.1093/cvr/cvac136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Degenerative mitral valve dystrophy (MVD) leading to mitral valve prolapse is the most frequent form of MV disease, and there is currently no pharmacological treatment available. The limited understanding of the pathophysiological mechanisms leading to MVD limits our ability to identify therapeutic targets. This study aimed to reveal the main pathophysiological pathways involved in MVD via the multimodality imaging and transcriptomic analysis of the new and unique Knock-In (KI) rat model for the FlnA-P637Q mutation associated-MVD. METHODS AND RESULTS WT and KI rats were evaluated morphologically, functionally, and histologically between 3-week-old and 3-to-6-month-old based on Doppler echocardiography, 3D micro-computed tomography (microCT), and standard histology. RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC-seq) were performed on 3-week-old WT and KI mitral valves and valvular cells, respectively, to highlight the main signaling pathways associated with MVD. Echocardiographic exploration confirmed MV elongation (2.0 ± 0.1 mm versus 1.8 ± 0.1, p = 0.001), as well as MV thickening and prolapse in KI animals compared to WT at 3 weeks. 3D MV volume quantified by microCT was significantly increased in KI animals (+58% versus WT, p = 0.02). Histological analyses revealed a myxomatous remodeling in KI MV characterized by proteoglycans accumulation. A persistent phenotype was observed in adult KI rats. Signaling pathways related to extracellular matrix homeostasis, response to molecular stress, epithelial cell migration, endothelial to mesenchymal transition, chemotaxis and immune cell migration, were identified based on RNA-seq analysis. ATAC-seq analysis points to the critical role of TGF-β and inflammation in the disease. CONCLUSION The KI FlnA-P637Q rat model mimics human myxomatous mitral valve dystrophy, offering a unique opportunity to decipher pathophysiological mechanisms related to this disease. Extracellular matrix organization, epithelial cell migration, response to mechanical stress, and a central contribution of immune cells are highlighted as the main signaling pathways leading to myxomatous mitral valve dystrophy. Our findings pave the road to decipher underlying molecular mechanisms and the specific role of distinct cell populations in this context.
Collapse
Affiliation(s)
- Constance Delwarde
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Claire Toquet
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Pascal Aumond
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Amir Hossein Kayvanjoo
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn; 53115 Bonn, Germany
| | - Adrien Foucal
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Benjamin Le Vely
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Manon Baudic
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Benjamin Lauzier
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Stéphanie Blandin
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UAR 3556, F-44000 Nantes, France
| | - Joëlle Véziers
- INSERM, UMR 1229, RMeS, CHU Nantes PHU4 OTONN, Nantes Univ, Nantes, France
| | - Perrine Paul-Gilloteaux
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France.,Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UAR 3556, F-44000 Nantes, France
| | - Simon Lecointe
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Estelle Baron
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | | | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Séverine Rémy
- INSERM UMR 1064-CR2TI, Transgenic Rats ImmunoPhenomic, Nantes, France
| | - Ignacio Anegon
- INSERM UMR 1064-CR2TI, Transgenic Rats ImmunoPhenomic, Nantes, France
| | - Hervé Le Marec
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Laurent Monassier
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire UR7296, Université de Strasbourg, Strasbourg, France
| | - Jean Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn; 53115 Bonn, Germany
| | - Julien Barc
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Thierry Le Tourneau
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Jean Merot
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Romain Capoulade
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| |
Collapse
|
5
|
Structure and Function of Filamin C in the Muscle Z-Disc. Int J Mol Sci 2020; 21:ijms21082696. [PMID: 32295012 PMCID: PMC7216277 DOI: 10.3390/ijms21082696] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Filamin C (FLNC) is one of three filamin proteins (Filamin A (FLNA), Filamin B (FLNB), and FLNC) that cross-link actin filaments and interact with numerous binding partners. FLNC consists of a N-terminal actin-binding domain followed by 24 immunoglobulin-like repeats with two intervening calpain-sensitive hinges separating R15 and R16 (hinge 1) and R23 and R24 (hinge-2). The FLNC subunit is dimerized through R24 and calpain cleaves off the dimerization domain to regulate mobility of the FLNC subunit. FLNC is localized in the Z-disc due to the unique insertion of 82 amino acid residues in repeat 20 and necessary for normal Z-disc formation that connect sarcomeres. Since phosphorylation of FLNC by PKC diminishes the calpain sensitivity, assembly, and disassembly of the Z-disc may be regulated by phosphorylation of FLNC. Mutations of FLNC result in cardiomyopathy and muscle weakness. Although this review will focus on the current understanding of FLNC structure and functions in muscle, we will also discuss other filamins because they share high sequence similarity and are better characterized. We will also discuss a possible role of FLNC as a mechanosensor during muscle contraction.
Collapse
|
6
|
Wade EM, Halliday BJ, Jenkins ZA, O'Neill AC, Robertson SP. The X‐linked filaminopathies: Synergistic insights from clinical and molecular analysis. Hum Mutat 2020; 41:865-883. [DOI: 10.1002/humu.24002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/30/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Emma M. Wade
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| | - Benjamin J. Halliday
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| | - Zandra A. Jenkins
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| | - Adam C. O'Neill
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| | - Stephen P. Robertson
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| |
Collapse
|
7
|
Sedlak SM, Schendel LC, Gaub HE, Bernardi RC. Streptavidin/biotin: Tethering geometry defines unbinding mechanics. SCIENCE ADVANCES 2020; 6:eaay5999. [PMID: 32232150 PMCID: PMC7096159 DOI: 10.1126/sciadv.aay5999] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/03/2020] [Indexed: 05/26/2023]
Abstract
Macromolecules tend to respond to applied forces in many different ways. Chemistry at high shear forces can be intriguing, with relatively soft bonds becoming very stiff in specific force-loading geometries. Largely used in bionanotechnology, an important case is the streptavidin (SA)/biotin interaction. Although SA's four subunits have the same affinity, we find that the forces required to break the SA/biotin bond depend strongly on the attachment geometry. With AFM-based single-molecule force spectroscopy (SMFS), we measured unbinding forces of biotin from different SA subunits to range from 100 to more than 400 pN. Using a wide-sampling approach, we carried out hundreds of all-atom steered molecular dynamics (SMD) simulations for the entire system, including molecular linkers. Our strategy revealed the molecular mechanism that causes a fourfold difference in mechanical stability: Certain force-loading geometries induce conformational changes in SA's binding pocket lowering the energy barrier, which biotin has to overcome to escape the pocket.
Collapse
Affiliation(s)
- Steffen M. Sedlak
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany
| | - Leonard C. Schendel
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany
| | - Hermann E. Gaub
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany
| | - Rafael C. Bernardi
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Xiao F, Wei Q, Wu B, Liu X, Mading A, Yang L, Li Y, Liu F, Pan X, Wang H. Clinical exome sequencing revealed that FLNC variants contribute to the early diagnosis of cardiomyopathies in infant patients. Transl Pediatr 2020; 9:21-33. [PMID: 32154132 PMCID: PMC7036646 DOI: 10.21037/tp.2019.12.02] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND FLNC encodes actin-binding protein and is mainly concentrated in skeletal and cardiac muscle. Mutations in FLNC were found in cardiomyopathies. To date, studies on FLNC-cardiomyopathies have mainly been reported in adults. There are limited studies that have investigated FLNC variants in pediatric patients with cardiomyopathies. METHODS We summarized the patients who carried rare variants of FLNC from May 2016 to May 2019 in the Center for Molecular Medicine, Children's Hospital of Fudan University, from clinical exome sequencing data. RESULTS A total of 5 patients with FLNC rare variants were included. Of them, 3 were male and 2 were female. The median age was 3 months (range from 19 days to 30 months). A1186V was a known pathogenic variant reported in pediatric patients with cardiomyopathy (PMID: 29858533), and the other four variants were novel. In the four novel variants, there are one splicing (c.2265+4del) and three missense (p.R441I, p.C1639Y, and p.A2648S). Two patients (patients 1 and 3) were diagnosed with restrictive cardiomyopathy, two patients (patients 2 and 5) were diagnosed with dilated cardiomyopathy, and one patient (patient 4) was diagnosed with arrhythmia. CONCLUSIONS All five patients have survived to date. In summary, FLNC rare variants identified by clinical exome sequencing provide genetic evidence to make early diagnosis of cardiomyopathy in infant patients.
Collapse
Affiliation(s)
- Feifan Xiao
- Depatment of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China.,Center for Molecular Medicine, Children's Hospital of Fudan University; Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China
| | - Qiufen Wei
- The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xu Liu
- Depatment of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Aiyao Mading
- Depatment of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Lin Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yan Li
- The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Fang Liu
- Cardiovascular center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xinnian Pan
- The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
9
|
Bernardi RC, Durner E, Schoeler C, Malinowska KH, Carvalho BG, Bayer EA, Luthey-Schulten Z, Gaub HE, Nash MA. Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. J Am Chem Soc 2019; 141:14752-14763. [PMID: 31464132 PMCID: PMC6939381 DOI: 10.1021/jacs.9b06776] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Can molecular dynamics
simulations predict the mechanical behavior of protein complexes?
Can simulations decipher the role of protein domains of unknown function
in large macromolecular complexes? Here, we employ a wide-sampling
computational approach to demonstrate that molecular dynamics simulations,
when carefully performed and combined with single-molecule atomic
force spectroscopy experiments, can predict and explain the behavior
of highly mechanostable protein complexes. As a test case, we studied
a previously unreported homologue from Ruminococcus flavefaciens called X-module-Dockerin (XDoc) bound to its partner Cohesin (Coh).
By performing dozens of short simulation replicas near the rupture
event, and analyzing dynamic network fluctuations, we were able to
generate large simulation statistics and directly compare them with
experiments to uncover the mechanisms involved in mechanical stabilization.
Our single-molecule force spectroscopy experiments show that the XDoc-Coh
homologue complex withstands forces up to 1 nN at loading rates of
105 pN/s. Our simulation results reveal that this remarkable
mechanical stability is achieved by a protein architecture that directs
molecular deformation along paths that run perpendicular to the pulling
axis. The X-module was found to play a crucial role in shielding the
adjacent protein complex from mechanical rupture. These mechanisms
of protein mechanical stabilization have potential applications in
biotechnology for the development of systems exhibiting shear enhanced
adhesion or tunable mechanics.
Collapse
Affiliation(s)
- Rafael C Bernardi
- Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Ellis Durner
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , 80799 Munich , Germany
| | - Constantin Schoeler
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , 80799 Munich , Germany
| | - Klara H Malinowska
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , 80799 Munich , Germany
| | - Bruna G Carvalho
- School of Chemical Engineering , University of Campinas , 13083-852 Campinas , Brazil
| | - Edward A Bayer
- Department of Biomolecular Sciences , Weizmann Institute of Science , 76100 Rehovot , Israel
| | - Zaida Luthey-Schulten
- Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , 80799 Munich , Germany
| | - Michael A Nash
- Department of Chemistry , University of Basel , 4058 Basel , Switzerland.,Department of Biosystems Science and Engineering , ETH Zurich , 4058 Basel , Switzerland
| |
Collapse
|
10
|
Haataja TJK, Capoulade R, Lecointe S, Hellman M, Merot J, Permi P, Pentikäinen U. Critical Structural Defects Explain Filamin A Mutations Causing Mitral Valve Dysplasia. Biophys J 2019; 117:1467-1475. [PMID: 31542223 DOI: 10.1016/j.bpj.2019.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022] Open
Abstract
Mitral valve diseases affect ∼3% of the population and are the most common reasons for valvular surgery because no drug-based treatments exist. Inheritable genetic mutations have now been established as the cause of mitral valve insufficiency, and four different missense mutations in the filamin A gene (FLNA) have been found in patients suffering from nonsyndromic mitral valve dysplasia (MVD). The filamin A (FLNA) protein is expressed, in particular, in endocardial endothelia during fetal valve morphogenesis and is key in cardiac development. The FLNA-MVD-causing mutations are clustered in the N-terminal region of FLNA. How the mutations in FLNA modify its structure and function has mostly remained elusive. In this study, using NMR spectroscopy and interaction assays, we investigated FLNA-MVD-causing V711D and H743P mutations. Our results clearly indicated that both mutations almost completely destroyed the folding of the FLNA5 domain, where the mutation is located, and also affect the folding of the neighboring FLNA4 domain. The structure of the neighboring FLNA6 domain was not affected by the mutations. These mutations also completely abolish FLNA's interactions with protein tyrosine phosphatase nonreceptor type 12, which has been suggested to contribute to the pathogenesis of FLNA-MVD. Taken together, our results provide an essential structural and molecular framework for understanding the molecular bases of FLNA-MVD, which is crucial for the development of new therapies to replace surgery.
Collapse
Affiliation(s)
- Tatu J K Haataja
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland; Institute of Biomedicine, University of Turku, Turku, Finland; Turku Bioscience Centre, University of Turku, 20520 Turku, Finland
| | - Romain Capoulade
- l'institut du thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - Simon Lecointe
- l'institut du thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - Maarit Hellman
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland; Department of Chemistry and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Jean Merot
- l'institut du thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - Perttu Permi
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland; Department of Chemistry and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Ulla Pentikäinen
- Institute of Biomedicine, University of Turku, Turku, Finland; Turku Bioscience Centre, University of Turku, 20520 Turku, Finland.
| |
Collapse
|