1
|
Peyret H, Shah SN, Meshcheriakova Y, Saunders K, Lomonossoff GP. How do RNA viruses select which RNA to package? The plant virus experience. Virology 2025; 604:110435. [PMID: 39893746 DOI: 10.1016/j.virol.2025.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The process whereby viral RNA is specifically selected for packaging within viral particles has been extensively studied over many years. As a result, two broad hypotheses have emerged to explain this specificity, though these are not mutually exclusive. The first proposes that the viral RNA contains specific sequences or "packaging signals" that enable it to be recognised from a mixture of RNAs within an infected cell. The second suggests that there is a functional coupling between RNA replication and packaging that leads to only replicating, viral RNA being packaged. This review is aimed at analysing the evidence for the two hypotheses from both in vitro and in vivo studies on positive-strand RNA plant viruses. Overall, it seems probable that the selectivity of packaging results from replication of the viral RNAs rather than the presence of any specific RNA sequence. However, it is also likely that the presence of packaging signals with high affinity for the viral coat protein is involved in the efficient incorporation of RNA into particles, thereby favouring the correct assembly of fully formed and infectious particles.
Collapse
Affiliation(s)
- Hadrien Peyret
- University of Nottingham, School of Biosciences, Division of Crop and Plant Sciences. Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Sachin N Shah
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Yulia Meshcheriakova
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Keith Saunders
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - George P Lomonossoff
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| |
Collapse
|
2
|
Mardanova ES, Vasyagin EA, Kotova KG, Zahmanova GG, Ravin NV. Plant-Produced Chimeric Hepatitis E Virus-like Particles as Carriers for Antigen Presentation. Viruses 2024; 16:1093. [PMID: 39066255 PMCID: PMC11281382 DOI: 10.3390/v16071093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
A wide range of virus-like particles (VLPs) is extensively employed as carriers to display various antigens for vaccine development to fight against different infections. The plant-produced truncated variant of the hepatitis E virus (HEV) coat protein is capable of forming VLPs. In this study, we demonstrated that recombinant fusion proteins comprising truncated HEV coat protein with green fluorescent protein (GFP) or four tandem copies of the extracellular domain of matrix protein 2 (M2e) of influenza A virus inserted at the Tyr485 position could be efficiently expressed in Nicotiana benthamiana plants using self-replicating vector based on the potato virus X genome. The plant-produced fusion proteins in vivo formed VLPs displaying GFP and 4M2e. Therefore, HEV coat protein can be used as a VLP carrier platform for the presentation of relatively large antigens comprising dozens to hundreds of amino acids. Furthermore, plant-produced HEV particles could be useful research tools for the development of recombinant vaccines against influenza.
Collapse
Affiliation(s)
- Eugenia S. Mardanova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.S.M.)
| | - Egor A. Vasyagin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.S.M.)
| | - Kira G. Kotova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.S.M.)
| | - Gergana G. Zahmanova
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.S.M.)
| |
Collapse
|
3
|
Peng Q, Li W, Zhou X, Sun C, Hou Y, Hu M, Fu S, Zhang J, Kundu JK, Lei L. Genetic Diversity Analysis of Brassica Yellows Virus Causing Aberrant Color Symptoms in Oilseed Rape. PLANTS (BASEL, SWITZERLAND) 2023; 12:1008. [PMID: 36903869 PMCID: PMC10005696 DOI: 10.3390/plants12051008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The emergence of brassica yellow virus (BrYV) has increasingly damaged crucifer crops in China in recent years. In 2020, a large number of oilseed rape in Jiangsu showed aberrant leaf color. A combined RNA-seq and RT-PCR analysis identified BrYV as the major viral pathogen. A subsequent field survey showed that the average incidence of BrYV was 32.04%. In addition to BrYV, turnip mosaic virus (TuMV) was also frequently detected. As a result, two near full-length BrYV isolates, BrYV-814NJLH and BrYV-NJ13, were cloned. Based on the newly obtained sequences and the reported BrYV and turnip yellow virus (TuYV) isolates, a phylogenetic analysis was performed, and it was found that all BrYV isolates share a common root with TuYV. Pairwise amino acid identity analysis revealed that both P2 and P3 were conserved in BrYV. Additionally, recombination analysis revealed seven recombinant events in BrYV as TuYV. We also attempted to determine BrYV infection by quantitative leaf color index, but no significant correlation was found between the two. Systemic observations indicated that BrYV-infected plants had different symptoms, such as no symptom, purple stem base and red old leaves. Overall, our work proves that BrYV is closely related to TuYV and could be considered as an epidemic strain for oilseed rape in Jiangsu.
Collapse
Affiliation(s)
- Qi Peng
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Wei Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaoying Zhou
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chengming Sun
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yan Hou
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China
| | - Maolong Hu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Sanxiong Fu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jiban Kumar Kundu
- Plant Virus and Vector Interactions-Centre for Plant Virus Research, Crop Research Institute, Drnovska 507/73, 161 06 Praha, Czech Republic
- Laboratory of Virology-Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic
| | - Lei Lei
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China
| |
Collapse
|
4
|
Esquirol L, McNeale D, Venturi M, Sainsbury F. Production and Purification of Virus-Like Particles by Transient Expression in Plants. Methods Mol Biol 2023; 2671:387-402. [PMID: 37308657 DOI: 10.1007/978-1-0716-3222-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transient expression in plants has become a useful production system for virus-like particle (VLP) expression. High yields and flexible approaches to assembling complex VLPs, combine with ease of scale-up and inexpensive reagents to provide an attractive method for recombinant protein expression in general. Plants have demonstrated excellent capacity for the assembly and production of protein cages for use in vaccine design and nanotechnology. Furthermore, numerous virus structures have now been determined using plant-expressed VLPs, showing the utility of this approach in structural virology. Transient protein expression in plants uses common microbiology techniques, leading to a straightforward transformation procedure that does not result in stable transgenesis. In this chapter, we aim to provide a generic protocol for transient expression of VLPs in Nicotiana benthamiana using soil-free plant cultivation and a simple vacuum infiltration procedure, along with methodology for purifying VLPs from plant leaves.
Collapse
Affiliation(s)
- Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Micol Venturi
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
5
|
Hilaire J, Tindale S, Jones G, Pingarron-Cardenas G, Bačnik K, Ojo M, Frewer LJ. Risk perception associated with an emerging agri-food risk in Europe: plant viruses in agriculture. AGRICULTURE & FOOD SECURITY 2022; 11:21. [PMID: 35310134 PMCID: PMC8917942 DOI: 10.1186/s40066-022-00366-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Research into public risk perceptions associated with emerging risks in agriculture and supply chains has focused on technological risks, zoonotic diseases, and food integrity, but infrequently on naturally occurring diseases in plants. Plant virus infections account for global economic losses estimated at $30 billion annually and are responsible for nearly 50% of plant diseases worldwide, threatening global food security. This research aimed to understand public perceptions of emerging risks and benefits associated with plant viruses in agriculture in Belgium, Slovenia, Spain, and the UK.
Methods
Online qualitative semi-structured interviews with 80 European consumers were conducted, including 20 participants in each of Belgium, Slovenia, the UK, and Spain. Microsoft Streams was used to transcribe the interview data, and NVivo was utilized to code the transcripts and analyze the data.
Results
The results indicate that, while study participants were relatively unfamiliar with the plant viruses and their potential impacts, plant viruses evoked perceived risks in a similar way to other emerging risks in the agri-food sector. These included risks to environment and human health, and the economic functioning of the relevant supply chain. Some participants perceived both risks and benefits to be associated with plant viruses. Benefits were perceived to be associated with improved plant resistance to viruses.
Conclusions
The results provide the basis for risk regulation, policy, and communication developments. Risk communication needs to take account of both risk and benefit perceptions, as well as the observation that plant viruses are perceived as an emerging, rather than an established, understood, and controlled risk. Some participants indicated the need for risk–benefit communication strategies to be developed, including information about the impacts of the risks, and associated mitigation strategies. Participants perceived that responsibility for control of plant viruses should be conferred on actors within the supply chain, in particular primary producers, although policy support (for example, financial incentivization) should be provided to improve their motivation to instigate risk mitigation activities.
Collapse
|
6
|
Schiltz CJ, Wilson JR, Hosford CJ, Adams MC, Preising SE, DeBlasio SL, MacLeod HJ, Van Eck J, Heck ML, Chappie JS. Polerovirus N-terminal readthrough domain structures reveal molecular strategies for mitigating virus transmission by aphids. Nat Commun 2022; 13:6368. [PMID: 36289207 PMCID: PMC9606263 DOI: 10.1038/s41467-022-33979-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/10/2022] [Indexed: 12/25/2022] Open
Abstract
Poleroviruses, enamoviruses, and luteoviruses are icosahedral, positive sense RNA viruses that cause economically important diseases in food and fiber crops. They are transmitted by phloem-feeding aphids in a circulative manner that involves the movement across and within insect tissues. The N-terminal portion of the viral readthrough domain (NRTD) has been implicated as a key determinant of aphid transmission in each of these genera. Here, we report crystal structures of the NRTDs from the poleroviruses turnip yellow virus (TuYV) and potato leafroll virus (PLRV) at 1.53-Å and 2.22-Å resolution, respectively. These adopt a two-domain arrangement with a unique interdigitated topology and form highly conserved dimers that are stabilized by a C-terminal peptide that is critical for proper folding. We demonstrate that the PLRV NRTD can act as an inhibitor of virus transmission and identify NRTD mutant variants that are lethal to aphids. Sequence conservation argues that enamovirus and luteovirus NRTDs will follow the same structural blueprint, which affords a biological approach to block the spread of these agricultural pathogens in a generalizable manner.
Collapse
Affiliation(s)
- Carl J Schiltz
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jennifer R Wilson
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
- USDA-Agricultural Research Service, Corn, Soybean & Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | - Christopher J Hosford
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA
- LifeMine Therapeutics, Cambridge, MA, 02140, USA
| | - Myfanwy C Adams
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Stephanie E Preising
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Stacy L DeBlasio
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
- USDA-Agricultural Research Service, Emerging Pest and Pathogen Research Unit, Ithaca, NY, 14853, USA
| | - Hannah J MacLeod
- USDA-Agricultural Research Service, Emerging Pest and Pathogen Research Unit, Ithaca, NY, 14853, USA
- Accelevir Diagnostics, Baltimore, MD, 21202, USA
| | - Joyce Van Eck
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Michelle L Heck
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA.
- USDA-Agricultural Research Service, Emerging Pest and Pathogen Research Unit, Ithaca, NY, 14853, USA.
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA.
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
7
|
Miller WA, Lozier Z. Yellow Dwarf Viruses of Cereals: Taxonomy and Molecular Mechanisms. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:121-141. [PMID: 35436423 DOI: 10.1146/annurev-phyto-121421-125135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yellow dwarf viruses are the most economically important and widespread viruses of cereal crops. Although they share common biological properties such as phloem limitation and obligate aphid transmission, the replication machinery and associated cis-acting signals of these viruses fall into two unrelated taxa represented by Barley yellow dwarf virus and Cereal yellow dwarf virus. Here, we explain the reclassification of these viruses based on their very different genomes. We also provide an overview of viral protein functions and their interactions with the host and vector, replication mechanisms of viral and satellite RNAs, and the complex gene expression strategies. Throughout, we point out key unanswered questions in virus evolution, structural biology, and genome function and replication that, when answered, may ultimately provide new tools for virus management.
Collapse
Affiliation(s)
- W Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA;
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, USA
| | - Zachary Lozier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA;
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
8
|
Chen X, Luo H, Zhang J, Ma Y, Li K, Xiong F, Yang Y, Yang J, Lan P, Wei T, Xu Y, Chen H, Li F. Synergism Among the Four Tobacco Bushy Top Disease Casual Agents in Symptom Induction and Aphid Transmission. Front Microbiol 2022; 13:846857. [PMID: 35444628 PMCID: PMC9014100 DOI: 10.3389/fmicb.2022.846857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Tobacco bushy top disease (TBTD), caused by multiple pathogens including tobacco bushy top virus (TBTV), tobacco vein distorting virus (TVDV), TBTV satellite RNA (TBTVsatRNA), and TVDV-associated RNA (TVDVaRNA), is a destructive disease in tobacco fields. To date, how these causal agents are co-transmitted by aphid vectors in field and their roles in disease symptom induction remain largely unknown, due mainly to the lack of purified causal agents. In this study, we have constructed four full-length infectious clones, representing the Yunnan Kunming isolates of TVDV, TBTV, TBTVsatRNA, and TVDVaRNA (TVDV-YK, TBTV-YK, TBTVsatRNA-YK, and TVDVaRNA-YK), respectively. Co-inoculation of these four causal agents to tobacco K326 plants caused typical TBTD symptoms, including smaller leaves, necrosis, and plant stunting. In addition, inoculation of tobacco K326 plants with TBTV alone caused necrosis in systemic leaves by 7 dpi. Tobacco K326 and Nicotiana benthamiana plants infected by single virus or multiple viruses showed very different disease symptoms at various dpi. RT-PCR results indicated that co-infection of TVDVaRNA-YK could increase TVDV-YK or TBTV-YK accumulation in N. benthamiana plants, suggesting that TVDVaRNA-YK can facilitate TVDV-YK and TBTV-YK replication and/or movement in the infected plants. Aphid transmission assays showed that the successful transmission of TBTV-YK, TBTVsatRNA-YK, and TVDVaRNA-YK by Myzus persicae depended on the presence of TVDV-YK, while the presence of TBTVsatRNA-YK increased the aphid transmission efficiency of TBTV and TVDV. We consider that these four new infectious clones will allow us to further dissect the roles of these four causal agents in TBTD induction as well as aphid transmission.
Collapse
Affiliation(s)
- Xiaojiao Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Hengming Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jingyi Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Kehua Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Feng Xiong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yahui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jiazhen Yang
- Key Laboratory of Agricultural Biotechnology of Yunnan Province, Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Pingxiu Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Taiyun Wei
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Hairu Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Fan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
9
|
Sõmera M, Fargette D, Hébrard E, Sarmiento C, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Solemoviridae 2021. J Gen Virol 2021; 102. [PMID: 34951396 PMCID: PMC8744267 DOI: 10.1099/jgv.0.001707] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The family Solemoviridae includes viruses with icosahedral particles (26–34 nm in diameter) assembled on T=3 symmetry with a 4–6 kb positive-sense, monopartite, polycistronic RNA genome. Transmission of members of the genera Sobemovirus and Polemovirus occurs via mechanical wounding, vegetative propagation, insect vectors or abiotically through soil; members of the genera Polerovirus and Enamovirus are transmitted by specific aphids. Most solemoviruses have a narrow host range. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Solemoviridae, which is available at ictv.global/report/solemoviridae.
Collapse
Affiliation(s)
- Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Denis Fargette
- IRD, Cirad, Université Montpellier, IPME, Montpellier 34394, France
| | - Eugénie Hébrard
- IRD, Cirad, Université Montpellier, IPME, Montpellier 34394, France
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | | |
Collapse
|
10
|
Adams MC, Schiltz CJ, Heck ML, Chappie JS. Crystal structure of the potato leafroll virus coat protein and implications for viral assembly. J Struct Biol 2021; 214:107811. [PMID: 34813955 DOI: 10.1016/j.jsb.2021.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Luteoviruses, poleroviruses, and enamoviruses are insect-transmitted, agricultural pathogens that infect a wide array of plants, including staple food crops. Previous cryo-electron microscopy studies of virus-like particles show that luteovirid viral capsids are built from a structural coat protein that organizes with T = 3 icosahedral symmetry. Here, we present the crystal structure of a truncated version of the coat protein monomer from potato leafroll virus at 1.80-Å resolution. In the crystal lattice, monomers pack into flat sheets that preserve the two-fold and three-fold axes of icosahedral symmetry and show minimal structural deviations when compared to the full-length subunits of the assembled virus-like particle. These observations have important implications in viral assembly and maturation and suggest that the CP N-terminus and its interactions with RNA play an important role in generating capsid curvature.
Collapse
Affiliation(s)
- Myfanwy C Adams
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Carl J Schiltz
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michelle L Heck
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute, Ithaca, NY 14853, USA; Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, NY 14853, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Byrne M, Kashyap A, Esquirol L, Ranson N, Sainsbury F. The structure of a plant-specific partitivirus capsid reveals a unique coat protein domain architecture with an intrinsically disordered protrusion. Commun Biol 2021; 4:1155. [PMID: 34615994 PMCID: PMC8494798 DOI: 10.1038/s42003-021-02687-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Persistent plant viruses may be the most common viruses in wild plants. A growing body of evidence for mutualism between such viruses and their hosts, suggests that they play an important role in ecology and agriculture. Here we present the capsid structure of a plant-specific partitivirus, Pepper cryptic virus 1, at 2.9 Å resolution by Cryo-EM. Structural features, including the T = 1 arrangement of 60 coat protein dimers, are shared with fungal partitiviruses and the picobirnavirus lineage of dsRNA viruses. However, the topology of the capsid is markedly different with protrusions emanating from, and partly comprising, the binding interface of coat protein dimers. We show that a disordered region at the apex of the protrusion is not required for capsid assembly and represents a hypervariable site unique to, and characteristic of, the plant-specific partitiviruses. These results suggest a structural basis for the acquisition of additional functions by partitivirus coat proteins that enables mutualistic relationships with diverse plant hosts.
Collapse
Affiliation(s)
- Matthew Byrne
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Aseem Kashyap
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Neil Ranson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
- Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organization (CSIRO), Brisbane, QLD, 4001, Australia.
| |
Collapse
|
12
|
Development and Optimization of an Enzyme Immunoassay to Detect Serum Antibodies against the Hepatitis E Virus in Pigs, Using Plant-Derived ORF2 Recombinant Protein. Vaccines (Basel) 2021; 9:vaccines9090991. [PMID: 34579228 PMCID: PMC8473109 DOI: 10.3390/vaccines9090991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E is an emerging global disease, mainly transmitted via the fecal-oral route in developing countries, and in a zoonotic manner in the developed world. Pigs and wild boar constitute the primary Hepatitis E virus (HEV) zoonotic reservoir. Consumption of undercooked animal meat or direct contact with infected animals is the most common source of HEV infection in European countries. The purpose of this study is to develop an enzyme immunoassay (EIA) for the detection of anti-hepatitis E virus IgG in pig serum, using plant-produced recombinant HEV-3 ORF2 as an antigenic coating protein, and also to evaluate the sensitivity and specificity of this assay. A recombinant HEV-3 ORF2 110-610_6his capsid protein, transiently expressed by pEff vector in Nicotiana benthamiana plants was used to develop an in-house HEV EIA. The plant-derived HEV-3 ORF2 110-610_6his protein proved to be antigenically similar to the HEV ORF2 capsid protein and it can self-assemble into heterogeneous particulate structures. The optimal conditions for the in-house EIA (iEIA) were determined as follows: HEV-3 ORF2 110-610_6his antigen concentration (4 µg/mL), serum dilution (1:50), 3% BSA as a blocking agent, and secondary antibody dilution (1:20 000). The iEIA developed for this study showed a sensitivity of 97.1% (95% Cl: 89.9-99.65) and a specificity of 98.6% (95% Cl: 92.5-99.96) with a Youden index of 0.9571. A comparison between our iEIA and a commercial assay (PrioCHECK™ Porcine HEV Ab ELISA Kit, ThermoFisher Scientific, MA, USA) showed 97.8% agreement with a kappa index of 0.9399. The plant-based HEV-3 ORF2 iEIA assay was able to detect anti-HEV IgG in pig serum with a very good agreement compared to the commercially available kit.
Collapse
|
13
|
Kwon SJ, Bodaghi S, Dang T, Gadhave KR, Ho T, Osman F, Al Rwahnih M, Tzanetakis IE, Simon AE, Vidalakis G. Complete Nucleotide Sequence, Genome Organization, and Comparative Genomic Analyses of Citrus Yellow-Vein Associated Virus (CYVaV). Front Microbiol 2021; 12:683130. [PMID: 34168635 PMCID: PMC8218546 DOI: 10.3389/fmicb.2021.683130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
Citrus yellow-vein disease (CYVD) was first reported in California in 1957. We now report that CYVD is associated with a virus-like agent, provisionally named citrus yellow-vein associated virus (CYVaV). The CYVaV RNA genome has 2,692 nucleotides and codes for two discernable open reading frames (ORFs). ORF1 encodes a protein of 190 amino acid (aa) whereas ORF2 is presumably generated by a −1 ribosomal frameshifting event just upstream of the ORF1 termination signal. The frameshift product (717 aa) encodes the RNA-dependent RNA polymerase (RdRp). Phylogenetic analyses suggest that CYVaV is closely related to unclassified virus-like RNAs in the family Tombusviridae. Bio-indexing and RNA-seq experiments indicate that CYVaV can induce yellow vein symptoms independently of known citrus viruses or viroids.
Collapse
Affiliation(s)
- Sun-Jung Kwon
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States.,Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Sohrab Bodaghi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Tyler Dang
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Kiran R Gadhave
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Thien Ho
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| | - Fatima Osman
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
14
|
Castells-Graells R, Ribeiro JRS, Domitrovic T, Hesketh EL, Scarff CA, Johnson JE, Ranson NA, Lawson DM, Lomonossoff GP. Plant-expressed virus-like particles reveal the intricate maturation process of a eukaryotic virus. Commun Biol 2021; 4:619. [PMID: 34031522 PMCID: PMC8144610 DOI: 10.1038/s42003-021-02134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022] Open
Abstract
Many virus capsids undergo exquisitely choreographed maturation processes in their host cells to produce infectious virions, and these remain poorly understood. As a tool for studying virus maturation, we transiently expressed the capsid protein of the insect virus Nudaurelia capensis omega virus (NωV) in Nicotiana benthamiana and were able to purify both immature procapsids and mature capsids from infiltrated leaves by varying the expression time. Cryo-EM analysis of the plant-produced procapsids and mature capsids to 6.6 Å and 2.7 Å resolution, respectively, reveals that in addition to large scale rigid body motions, internal regions of the subunits are extensively remodelled during maturation, creating the active site required for autocatalytic cleavage and infectivity. The mature particles are biologically active in terms of their ability to lyse membranes and have a structure that is essentially identical to authentic virus. The ability to faithfully recapitulate and visualize a complex maturation process in plants, including the autocatalytic cleavage of the capsid protein, has revealed a ~30 Å translation-rotation of the subunits during maturation as well as conformational rearrangements in the N and C-terminal helical regions of each subunit.
Collapse
Affiliation(s)
- Roger Castells-Graells
- Department of Biological Chemistry, John Innes Centre, Colney, UK
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Jonas R S Ribeiro
- Virology Department, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Domitrovic
- Virology Department, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emma L Hesketh
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Charlotte A Scarff
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Colney, UK
| | | |
Collapse
|
15
|
Thuenemann EC, Byrne MJ, Peyret H, Saunders K, Castells-Graells R, Ferriol I, Santoni M, Steele JFC, Ranson NA, Avesani L, Lopez-Moya JJ, Lomonossoff GP. A Replicating Viral Vector Greatly Enhances Accumulation of Helical Virus-Like Particles in Plants. Viruses 2021; 13:885. [PMID: 34064959 PMCID: PMC8150850 DOI: 10.3390/v13050885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
The production of plant helical virus-like particles (VLPs) via plant-based expression has been problematic with previous studies suggesting that an RNA scaffold may be necessary for their efficient production. To examine this, we compared the accumulation of VLPs from two potexviruses, papaya mosaic virus and alternanthera mosaic virus (AltMV), when the coat proteins were expressed from a replicating potato virus X- based vector (pEff) and a non-replicating vector (pEAQ-HT). Significantly greater quantities of VLPs could be purified when pEff was used. The pEff system was also very efficient at producing VLPs of helical viruses from different virus families. Examination of the RNA content of AltMV and tobacco mosaic virus VLPs produced from pEff revealed the presence of vector-derived RNA sequences, suggesting that the replicating RNA acts as a scaffold for VLP assembly. Cryo-EM analysis of the AltMV VLPs showed they had a structure very similar to that of authentic potexvirus particles. Thus, we conclude that vectors generating replicating forms of RNA, such as pEff, are very efficient for producing helical VLPs.
Collapse
Affiliation(s)
- Eva C. Thuenemann
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
| | - Matthew J. Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (N.A.R.)
| | - Hadrien Peyret
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
| | - Keith Saunders
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
| | - Roger Castells-Graells
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Inmaculada Ferriol
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193 Cerdanyola del Vallès, Spain; (I.F.); (J.J.L.-M.)
- Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - Mattia Santoni
- Diamante srl. Strada Le Grazie, 15, 37134 Verona, Italy;
| | - John F. C. Steele
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
- Piramal Healthcare UK Ltd., Piramal Pharma Solutions, Earls Road, Grangemouth, Stirlingshire FK3 8XG, UK
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (N.A.R.)
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134 Verona, Italy;
| | - Juan Jose Lopez-Moya
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193 Cerdanyola del Vallès, Spain; (I.F.); (J.J.L.-M.)
- Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - George P. Lomonossoff
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
| |
Collapse
|
16
|
Chimeric Virus Made from crTMV RNA and the Coat Protein of Potato Leafroll Virus is Targeted to the Nucleolus and Can Infect Nicotiana benthamiana Mechanically. High Throughput 2020; 9:ht9020011. [PMID: 32357496 PMCID: PMC7348827 DOI: 10.3390/ht9020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/02/2020] [Accepted: 04/22/2020] [Indexed: 11/30/2022] Open
Abstract
A genetically engineered chimeric virus crTMV-CP-PLRV composed of the crucifer-infecting tobacco mosaic virus (crTMV) RNA and the potato leafroll virus (PLRV) coat protein (CP) was obtained by agroinfiltration of Nicotiana benthamiana with the binary vector pCambia-crTMV-CPPLRV. The significant levels of the chimeric virus enabled direct visualization of crTMV-CP-PLRV in the cell and to investigate the mechanism of the pathogenesis. Localization of the crTMV-CP-PLRV in plant cells was examined by immunoblot techniques, as well as light, and transmission electron microscopy. The chimera can transfer between vascular and nonvascular tissues. The chimeric virus inoculum is capable to infect N. benthamiana mechanically. The distinguishing feature of the chimeric virus, the RNA virus with the positive genome, was found to localize in the nucleolus. We also investigated the role of the N-terminal sequence of the PLRV P3 coat protein in the cellular localization of the virus. We believe that the gene of the PLRV CP can be substituted with genes from other challenging-to-study plant pathogens to produce other useful recombinant viruses.
Collapse
|
17
|
Rapid High-Yield Transient Expression of Swine Hepatitis E ORF2 Capsid Proteins in Nicotiana benthamiana Plants and Production of Chimeric Hepatitis E Virus-Like Particles Bearing the M2e Influenza Epitope. PLANTS 2019; 9:plants9010029. [PMID: 31878256 PMCID: PMC7020208 DOI: 10.3390/plants9010029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/21/2019] [Indexed: 12/27/2022]
Abstract
The Hepatitis E virus (HEV) is a causative agent of acute hepatitis, mainly transmitted by the fecal-oral route or zoonotic. Open reading frame (ORF) 2 encodes the viral capsid protein, which is essential for virion assembly, host interaction, and inducing neutralizing antibodies. In this study, we investigated whether full-length and N- and C-terminally modified versions of the capsid protein transiently expressed in N. benthamiana plants could assemble into highly-immunogenic, virus-like particles (VLPs). We also assessed whether such VLPs can act as a carrier of foreign immunogenic epitopes, such as the highly-conserved M2e peptide from the Influenza virus. Plant codon-optimized HEV ORF2 capsid genes were constructed in which the nucleotides coding the N-terminal, the C-terminal, or both parts of the protein were deleted. The M2e peptide was inserted into the P2 loop after the residue Gly556 of HEV ORF2 protein by gene fusion, and three different chimeric constructs were designed. Plants expressed all versions of the HEV capsid protein up to 10% of total soluble protein (TSP), including the chimeras, but only the capsid protein consisting of aa residues 110 to 610 (HEV 110–610) and chimeric M2 HEV 110–610 spontaneously assembled in higher order structures. The chimeric VLPs assembled into particles with 22–36 nm in diameter and specifically reacted with the anti-M2e antibody.
Collapse
|
18
|
Johnson JE. Raising the Curtain on the Structure of Luteovirids. Structure 2019; 27:1735-1736. [PMID: 31801094 DOI: 10.1016/j.str.2019.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Luteovirids rank among the most destructive viruses of economically important crops. Until now their structures have only been inferred by inadequate homology models due to their phloem-limited infection and inadequate yields. Employing virus-like particles, Byrne et al. (2019) now report near-atomic resolution structures of two family members providing important functional insights.
Collapse
Affiliation(s)
- John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|