1
|
Tsai MH, Wu CY, Wu CH, Chen CY. The Current Update of Conventional and Innovative Treatment Strategies for Central Nervous System Injury. Biomedicines 2024; 12:1894. [PMID: 39200357 PMCID: PMC11351448 DOI: 10.3390/biomedicines12081894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
This review explores the complex challenges and advancements in the treatment of traumatic brain injury (TBI) and spinal cord injury (SCI). Traumatic injuries to the central nervous system (CNS) trigger intricate pathophysiological responses, frequently leading to profound and enduring disabilities. This article delves into the dual phases of injury-primary impacts and the subsequent secondary biochemical cascades-that worsen initial damage. Conventional treatments have traditionally prioritized immediate stabilization, surgical interventions, and supportive medical care to manage both the primary and secondary damage associated with central nervous system injuries. We explore current surgical and medical management strategies, emphasizing the crucial role of rehabilitation and the promising potential of stem cell therapies and immune modulation. Advances in stem cell therapy, gene editing, and neuroprosthetics are revolutionizing treatment approaches, providing opportunities not just for recovery but also for the regeneration of impaired neural tissues. This review aims to emphasize emerging therapeutic strategies that hold promise for enhancing outcomes and improving the quality of life for affected individuals worldwide.
Collapse
Affiliation(s)
- Meng-Hsuan Tsai
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
| | - Chi-Ying Wu
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
| | - Chao-Hsin Wu
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
- Post-Baccalaureate Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chun-Yu Chen
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
| |
Collapse
|
2
|
Left Ventricular Function in the Initial Period After Severe Traumatic Brain Injury in Swine. Neurocrit Care 2022; 37:200-208. [PMID: 35314968 DOI: 10.1007/s12028-022-01468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cardiac dysfunction is common in the days after severe traumatic brain injury (TBI) and may contribute to hypotension episodes, leading to worse outcomes. Little is known about cardiac function in the minutes and hours immediately following TBI. By using fluid percussion TBI in a swine model, we aimed to characterize the immediate post injury cardiac function. METHODS Intubated, anesthetized immature (25.8 ± 1.5 kg) female swine were subjected to severe fluid percussion TBI (4.2 ± 0.2 atm). Beginning at 45 min, simulating hospital arrival, all animals were resuscitated with normal saline (NS), mannitol, and phenylephrine as needed to maintain a cerebral perfusion pressure more than 60 mm Hg and intracranial pressure (ICP) less than 20 mm Hg. Primary outcomes of cardiac function were cardiac output measured by thermodilution and transesophageal echo measurements of cardiac function recorded at prespecified time points and tested for trends over time using linear regression with spline at the time of resuscitation onset. Secondary outcomes included hemodynamic measurements, ICP, and cerebral perfusion pressure. RESULTS Eighteen animals were included. Post-TBI hemodynamic changes demonstrated an early decrease in mean arterial pressure and cerebral perfusion pressure with a corresponding increase in heart rate and ICP. Immediately after injury, there was a significant decrease in both left atrial area and tissue Doppler imaging e' of the LV lateral wall. In addition, there was a simultaneous increase in LV end diastolic diameter and increase in E/e' ratio of the lateral mitral annulus. All other transesophageal echo measurements demonstrated no significant changes throughout the duration of the experiment. CONCLUSIONS Traumatic brain injury is associated with cardiac dysfunction and increased mortality, however there is still a limited understanding of the hemodynamic and echocardiographic response associated with TBI. In this study we demonstrate the hemodynamic and echocardiographic changes in the early stages of TBI in swine. The authors hope that these results may help better understanding on the management of patients with severe head injury.
Collapse
|
3
|
Navarro JC, Kofke WA. Perioperative Management of Acute Central Nervous System Injury. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
4
|
Improving Compliance With Protocol-Driven Care in Adult Traumatic Brain Injury Patients by Implementing an Electronic Clinical Compliance Monitoring Tool. Dimens Crit Care Nurs 2020; 39:58-68. [PMID: 31789987 DOI: 10.1097/dcc.0000000000000392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and disability each year in the United States. Implementation of preestablished evidence-based guidelines has been associated with a decrease in overall TBI mortality and disability. OBJECTIVES An electronic clinical monitoring tool was developed for monitoring compliance with evidence-based TBI treatment protocols to improve the overall care and outcomes in this patient population. METHODS This project was designed as a process improvement project. For the preimplementation cohort of TBI patients, aggregate compliance data (by patient) were obtained from the Brain Trauma Foundation Trial patient registry maintained at Conemaugh Memorial Medical Center for the time between 2011 and 2012. The postimplementation cohort includes all patients older than 18 years who have sustained a TBI requiring clinical monitoring devices. RESULTS There was a statistical significance between groups; the TBI-2017 group demonstrated better compliance with anticonvulsant use and cerebral perfusion pressure maintenance. In addition, overall compliance was better in the TBI-2017 cohort compared with the TBI-2012 cohort. CONCLUSIONS Traumatic brain injury-specific education and frequent assessments improved compliance between TBI-2012 and TBI-2017, resulting in a higher percentage in overall survivors in the latter group.
Collapse
|
5
|
Oh H, Lee K, Shin S, Seo W. Temporal Patterns and Influential Factors of Blood Glucose Levels During the First 10-Day Critical Period After Brain Injury. Clin Nurs Res 2017; 28:744-761. [PMID: 29254374 DOI: 10.1177/1054773817749725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was conducted to document temporal patterns of blood glucose level changes during the first 10-day critical period and to identify factors that influence stress-induced hyperglycemia development in brain injury patients. The medical records of 190 brain injury patients were retrospectively reviewed. Blood glucose levels in the poor recovery group were significantly higher than in the good recovery group, particularly during the first 72 hr (158-172 mg/dl). The poor recovery group showed persistent, fluctuating hyperglycemia, whereas the good recovery group exhibited hyperglycemic peaks during the first 3 days that subsequently reduced linearly to normal. Gender, preexisting hypertension, disease severity at admission, total calorie intake, and steroid use were found to influence stress-induced hyperglycemia development significantly. In conclusion, close monitoring and adjustment are required to maintain safe blood glucose levels and the development of protocols for safe glycemic management is essential to improve critical care in brain injury patients.
Collapse
Affiliation(s)
- HyunSoo Oh
- 1 Inha University, Incheon, Republic of Korea
| | - KangIm Lee
- 1 Inha University, Incheon, Republic of Korea
| | | | - WhaSook Seo
- 1 Inha University, Incheon, Republic of Korea
| |
Collapse
|
6
|
Godoy DA, Seifi A, Garza D, Lubillo-Montenegro S, Murillo-Cabezas F. Hyperventilation Therapy for Control of Posttraumatic Intracranial Hypertension. Front Neurol 2017; 8:250. [PMID: 28769857 PMCID: PMC5511895 DOI: 10.3389/fneur.2017.00250] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/19/2017] [Indexed: 12/30/2022] Open
Abstract
During traumatic brain injury, intracranial hypertension (ICH) can become a life-threatening condition if it is not managed quickly and adequately. Physicians use therapeutic hyperventilation to reduce elevated intracranial pressure (ICP) by manipulating autoregulatory functions connected to cerebrovascular CO2 reactivity. Inducing hypocapnia via hyperventilation reduces the partial pressure of arterial carbon dioxide (PaCO2), which incites vasoconstriction in the cerebral resistance arterioles. This constriction decrease cerebral blood flow, which reduces cerebral blood volume and, ultimately, decreases the patient’s ICP. The effects of therapeutic hyperventilation (HV) are transient, but the risks accompanying these changes in cerebral and systemic physiology must be carefully considered before the treatment can be deemed advisable. The most prominent criticism of this approach is the cited possibility of developing cerebral ischemia and tissue hypoxia. While it is true that certain measures, such as cerebral oxygenation monitoring, are needed to mitigate these dangerous conditions, using available evidence of potential poor outcomes associated with HV as justification to dismiss the implementation of therapeutic HV is debatable and remains a controversial subject among physicians. This review highlights various issues surrounding the use of HV as a means of controlling posttraumatic ICH, including indications for treatment, potential risks, and benefits, and a discussion of what techniques can be implemented to avoid adverse complications.
Collapse
Affiliation(s)
- Daniel Agustín Godoy
- Neurointensive Care Unit, Sanatorio Pasteur, San Fernando del Valle de Catamarca, Argentina.,Intensive Care Unit, Hospital San Juan Bautista, Catamarca, Argentina
| | - Ali Seifi
- University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - David Garza
- Department of Neurosurgery, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | | | | |
Collapse
|
7
|
Shi J, Dong B, Mao Y, Guan W, Cao J, Zhu R, Wang S. Review: Traumatic brain injury and hyperglycemia, a potentially modifiable risk factor. Oncotarget 2016; 7:71052-71061. [PMID: 27626493 PMCID: PMC5342608 DOI: 10.18632/oncotarget.11958] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022] Open
Abstract
Hyperglycemia after severe traumatic brain injury (TBI) occurs frequently and is associated with poor clinical outcome and increased mortality. In this review, we highlight the mechanisms that lead to hyperglycemia and discuss how they may contribute to poor outcomes in patients with severe TBI. Moreover, we systematically review the proper management of hyperglycemia after TBI, covering topics such as nutritional support, glucose control, moderated hypothermia, naloxone, and mannitol treatment. However, to date, an optimal and safe glycemic target range has not been determined, and may not be safe to implement among TBI patients. Therefore, there is a mandate to explore a reasonable glycemic target range that can facilitate recovery after severe TBI.
Collapse
Affiliation(s)
- Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yumin Mao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Rongxing Zhu
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Suinuan Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
8
|
Nemer SN, Caldeira JB, Santos RG, Guimarães BL, Garcia JM, Prado D, Silva RT, Azeredo LM, Faria ER, Souza PCP. Effects of positive end-expiratory pressure on brain tissue oxygen pressure of severe traumatic brain injury patients with acute respiratory distress syndrome: A pilot study. J Crit Care 2015; 30:1263-6. [PMID: 26307004 DOI: 10.1016/j.jcrc.2015.07.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/16/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE To verify whether high positive end-expiratory pressure levels can increase brain tissue oxygen pressure, and also their effects on pulse oxygen saturation, intracranial pressure, and cerebral perfusion pressure. MATERIAL AND METHODS Twenty traumatic brain injury patients with acute respiratory distress syndrome were submitted to positive end-expiratory pressure levels of 5, 10, and 15 cm H2O progressively. The 3 positive end-expiratory pressure levels were used during 20 minutes for each one, whereas brain tissue oxygen pressure, oxygen saturation, intracranial pressure, and cerebral perfusion pressure were recorded. RESULTS Brain tissue oxygen pressure and oxygen saturation increased significantly with increasing positive end-expiratory pressure from 5 to 10 and from 10 to 15 cm H2O (P=.0001 and P=.0001 respectively). Intracranial pressure and cerebral perfusion pressure did not differ significantly with increasing positive end-expiratory pressure from 5 to 10 and from 10 to 15 cm H2O (P=.16 and P=.79 respectively). CONCLUSIONS High positive end-expiratory pressure levels increased brain tissue oxygen pressure and oxygen saturation, without increase in intracranial pressure or decrease in cerebral perfusion pressure. High positive end-expiratory pressure levels can be used in severe traumatic brain injury patients with acute respiratory distress syndrome as a safe alternative to improve brain oxygenation.
Collapse
Affiliation(s)
- Sérgio Nogueira Nemer
- Complexo Hospitalar de Niterói. Rua La Salle 12, Centro, Niterói, Rio de Janeiro, CEP: 24020-090, Brazil; Hospital da Polícia Militar de Niterói. Rua Martins Torres 245, Santa Rosa, Niterói, Rio de Janeiro, CEP: 24240-705, Brazil; Universidade UNIGRANRIO. Rua José de Souza Herdy 1160, Jardim Vinte e Cinco de Agosto, Duque de Caxias, CEP: 25071-202, Brazil.
| | - Jefferson B Caldeira
- Complexo Hospitalar de Niterói. Rua La Salle 12, Centro, Niterói, Rio de Janeiro, CEP: 24020-090, Brazil; Universidade UNIGRANRIO. Rua José de Souza Herdy 1160, Jardim Vinte e Cinco de Agosto, Duque de Caxias, CEP: 25071-202, Brazil
| | - Ricardo G Santos
- Complexo Hospitalar de Niterói. Rua La Salle 12, Centro, Niterói, Rio de Janeiro, CEP: 24020-090, Brazil
| | - Bruno L Guimarães
- Complexo Hospitalar de Niterói. Rua La Salle 12, Centro, Niterói, Rio de Janeiro, CEP: 24020-090, Brazil
| | - João Márcio Garcia
- Complexo Hospitalar de Niterói. Rua La Salle 12, Centro, Niterói, Rio de Janeiro, CEP: 24020-090, Brazil
| | - Darwin Prado
- Complexo Hospitalar de Niterói. Rua La Salle 12, Centro, Niterói, Rio de Janeiro, CEP: 24020-090, Brazil
| | - Ricardo T Silva
- Complexo Hospitalar de Niterói. Rua La Salle 12, Centro, Niterói, Rio de Janeiro, CEP: 24020-090, Brazil
| | - Leandro M Azeredo
- Hospital da Polícia Militar de Niterói. Rua Martins Torres 245, Santa Rosa, Niterói, Rio de Janeiro, CEP: 24240-705, Brazil
| | - Eduardo R Faria
- Complexo Hospitalar de Niterói. Rua La Salle 12, Centro, Niterói, Rio de Janeiro, CEP: 24020-090, Brazil
| | - Paulo Cesar P Souza
- Complexo Hospitalar de Niterói. Rua La Salle 12, Centro, Niterói, Rio de Janeiro, CEP: 24020-090, Brazil
| |
Collapse
|
9
|
Correlation of Fracture Depression Level and Dural Tear in Patients With Depressed Skull Fracture. ACTA ACUST UNITED AC 2014. [DOI: 10.1097/wnq.0b013e31828c7410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Tallon JM, Flowerdew G, Stewart RD, Kovacs G. Outcomes in Seriously Head-Injured Patients Undergoing Pre-Hospital Tracheal Intubation vs. Emergency Department Tracheal Intubation. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ijcm.2013.42015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Rohlwink UK, Zwane E, Fieggen AG, Argent AC, le Roux PD, Figaji AA. The relationship between intracranial pressure and brain oxygenation in children with severe traumatic brain injury. Neurosurgery 2012; 70:1220-30; discussion 1231. [PMID: 22134142 DOI: 10.1227/neu.0b013e318243fc59] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intracranial pressure (ICP) monitoring is a cornerstone of care for severe traumatic brain injury (TBI). Management of ICP can help ensure adequate cerebral blood flow and oxygenation. However, studies indicate that brain hypoxia may occur despite normal ICP and the relationship between ICP and brain oxygenation is poorly defined. This is particularly important for children in whom less is known about intracranial dynamics. OBJECTIVE To examine the relationship between ICP and partial pressure of brain tissue oxygen (PbtO2) in children with severe TBI (Glasgow Coma Scale score ≤ 8) admitted to Red Cross War Memorial Children's Hospital, Cape Town. METHODS The relationship between time-linked hourly and high-frequency ICP and PbtO2 data was examined using correlation, regression, and generalized estimating equations. Thresholds for ICP were examined against reduced PbtO2 using age bands and receiver-operating characteristic curves. RESULTS Analysis using more than 8300 hourly (n = 75) and 1 million high-frequency data points (n = 30) demonstrated a weak relationship between ICP and PbtO2 (r = 0.05 and r = 0.04, respectively). No critical ICP threshold for low PbtO2 was identified. Individual patients revealed a strong relationship between ICP and PbtO2 at specific times, but different relationships were evident over longer periods. CONCLUSION The relationship between ICP and PbtO2 appears complex, and several factors likely influence both variables separately and in combination. Although very high ICP is associated with reduced PbtO2, in general, absolute ICP has a poor relationship with PbtO2. Because reduced PbtO2 is independently associated with poor outcome, a better understanding of ICP and PbtO2 management in pediatric TBI seems to be needed.
Collapse
Affiliation(s)
- Ursula K Rohlwink
- School of Child and Adolescent Health, Division of Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, Western Cape, South Africa
| | | | | | | | | | | |
Collapse
|
12
|
Controversies in the management of adults with severe traumatic brain injury. AACN Adv Crit Care 2012; 23:188-203. [PMID: 22543492 DOI: 10.1097/nci.0b013e31824db4f3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Despite progress in the management of adults with severe traumatic brain injury, several controversies persist. Among the unresolved issues of greatest concern to neurocritical care clinicians and scientists are the following: (1) the best use of technological advances and the data obtained from multimodality monitoring; (2) the use of mannitol and hypertonic saline in the management of increased intracranial pressure; (3) the use of decompressive craniectomy and barbiturate coma in refractory increased intracranial pressure; (4) therapeutic hypothermia as a neuroprotectant; (5) anemia and the role of blood transfusion; and (6) venous thromboembolism prophylaxis in severe traumatic brain injury. Each of these strategies for managing severe traumatic brain injury, including the postulated mechanism(s) of action and beneficial effects of each intervention, adverse effects, the state of the science, and critical care nursing implications, is discussed.
Collapse
|
13
|
Bennett Colomer C, Solari Vergara F, Tapia Perez F, Miranda Vasquez F, Horlacher Kunstmann A, Parra Fierro G, Salazar Zenkovich C. Delayed intracranial hypertension and cerebral edema in severe pediatric head injury: risk factor analysis. Pediatr Neurosurg 2012; 48:205-9. [PMID: 23571484 DOI: 10.1159/000343385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Diffuse brain edema has been described as a major cause of intracranial hypertension (IH) following traumatic brain injury (TBI), and several studies suggest that it may be more frequent in children than in adults. While most cases of IH following TBI are present from the beginning, several studies have described a subgroup of patients with delayed elevations in intracranial pressure (ICP). METHODS Retrospective review of severe pediatric TBI cases admitted to a single institution during a 6-year period. Patients were classified into three groups, based on the temporal evolution of ICP: patients who evolved without IH, patients who had IH at admission and patients with delayed IH. A risk factor analysis was performed to find differences between these groups. RESULTS 31 cases of severe pediatric TBI were analyzed. 13 patients were female and 18 male, with an average age of 8.9 years. 4 patients met the described criteria for delayed IH; the only significant risk factor was presence of edema at the initial brain CT (p = 0.008). 3 additional patients presented clinical deterioration after 48 h and signs of brain edema in the CT, after ICP monitoring had been discontinued. CONCLUSIONS Late-onset IH is a relatively common clinical condition in the pediatric population with severe TBI (present in 13% of the cases in our series), and the presence of a Marshall III CT scan at admission is a significant risk factor for this condition. Pediatric patients may benefit from a more prolonged period of ICP monitoring than adults, and the lack of amelioration of brain edema at follow-up brain CT (even with normal ICP values) may be an indication that more prolonged monitoring is needed.
Collapse
|
14
|
[Biological mechanisms involved in the spread of traumatic brain damage]. Med Intensiva 2011; 36:37-44. [PMID: 21903299 DOI: 10.1016/j.medin.2011.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/23/2011] [Accepted: 06/25/2011] [Indexed: 01/11/2023]
Abstract
Traumatic brain injury (TBI) is a worldwide health problem that is especially prevalent in young adults. It is characterized by one or more primary injury foci, with secondary spread to initially not compromised areas via cascades of inflammatory response, excitotoxicity, energy failure conditions, and amplification of the original tissue injury by glia. In theory, such progression of injury should be amenable to management. However, all neuroprotective drug trials have failed, and specific treatments remain lacking. These negative results can be explained by a neuron centered approach, excluding the participation of other cell types and pathogenic mechanisms. To change this situation, it is necessary to secure a better understanding of the biological mechanisms determining damage progression or spread. We discuss the biological mechanisms involved in the progression of post-trauma tissue damage, including the general physiopathology of TBI and cellular mechanisms of secondary damage such as inflammation, apoptosis, cell tumefaction, excitotoxicity, and the role of glia in damage propagation. We highlight the role of glia in each cellular mechanism discussed. Therapeutic approaches related to the described mechanisms have been included. The discussion is completed with a working model showing the convergence of the main topics.
Collapse
|
15
|
Peroxisome proliferator-activated receptors: "key" regulators of neuroinflammation after traumatic brain injury. PPAR Res 2011; 2008:538141. [PMID: 18382619 PMCID: PMC2276625 DOI: 10.1155/2008/538141] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 01/29/2008] [Indexed: 11/24/2022] Open
Abstract
Traumatic brain injury is characterized by neuroinflammatory pathological sequelae which contribute to brain edema and delayed neuronal cell death. Until present, no specific pharmacological compound has been found, which attenuates these pathophysiological events and improves the outcome after head injury. Recent experimental studies suggest that targeting peroxisome proliferator-activated receptors (PPARs) may represent a new anti-inflammatory therapeutic concept for traumatic brain injury. PPARs are “key” transcription factors which inhibit NFκB activity and downstream transcription products, such as proinflammatory and proapoptotic cytokines. The present review outlines our current understanding of PPAR-mediated neuroprotective mechanisms in the injured brain and discusses potential future anti-inflammatory strategies for head-injured patients, with an emphasis on the putative beneficial combination therapy of synthetic cannabinoids (e.g., dexanabinol) with PPARα agonists (e.g., fenofibrate).
Collapse
|
16
|
Kazim SF, Shamim MS, Tahir MZ, Enam SA, Waheed S. Management of penetrating brain injury. J Emerg Trauma Shock 2011; 4:395-402. [PMID: 21887033 PMCID: PMC3162712 DOI: 10.4103/0974-2700.83871] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/10/2010] [Indexed: 11/04/2022] Open
Abstract
Penetrating brain injury (PBI), though less prevalent than closed head trauma, carries a worse prognosis. The publication of Guidelines for the Management of Penetrating Brain Injury in 2001, attempted to standardize the management of PBI. This paper provides a precise and updated account of the medical and surgical management of these unique injuries which still present a significant challenge to practicing neurosurgeons worldwide. The management algorithms presented in this document are based on Guidelines for the Management of Penetrating Brain Injury and the recommendations are from literature published after 2001. Optimum management of PBI requires adequate comprehension of mechanism and pathophysiology of injury. Based on current evidence, we recommend computed tomography scanning as the neuroradiologic modality of choice for PBI patients. Cerebral angiography is recommended in patients with PBI, where there is a high suspicion of vascular injury. It is still debatable whether craniectomy or craniotomy is the best approach in PBI patients. The recent trend is toward a less aggressive debridement of deep-seated bone and missile fragments and a more aggressive antibiotic prophylaxis in an effort to improve outcomes. Cerebrospinal fluid (CSF) leaks are common in PBI patients and surgical correction is recommended for those which do not close spontaneously or are refractory to CSF diversion through a ventricular or lumbar drain. The risk of post-traumatic epilepsy after PBI is high, and therefore, the use of prophylactic anticonvulsants is recommended. Advanced age, suicide attempts, associated coagulopathy, Glasgow coma scale score of 3 with bilaterally fixed and dilated pupils, and high initial intracranial pressure have been correlated with worse outcomes in PBI patients.
Collapse
Affiliation(s)
- Syed Faraz Kazim
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Muhammad Shahzad Shamim
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Muhammad Zubair Tahir
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Shahan Waheed
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
17
|
Kouvarellis AJ, Rohlwink UK, Sood V, Van Breda D, Gowen MJ, Figaji AA. The relationship between basal cisterns on CT and time-linked intracranial pressure in paediatric head injury. Childs Nerv Syst 2011; 27:1139-44. [PMID: 21538131 DOI: 10.1007/s00381-011-1464-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/11/2011] [Indexed: 02/02/2023]
Abstract
PURPOSE Although intracranial pressure (ICP) monitoring is a cornerstone of care for severe traumatic brain injury (TBI), the indications for ICP monitoring in children are unclear. Often, decisions are based on head computed tomography (CT) scan characteristics. Arguably, the patency of the basal cisterns is the most commonly used of these signs. Although raised ICP is more likely with obliterated basal cisterns, the implications of open cisterns are less clear. We examined the association between the status of perimesencephalic cisterns and time-linked ICP values in paediatric severe TBI. METHODS ICP data linked to individual head CT scans were reviewed. Basal cisterns were classified as open or closed by blinded reviewers. For the initial CT scan, we examined ICP values for the first 6 h after monitor insertion. For follow-up scans, we examined ICP values 3 h before and after scanning. Mean ICP and any episode of ICP ≥ 20 mmHg during this period were recorded. RESULTS Data from 104 patients were examined. Basal cisterns were patent in 51.72% of scans, effaced in 34.48% and obliterated in 13.79%. Even when cisterns were open, more than 40% of scans had at least one episode of ICP ≥ 20 mmHg, and 14% of scans had a mean ICP ≥ 20 mmHg. The specificity of open cisterns in predicting ICP < 20 mmHg was poor (57.9%). Age-related data were worse. CONCLUSION Children with severe TBI frequently may have open basal cisterns on head CT despite increased ICP. Open cisterns should not discourage ICP monitoring.
Collapse
Affiliation(s)
- Alison J Kouvarellis
- Division of Neurosurgery, School of Child and Adolescent Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
18
|
Pupillary Response to Light Is Preserved in the Majority of Patients Undergoing Rapid Sequence Intubation. Ann Emerg Med 2011; 57:234-7. [DOI: 10.1016/j.annemergmed.2010.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 08/25/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
|
19
|
Baker AJ, Rhind SG, Morrison LJ, Black S, Crnko NT, Shek PN, Rizoli SB. Resuscitation with hypertonic saline-dextran reduces serum biomarker levels and correlates with outcome in severe traumatic brain injury patients. J Neurotrauma 2010; 26:1227-40. [PMID: 19637968 DOI: 10.1089/neu.2008.0868] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the treatment of severe traumatic brain injury (TBI), the choice of fluid and osmotherapy is important. There are practical and theoretical advantages to the use of hypertonic saline. S100B, neuron-specific enolase (NSE), and myelin-basic protein (MBP) are commonly assessed biomarkers of brain injury with potential utility as diagnostic and prognostic indicators of outcome after TBI, but they have not previously been studied in the context of fluid resuscitation. This randomized controlled trial compared serum concentrations of S100B, NSE, and MBP in adult severe TBI patients resuscitated with 250 mL of 7.5% hypertonic saline plus 6% dextran70 (HSD; n = 31) versus 0.9% normal saline (NS; n = 33), and examined their relationship with neurological outcome at discharge. Blood samples drawn on admission (<or=3 h post-injury), and at 12, 24, and 48 h post-resuscitation were assayed by ELISA for the selected biomarkers. Serial comparisons of biomarker concentrations were made by ANOVA, and relationships between biomarkers and outcome were assessed by multiple regression. On admission, mean (+/-SEM) S100B and NSE concentrations were increased 60-fold (0.73 +/- 0.08 microg/L) and sevenfold (37.0 +/- 4.8 microg/L), respectively, in patients resuscitated with NS, compared to controls (0.01 +/- 0.01 and 6.2 +/- 0.6, respectively). Compared with NS resuscitation, S100B and NSE were twofold and threefold lower in HSD-treated patients and normalized within 12 h. MBP levels were not significantly different from controls in either treatment arm until 48 h post-resuscitation, when a delayed increase (0.58 +/- 0.29 microg/L) was observed in NS-treated patients. Biomarkers were elevated in the patient group showing an unfavorable outcome. HSD-resuscitated patients with favorable outcomes exhibited the lowest serum S100B and NSE concentrations, while maximal levels were found in NS-treated patients with unfavorable outcomes. The lowest biomarker levels were seen in survivors resuscitated with HSD, while maximal levels were in NS-resuscitated patients with fatal outcome. Pre-hospital resuscitation with HSD is associated with a reduction in serum S100B, NSE, and MBP concentrations, which are correlated with better outcome after severe TBI.
Collapse
Affiliation(s)
- Andrew J Baker
- Brain Injury Laboratory, Cara Phelan Centre for Trauma Research, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
20
|
Alveolar recruitment maneuver in patients with subarachnoid hemorrhage and acute respiratory distress syndrome: a comparison of 2 approaches. J Crit Care 2010; 26:22-7. [PMID: 20646904 DOI: 10.1016/j.jcrc.2010.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 04/23/2010] [Accepted: 04/25/2010] [Indexed: 01/07/2023]
Abstract
PURPOSE The purpose of the study was to compare 2 alveolar recruitment maneuvers (ARMs) approaches in patients with subarachnoid hemorrhage (SAH) and acute respiratory distress syndrome (ARDS). MATERIAL AND METHODS Sixteen SAH patients with ARDS were randomized in 2 similar groups. One received ARM with continuous positive airway pressure (CPAP) of 35 cm H(2)O for 40 seconds (CPAP recruitment), whereas the other received pressure control ventilation with positive-end expiratory pressure of 15 cm H(2)O and pressure control above positive end-expiratory pressure of 35 cm H(2)O for 2 minutes (pressure control recruitment maneuver [PCRM]). Intracranial pressure (ICP) and cerebral perfusion pressure (CPP) were measured before and after ARM. The ratio of arterial oxygen tension to fraction of inspired oxygen was measured before and 1 hour after the ARM. RESULTS After ARM, ICP was higher in CPAP recruitment (20.50 ± 4.75 vs 13.13 ± 3.56 mm Hg; P = .003); and CPP was lower in CPAP recruitment (62.38 ± 9.81 vs 79.60 ± 6.8 mm Hg; P = .001). One hour after the ARM, the ratio of arterial oxygen tension to fraction of inspired oxygen increased significantly only in PCRM (108.5 to 203.6; P = .0078). CONCLUSION In SAH patients with ARDS, PCRM did not affect ICP and decreased CPP in safe levels, besides improving oxygenation.
Collapse
|
21
|
Long JB, Bentley TL, Wessner KA, Cerone C, Sweeney S, Bauman RA. Blast overpressure in rats: recreating a battlefield injury in the laboratory. J Neurotrauma 2009; 26:827-40. [PMID: 19397422 DOI: 10.1089/neu.2008.0748] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blast injury to the brain is the predominant cause of neurotrauma in current military conflicts, and its etiology is largely undefined. Using a compression-driven shock tube to simulate blast effects, we assessed the physiological, neuropathological, and neurobehavioral consequences of airblast exposure, and also evaluated the effect of a Kevlar protective vest on acute mortality in rats and on the occurrence of traumatic brain injury (TBI) in those that survived. This approach provides survivable blast conditions under which TBI can be studied. Striking neuropathological changes were caused by both 126- and 147-kPa airblast exposures. The Kevlar vest, which encased the thorax and part of the abdomen, greatly reduced airblast mortality, and also ameliorated the widespread fiber degeneration that was prominent in brains of rats not protected by a vest during exposure to a 126-kPa airblast. This finding points to a significant contribution of the systemic effects of airblast to its brain injury pathophysiology. Airblast of this intensity also disrupted neurologic and neurobehavioral performance (e.g., beam walking and spatial navigation acquisition in the Morris water maze). When immediately followed by hemorrhagic hypotension, with MAP maintained at 30 mm Hg, airblast disrupted cardiocompensatory resilience, as reflected by reduced peak shed blood volume, time to peak shed blood volume, and time to death. These findings demonstrate that shock tube-generated airblast can cause TBI in rats, in part through systemic mediation, and that the resulting brain injury significantly impacts acute cardiovascular homeostatic mechanisms as well as neurobehavioral function.
Collapse
Affiliation(s)
- Joseph B Long
- Division of Military Casualty Research, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | | | | | | | |
Collapse
|
22
|
|