1
|
Nouchikian L, Fernandez-Martinez D, Renard PY, Sabot C, Duménil G, Rey M, Chamot-Rooke J. Do Not Waste Time─Ensure Success in Your Cross-Linking Mass Spectrometry Experiments before You Begin. Anal Chem 2024; 96:2506-2513. [PMID: 38294351 PMCID: PMC10867798 DOI: 10.1021/acs.analchem.3c04682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Cross-linking mass spectrometry (XL-MS) has become a very useful tool for studying protein complexes and interactions in living systems. It enables the investigation of many large and dynamic assemblies in their native state, providing an unbiased view of their protein interactions and restraints for integrative modeling. More researchers are turning toward trying XL-MS to probe their complexes of interest, especially in their native environments. However, due to the presence of other potentially higher abundant proteins, sufficient cross-links on a system of interest may not be reached to achieve satisfactory structural and interaction information. There are currently no rules for predicting whether XL-MS experiments are likely to work or not; in other words, if a protein complex of interest will lead to useful XL-MS data. Here, we show that a simple iBAQ (intensity-based absolute quantification) analysis performed from trypsin digest data can provide a good understanding of whether proteins of interest are abundant enough to achieve successful cross-linking data. Comparing our findings to large-scale data on diverse systems from several other groups, we show that proteins of interest should be at least in the top 20% abundance range to expect more than one cross-link found per protein. We foresee that this guideline is a good starting point for researchers who would like to use XL-MS to study their protein of interest and help ensure a successful cross-linking experiment from the beginning. Data are available via ProteomeXchange with identifier PXD045792.
Collapse
Affiliation(s)
- Lucienne Nouchikian
- Institut
Pasteur, Université Paris Cité, CNRS UAR 2024, Mass
Spectrometry for Biology Unit, Paris 75015, France
| | - David Fernandez-Martinez
- Institut
Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis
of Vascular Infections Unit, Paris 75015, France
| | - Pierre-Yves Renard
- Univ
Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA
UMR 6014, INC3M FR 3038, Rouen F-76000, France
| | - Cyrille Sabot
- Univ
Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA
UMR 6014, INC3M FR 3038, Rouen F-76000, France
| | - Guillaume Duménil
- Institut
Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis
of Vascular Infections Unit, Paris 75015, France
| | - Martial Rey
- Institut
Pasteur, Université Paris Cité, CNRS UAR 2024, Mass
Spectrometry for Biology Unit, Paris 75015, France
| | - Julia Chamot-Rooke
- Institut
Pasteur, Université Paris Cité, CNRS UAR 2024, Mass
Spectrometry for Biology Unit, Paris 75015, France
| |
Collapse
|
2
|
Britt HM, Cragnolini T, Khatun S, Hatimy A, James J, Page N, Williams JP, Hughes C, Denny R, Thalassinos K, Vissers JPC. Evaluation of acquisition modes for semi-quantitative analysis by targeted and untargeted mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9308. [PMID: 35353398 PMCID: PMC9287043 DOI: 10.1002/rcm.9308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Analyte quantitation by mass spectrometry underpins a diverse range of scientific endeavors. The fast-growing field of mass spectrometer development has resulted in several targeted and untargeted acquisition modes suitable for these applications. By characterizing the acquisition methods available on an ion mobility (IM)-enabled orthogonal acceleration time-of-flight (oa-ToF) instrument, the optimum modes for analyte semi-quantitation can be deduced. METHODS Serial dilutions of commercial metabolite, peptide, or cross-linked peptide analytes were prepared in matrices of human urine or Escherichia coli digest. Each analyte dilution was introduced into an IM separation-enabled oa-ToF mass spectrometer by reversed-phase liquid chromatography and electrospray ionization. Data were acquired for each sample in duplicate using nine different acquisition modes, including four IM-enabled acquisitions modes, available on the mass spectrometer. RESULTS Five (metabolite) or seven (peptide/cross-linked peptide) point calibration curves were prepared for analytes across each of the acquisition modes. A nonlinear response was observed at high concentrations for some modes, attributed to saturation effects. Two correction methods, one MS1 isotope-correction and one MS2 ion intensity-correction, were applied to address this observation, resulting in an up to twofold increase in dynamic range. By averaging the semi-quantitative results across analyte classes, two parameters, linear dynamic range (LDR) and lower limit of quantification (LLOQ), were determined to evaluate each mode. CONCLUSION A comparison of the acquisition modes revealed that data-independent acquisition and parallel reaction monitoring methods are most robust for semi-quantitation when considering achievable LDR and LLOQ. IM-enabled modes exhibited sensitivity increases, but a simultaneous reduction in dynamic range required correction methods to recover. These findings will assist users in identifying the optimum acquisition mode for their analyte quantitation needs, supporting a diverse range of applications and providing guidance for future acquisition mode developments.
Collapse
Affiliation(s)
- Hannah M. Britt
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
- Institute of Structural and Molecular Biology, Birkbeck CollegeUniversity of LondonLondonUK
| | - Suniya Khatun
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
| | - Abubakar Hatimy
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
| | - Juliette James
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
| | - Nathanael Page
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
- LGC GroupTeddingtonUK
| | | | | | | | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
- Institute of Structural and Molecular Biology, Birkbeck CollegeUniversity of LondonLondonUK
| | | |
Collapse
|
3
|
Graziadei A, Rappsilber J. Leveraging crosslinking mass spectrometry in structural and cell biology. Structure 2021; 30:37-54. [PMID: 34895473 DOI: 10.1016/j.str.2021.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Crosslinking mass spectrometry (crosslinking-MS) is a versatile tool providing structural insights into protein conformation and protein-protein interactions. Its medium-resolution residue-residue distance restraints have been used to validate protein structures proposed by other methods and have helped derive models of protein complexes by integrative structural biology approaches. The use of crosslinking-MS in integrative approaches is underpinned by progress in estimating error rates in crosslinking-MS data and in combining these data with other information. The flexible and high-throughput nature of crosslinking-MS has allowed it to complement the ongoing resolution revolution in electron microscopy by providing system-wide residue-residue distance restraints, especially for flexible regions or systems. Here, we review how crosslinking-MS information has been leveraged in structural model validation and integrative modeling. Crosslinking-MS has also been a key technology for cell biology studies and structural systems biology where, in conjunction with cryoelectron tomography, it can provide structural and mechanistic insights directly in situ.
Collapse
Affiliation(s)
- Andrea Graziadei
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
4
|
Ziemianowicz DS, Saltzberg D, Pells T, Crowder DA, Schräder C, Hepburn M, Sali A, Schriemer DC. IMProv: A Resource for Cross-link-Driven Structure Modeling that Accommodates Protein Dynamics. Mol Cell Proteomics 2021; 20:100139. [PMID: 34418567 PMCID: PMC8452774 DOI: 10.1016/j.mcpro.2021.100139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 11/01/2022] Open
Abstract
Proteomics methodology has expanded to include protein structural analysis, primarily through cross-linking mass spectrometry (XL-MS) and hydrogen-deuterium exchange mass spectrometry (HX-MS). However, while the structural proteomics community has effective tools for primary data analysis, there is a need for structure modeling pipelines that are accessible to the proteomics specialist. Integrative structural biology requires the aggregation of multiple distinct types of data to generate models that satisfy all inputs. Here, we describe IMProv, an app in the Mass Spec Studio that combines XL-MS data with other structural data, such as cryo-EM densities and crystallographic structures, for integrative structure modeling on high-performance computing platforms. The resource provides an easily deployed bundle that includes the open-source Integrative Modeling Platform program (IMP) and its dependencies. IMProv also provides functionality to adjust cross-link distance restraints according to the underlying dynamics of cross-linked sites, as characterized by HX-MS. A dynamics-driven conditioning of restraint values can improve structure modeling precision, as illustrated by an integrative structure of the five-membered Polycomb Repressive Complex 2. IMProv is extensible to additional types of data.
Collapse
Affiliation(s)
- Daniel S Ziemianowicz
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Saltzberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, California, USA
| | - Troy Pells
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - D Alex Crowder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christoph Schräder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Morgan Hepburn
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, California, USA
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada; Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Beveridge R, Calabrese AN. Structural Proteomics Methods to Interrogate the Conformations and Dynamics of Intrinsically Disordered Proteins. Front Chem 2021; 9:603639. [PMID: 33791275 PMCID: PMC8006314 DOI: 10.3389/fchem.2021.603639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and regions of intrinsic disorder (IDRs) are abundant in proteomes and are essential for many biological processes. Thus, they are often implicated in disease mechanisms, including neurodegeneration and cancer. The flexible nature of IDPs and IDRs provides many advantages, including (but not limited to) overcoming steric restrictions in binding, facilitating posttranslational modifications, and achieving high binding specificity with low affinity. IDPs adopt a heterogeneous structural ensemble, in contrast to typical folded proteins, making it challenging to interrogate their structure using conventional tools. Structural mass spectrometry (MS) methods are playing an increasingly important role in characterizing the structure and function of IDPs and IDRs, enabled by advances in the design of instrumentation and the development of new workflows, including in native MS, ion mobility MS, top-down MS, hydrogen-deuterium exchange MS, crosslinking MS, and covalent labeling. Here, we describe the advantages of these methods that make them ideal to study IDPs and highlight recent applications where these tools have underpinned new insights into IDP structure and function that would be difficult to elucidate using other methods.
Collapse
Affiliation(s)
- Rebecca Beveridge
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|