1
|
Furtado AI, Bonifácio VDB, Viveiros R, Casimiro T. Design of Molecularly Imprinted Polymers Using Supercritical Carbon Dioxide Technology. Molecules 2024; 29:926. [PMID: 38474438 DOI: 10.3390/molecules29050926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
The design and development of affinity polymeric materials through the use of green technology, such as supercritical carbon dioxide (scCO2), is a rapidly evolving field of research with vast applications across diverse areas, including analytical chemistry, pharmaceuticals, biomedicine, energy, food, and environmental remediation. These affinity polymeric materials are specifically engineered to interact with target molecules, demonstrating high affinity and selectivity. The unique properties of scCO2, which present both liquid- and gas-like properties and an accessible critical point, offer an environmentally-friendly and highly efficient technology for the synthesis and processing of polymers. The design and the synthesis of affinity polymeric materials in scCO2 involve several strategies. Commonly, the incorporation of functional groups or ligands into the polymer matrix allows for selective interactions with target compounds. The choice of monomer type, ligands, and synthesis conditions are key parameters of material performance in terms of both affinity and selectivity. In addition, molecular imprinting allied with co-polymerization and surface modification are commonly used in these strategies, enhancing the materials' performance and versatility. This review aims to provide an overview of the key strategies and recent advancements in the design of affinity polymeric materials using scCO2.
Collapse
Affiliation(s)
- Ana I Furtado
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science & Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Vasco D B Bonifácio
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Raquel Viveiros
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science & Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Teresa Casimiro
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science & Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Hasanah AN, Susanti I. Molecularly Imprinted Polymers for Pharmaceutical Impurities: Design and Synthesis Methods. Polymers (Basel) 2023; 15:3401. [PMID: 37631457 PMCID: PMC10457877 DOI: 10.3390/polym15163401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The safety of a medicinal product is determined by its pharmacological and toxicological profile, which depends not only on the active substance's toxicological properties, but also on the impurities it contains. Because impurities are a problem that must be considered to ensure the safety of a drug product, many studies have been conducted regarding the separation or purification of active pharmaceutical ingredients (APIs) and the determination of impurities in APIs and drug products. Several studies have applied molecularly imprinted polymers (MIPs) to separate impurities in active ingredients and as adsorbents in the sample preparation process. This review presents the design of MIPs and the methods used to synthesise MIPs to separate impurities in APIs and drug product samples, the application of MIPs to separate impurities, and a view of future studies involving MIPs to remove impurities from pharmaceutical products. Based on a comparison of the bulk and surface-imprinting polymerisation methods, the MIPs produced by the surface-imprinting polymerisation method have a higher adsorption capacity and faster adsorption kinetics than the MIPs produced by the bulk polymerisation method. However, the application of MIPs in the analysis of APIs and drug products are currently only related to organic compounds. Considering the advantages of MIPs to separate impurities, MIPs for other impurities still need to be developed, including multi-template MIPs for simultaneous separation of multiple impurities.
Collapse
Affiliation(s)
- Aliya Nur Hasanah
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia;
- Drug Development Study Center, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Ike Susanti
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia;
| |
Collapse
|
3
|
Lovrec-Krstič T, Orthaber K, Maver U, Sarenac T. Review of Potential Drug-Eluting Contact Lens Technologies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103653. [PMID: 37241280 DOI: 10.3390/ma16103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
The field of ophthalmology is expanding exponentially, both in terms of diagnostic and therapeutic capabilities, as well as the worldwide increasing incidence of eye-related diseases. Due to an ageing population and climate change, the number of ophthalmic patients will continue to increase, overwhelming healthcare systems and likely leading to under-treatment of chronic eye diseases. Since drops are the mainstay of therapy, clinicians have long emphasised the unmet need for ocular drug delivery. Alternative methods, i.e., with better compliance, stability and longevity of drug delivery, would be preferred. Several approaches and materials are being studied and used to overcome these drawbacks. We believe that drug-loaded contact lenses are among the most promising and are a real step toward dropless ocular therapy, potentially leading to a transformation in clinical ophthalmic practice. In this review, we outline the current role of contact lenses in ocular drug delivery, focusing on materials, drug binding and preparation, concluding with a look at future developments.
Collapse
Affiliation(s)
- Tina Lovrec-Krstič
- Community Health Centre Dr. Adolfa Drolca Maribor, Department of Radiology with Centre for Breast Disease, Ulica talcev 5, 2000 Maribor, Slovenia
| | - Kristjan Orthaber
- Department of Anesthesiology, Intensive Care and Pain Therapy, University Medical Center Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences and Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tomislav Sarenac
- Department of Ophthalmology, University Medical Center Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| |
Collapse
|
4
|
NP Ghoderao P, Lee CW, Byun HS. Binary Systems for the Trimethylolpropane Triacrylate and Trimethylolpropane Trimethacrylate in Supercritical Carbon Dioxide: Experiment and Modeling. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Ghoderao PN, Dhamodharan D, Mubarak S, Byun HS. Phase behavioral study of binary systems for the vinyl Benzoate, vinyl pivalate and vinyl octanoate with carbon dioxide at high-pressure. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Dhamodharan D, Park CW, Ghoderao PN, Byun HS. Experimental and computational investigation of two-component mixtures for the alkyl (ethyl, propyl and butyl) oleate in supercritical carbon dioxide. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Martín-Esteban A. Green molecularly imprinted polymers for sustainable sample preparation. J Sep Sci 2021; 45:233-245. [PMID: 34562063 DOI: 10.1002/jssc.202100581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022]
Abstract
The use of molecularly imprinted polymers in sample preparation as selective sorbent materials has received great attention during the last years leading to analytical methods with unprecedented selectivity. However, with the progressive implementation of Green Analytical Chemistry principles, it is necessary to critically review the greenness of synthesis and further use of molecularly imprinted polymers in sample preparation. Accordingly, in the present review, the different steps and strategies for the preparation of molecularly imprinted polymers, the used reagents, as well as their incorporation to microextraction techniques are reviewed from a green perspective and recent alternatives to make the use of molecularly imprinted polymers more sustainable are provided.
Collapse
Affiliation(s)
- Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| |
Collapse
|
8
|
Tutek K, Masek A, Kosmalska A, Cichosz S. Application of Fluids in Supercritical Conditions in the Polymer Industry. Polymers (Basel) 2021; 13:729. [PMID: 33673482 PMCID: PMC7956827 DOI: 10.3390/polym13050729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
This article reviews the use of fluids under supercritical conditions in processes related to the modern and innovative polymer industry. The most important processes using supercritical fluids are: extraction, particle formation, micronization, encapsulation, impregnation, polymerization and foaming. This review article briefly describes and characterizes the individual processes, with a focus on extraction, micronization, particle formation and encapsulation. The methods mentioned focus on modifications in the scope of conducting processes in a more ecological manner and showing higher quality efficiency. Nowadays, due to the growing trend of ecological solutions in the chemical industry, we see more and more advanced technological solutions. Less toxic fluids under supercritical conditions can be used as an ecological alternative to organic solvents widely used in the polymer industry. The use of supercritical conditions to conduct these processes creates new opportunities for obtaining materials and products with specialized applications, in particular in the medical, pharmacological, cosmetic and food industries, based on substances of natural sources. The considerations contained in this article are intended to increase the awareness of the need to change the existing techniques. In particular, the importance of using supercritical fluids in more industrial methods and for the development of already known processes, as well as creating new solutions with their use, should be emphasized.
Collapse
Affiliation(s)
- Karol Tutek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
| | - Anna Kosmalska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
| | - Stefan Cichosz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
| |
Collapse
|
9
|
Ullah B, Khan SR, Ali S, Jamil S. Synthesis, parameters, properties and applications of responsive molecularly imprinted microgels: a review. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Responsive molecularly imprinted microgels (MIGs) have gained a lot of interest due to their responsive specificity and selectivity for target compounds. Study on MIGs is rapidly increasing due to their quick responsive behavior in various stimuli like pH and temperature. MIGs show unique property of morphology control on in-situ synthesis of nanoparticles in response of variation in reactant concentration. Literature related to synthesis, parameters, characterization, applications and prospects of MIGs are critically reviewed here. Range of templates, monomers, initiators and crosslinkers are summarized for designing of desired MIGs. This review article describes effect of variation in reactants combination and composition on morphology, imprinting factor and percentage yield of MIGs. Hydrolysis of similar templates using MIGs is also described. Relation between percentage hydrolysis and hydrolysis time of targets at different temperatures and template:monomer ratio is also analyzed. Possible imprinting modes of ionic/non-ionic templates and its series are also generalized on the basis of previous literature. MIGs are investigated as efficient anchoring vehicles for adsorption, catalysis, bio-sensing, drug delivery, inhibition and detection.
Collapse
Affiliation(s)
- Burhan Ullah
- Department of Chemistry , University of Agriculture , Faisalabad 38000 , Pakistan
| | - Shanza Rauf Khan
- Department of Chemistry , University of Agriculture , Faisalabad 38000 , Pakistan
| | - Sarmed Ali
- Department of Physics , University of Agriculture , Faisalabad 38000 , Pakistan
| | - Saba Jamil
- Department of Chemistry , University of Agriculture , Faisalabad 38000 , Pakistan
- Department of Materials Science and Engineering , Cornell University , Ithaca , NY 14853 , USA
| |
Collapse
|
10
|
MIP Synthesis and Processing Using Supercritical Fluids. Methods Mol Biol 2021; 2359:19-42. [PMID: 34410657 DOI: 10.1007/978-1-0716-1629-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Supercritical fluid technology provides a clean and straightforward way for the preparation of high affinity polymeric materials. Molecularly Imprinted Polymers (MIPs) as dry, free-flowing powders are obtained in a one-step synthetic route yielding molecular recognition materials for several applications. Herein, we describe the experimental procedures involved in the scCO2-assisted MIP development: synthesis, template desorption, impregnation, and membrane preparation. MIP applications are described putting in evidence the advantages of MIP development using supercritical fluid technology.
Collapse
|
11
|
Gulzar A, Gulzar A, Ansari MB, He F, Gai S, Yang P. Carbon dioxide utilization: A paradigm shift with CO2 economy. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100013] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Production of drug-releasing biodegradable microporous scaffold impregnated with gemcitabine using a CO2 foaming process. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Gurina DL, Budkov YA, Kiselev MG. Impregnation of Poly(methyl methacrylate) with Carbamazepine in Supercritical Carbon Dioxide: Molecular Dynamics Simulation. J Phys Chem B 2020; 124:8410-8417. [PMID: 32930588 DOI: 10.1021/acs.jpcb.0c05657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fully atomistic molecular dynamics simulations are employed to study impregnation of the poly(methyl methacrylate) (PMMA) matrix with carbamazepine (CBZ) in supercritical carbon dioxide. The simulation box consists of 108 macromolecules of the polymer sample with the polymerization degree of 100, 57 molecules of CBZ, and 242,522 CO2 molecules. The simulation is performed at 333 K and 20 MPa. It is found that by the end of the simulation, the CBZ uptake reaches 1.09 wt % and 50 molecules are sorbed by PMMA. The main type of interaction between PMMA and CBZ is hydrogen bonding between the carbonyl oxygen of PMMA and the hydrogen atoms of the CBZ NH2-group. At the polymer surface, CBZ exists not only in the molecular form, as inside the polymer and in the bulk solution, but also in the form of dimers and trimers. The energy of formation of the hydrogen-bonded complexes is estimated within ab initio calculations.
Collapse
Affiliation(s)
- Darya L Gurina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Street, Ivanovo 153045, Russian Federation
| | - Yury A Budkov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Street, Ivanovo 153045, Russian Federation.,Tikhonov Moscow Institute of Electronics and Mathematics, National Research University Higher School of Economics, Tallinskaya st. 34, 123458 Moscow, Russian Federation
| | - Mikhail G Kiselev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Street, Ivanovo 153045, Russian Federation
| |
Collapse
|
14
|
Bodoki AE, Iacob BC, Bodoki E. Perspectives of Molecularly Imprinted Polymer-Based Drug Delivery Systems in Cancer Therapy. Polymers (Basel) 2019; 11:polym11122085. [PMID: 31847103 PMCID: PMC6960886 DOI: 10.3390/polym11122085] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023] Open
Abstract
Despite the considerable effort made in the past decades, multiple aspects of cancer management remain a challenge for the scientific community. The severe toxicity and poor bioavailability of conventional chemotherapeutics, and the multidrug resistance have turned the attention of researchers towards the quest of drug carriers engineered to offer an efficient, localized, temporized, and doze-controlled delivery of antitumor agents of proven clinical value. Molecular imprinting of chemotherapeutics is very appealing in the design of drug delivery systems since the specific and selective binding sites created within the polymeric matrix turn these complex structures into value-added carriers with tunable features, notably high loading capacity, and a good control of payload release. Our work aims to summarize the present state-of-the art of molecularly imprinted polymer-based drug delivery systems developed for anticancer therapy, with emphasis on the particularities of the chemotherapeutics’ release and with a critical assessment of the current challenges and future perspectives of these unique drug carriers.
Collapse
Affiliation(s)
- Andreea Elena Bodoki
- Inorganic Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Ion Creangă St., 400010 Cluj-Napoca, Romania;
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
| | - Ede Bodoki
- Analytical Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-264-597-256 (int. 2838)
| |
Collapse
|
15
|
Fomina I, Mishakov G, Krotova L, Popov V, Bagratashvili V, Bogomyakov A, Zavorotny YS, Eremenko I. Synthesis of (sub)microcrystals of dinuclear terbium(III) carboxylate (Hpiv)6Tb2(piv)6 and polymeric terbium(III) carboxylate {Tb(piv)3} in supercritical carbon dioxide. Photoluminescence and magnetic properties. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Tuwahatu CA, Yeung CC, Lam YW, Roy VAL. The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems. J Control Release 2018; 287:24-34. [PMID: 30110614 DOI: 10.1016/j.jconrel.2018.08.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
Abstract
The development of polymeric materials as drug delivery systems has advanced from systems that rely on classical passive targeting to carriers that can sustain the precisely controlled release of payloads upon physicochemical triggers in desired microenvironment. Molecularly imprinted polymers (MIP), materials designed to capture specific molecules based on their molecular shape and charge distribution, are attractive candidates for fulfilling these purposes. In particular, drug-imprinted polymers coupled with active targeting mechanisms have been explored as potential drug delivery systems. In this review, we have curated important recent efforts in the development of drug-imprinted polymers in a variety of clinical applications, especially oncology and ophthalmology. MIP possesses properties that may complement the traditional delivery systems of these two disciplines, such as passive enhanced permeability and retention effect (EPR) in cancer tumors, and passive drug diffusion in delivering ophthalmic therapeutics. Furthermore, the prospects of MIP integration with the emerging gene therapies will be discussed.
Collapse
Affiliation(s)
- Christian Antonio Tuwahatu
- Department of Materials Science and Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chi Chung Yeung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Vellaisamy Arul Lenus Roy
- Department of Materials Science and Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
17
|
Rebocho S, Cordas CM, Viveiros R, Casimiro T. Development of a ferrocenyl-based MIP in supercritical carbon dioxide: Towards an electrochemical sensor for bisphenol A. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Viveiros R, Rebocho S, Casimiro T. Green Strategies for Molecularly Imprinted Polymer Development. Polymers (Basel) 2018; 10:E306. [PMID: 30966341 PMCID: PMC6415187 DOI: 10.3390/polym10030306] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 11/24/2022] Open
Abstract
Molecular imprinting is a powerful technology to create artificial receptors within polymeric matrices. Although it was reported for the first time by Polyakov, eighty-four years ago, it remains, nowadays, a very challenging research area. Molecularly imprinted polymers (MIPs) have been successfully used in several applications where selective binding is a requirement, such as immunoassays, affinity separation, sensors, and catalysis. Conventional methods used on MIP production still use large amounts of organic solvents which, allied with stricter legislation on the use and release of chemicals to the environment and the presence of impurities on final materials, will boost, in our opinion, the use of new cleaner synthetic strategies, in particular, with the application of the principles of green chemistry and engineering. Supercritical carbon dioxide, microwave, ionic liquids, and ultrasound technology are some of the green strategies which have already been applied in MIP production. These strategies can improve MIP properties, such as controlled morphology, homogeneity of the binding sites, and the absence of organic solvents. This review intends to give examples reported in literature on green approaches to MIP development, from nano- to micron-scale applications.
Collapse
Affiliation(s)
- Raquel Viveiros
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Sílvia Rebocho
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Teresa Casimiro
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
19
|
Salgado M, Santos F, Rodríguez-Rojo S, Reis RL, Duarte ARC, Cocero MJ. Development of barley and yeast β-glucan aerogels for drug delivery by supercritical fluids. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Kankala RK, Zhang YS, Wang SB, Lee CH, Chen AZ. Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications. Adv Healthc Mater 2017; 6:10.1002/adhm.201700433. [PMID: 28752598 PMCID: PMC5849475 DOI: 10.1002/adhm.201700433] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/12/2017] [Indexed: 12/18/2022]
Abstract
During the past few decades, supercritical fluid (SCF) has emerged as an effective alternative for many traditional pharmaceutical manufacturing processes. Operating active pharmaceutical ingredients (APIs) alone or in combination with various biodegradable polymeric carriers in high-pressure conditions provides enhanced features with respect to their physical properties such as bioavailability enhancement, is of relevance to the application of SCF in the pharmaceutical industry. Herein, recent advances in drug delivery systems manufactured using the SCF technology are reviewed. We provide a brief description of the history, principle, and various preparation methods involved in the SCF technology. Next, we aim to give a brief overview, which provides an emphasis and discussion of recent reports using supercritical carbon dioxide (SC-CO2 ) for fabrication of polymeric carriers, for applications in areas related to drug delivery, tissue engineering, bio-imaging, and other biomedical applications. We finally summarize with perspectives.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, P. R. China
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Ai-Zheng Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, P. R. China
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
21
|
Byun HS, Chun D. Adsorption and separation properties of gallic acid imprinted polymers prepared using supercritical fluid technology. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.05.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Cherkasova AV, Glagolev NN, Shienok AI, Demina TS, Kotova SL, Zaichenko NL, Akopova TA, Timashev PS, Bagratashvili VN, Solovieva AB. Chitosan impregnation with biologically active tryaryl imidazoles in supercritical carbon dioxide. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:141. [PMID: 27539011 DOI: 10.1007/s10856-016-5753-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
The presented paper is focused on impregnation of chitosan and its derivatives with a biologically active triaryl imidazole model compound ((2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole) in the supercritical carbon dioxide medium. Since initial chitosan represents a polycation-exchange resin and does not swell in supercritical carbon dioxide, the impregnation was carried out in the presence of water (0.15-3.0 vol%). The maximum 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole concentration in a chitosan film was achieved at the ~5 × 10(-3) g/cm(3) water content in the reactor. We also used hydroxy carboxylic acid derivatives of chitosan and its copolymer with polylactide as matrices for introduction of hydrophobic 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole. We have shown that unmodified chitosan contains the greatest amount of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole, as compared with its hydrophobic derivatives. The kinetics of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole diffusion from a chitosan matrix was studied in acidified water with pH 1.6. We found that the complete release of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole into the aqueous phase from unmodified chitosan films occurred in 48 h, while its complete release from chitosan modified with hydroxy carboxylic acids occurred in 5 min or less.
Collapse
Affiliation(s)
- Anastasia V Cherkasova
- N.N.Semenov Institute of Chemical Physics, Department of Polymers and Composites, 4 Kosygin St., Moscow, 119991, Russia
| | - Nikolay N Glagolev
- N.N.Semenov Institute of Chemical Physics, Department of Polymers and Composites, 4 Kosygin St., Moscow, 119991, Russia
| | - Andrey I Shienok
- N.N.Semenov Institute of Chemical Physics, Department of Polymers and Composites, 4 Kosygin St., Moscow, 119991, Russia
| | - Tatiana S Demina
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, 70 Profsoyuznaya St., Moscow, 117393, Russia
| | - Svetlana L Kotova
- N.N.Semenov Institute of Chemical Physics, Department of Polymers and Composites, 4 Kosygin St., Moscow, 119991, Russia.
| | - Natalia L Zaichenko
- N.N.Semenov Institute of Chemical Physics, Department of Polymers and Composites, 4 Kosygin St., Moscow, 119991, Russia
| | - Tatiana A Akopova
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, 70 Profsoyuznaya St., Moscow, 117393, Russia
| | - Peter S Timashev
- Institute of Photonic Technologies, Research Center of Crystallography and Photonics, 2 Pionerskaia St., Troitsk, Moscow, 142190, Russia
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, 2-4 Bolshaya Pirogovskaya St., Moscow, 119991, Russia
| | - Victor N Bagratashvili
- Institute of Photonic Technologies, Research Center of Crystallography and Photonics, 2 Pionerskaia St., Troitsk, Moscow, 142190, Russia
| | - Anna B Solovieva
- N.N.Semenov Institute of Chemical Physics, Department of Polymers and Composites, 4 Kosygin St., Moscow, 119991, Russia
| |
Collapse
|
23
|
Sol-gel approach for extracting highly versatile aspirin and its metabolites using MISPE followed by GC-MS/MS analysis. Bioanalysis 2016; 8:795-805. [PMID: 27005850 DOI: 10.4155/bio.16.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Aspirin is known to be a salicylate drug widely used as an analgesic, antipyretic and anti-inflammatory drug. METHODOLOGY Sol-gel based nanosized molecularly imprinted polymer (nMIP) has been synthesized for extraction of aspirin and its metabolites in urine followed by GC-MS/MS analysis. RESULTS Binding affinity of nMIP and nonimprinted polymer was found to be in the range of 70-95% and 29-45%, respectively. LOD and LOQ of aspirin and its metabolites were found to be in the range of 0.63-2.4 ng/ml and 2.07-7.68 ng/ml, respectively. CONCLUSION The developed method was found to be applicable for routine analysis of aspirin and its metabolites in biological samples.
Collapse
|
24
|
Abstract
Contact lenses for ophthalmic drug delivery have become very popular, due to their unique advantages like extended wear and more than 50% bioavailability. To achieve controlled and sustained drug delivery from contact lenses, researchers are working on various systems like polymeric nanoparticles, microemulsion, micelle, liposomes, use of vitamin E, etc. Numerous scientists are working on different areas of therapeutic contact lenses to treat ocular diseases by implementing techniques like soaking method, molecular imprinting, entrapment of drug-laden colloidal nanoparticles, drug plate/film, ion ligand polymeric systems, supercritical fluid technology, etc. Though sustained drug delivery was achieved using contact lens, the critical properties such as water content, tensile strength (mechanical properties), ion permeability, transparency and oxygen permeability were altered, which limit the commercialization of therapeutic contact lenses. Also issues like drug stability during processing/fabrication (drug integrity test), zero order release kinetics (prevent burst release), drug release during monomer extraction step after fabrication (to remove un-reacted monomers), protein adherence, drug release during storage in packaging solution, shelf life study, cost-benefit analysis, etc. are still to be addressed. This review provides an expert opinion on different methodology to develop therapeutic contact lenses with special remark of their advantages and limitations.
Collapse
Affiliation(s)
- Furqan A Maulvi
- a Maliba Pharmacy College, Uka Tarsadia University , Gujarat , India
| | - Tejal G Soni
- b Faculty of Pharmacy , Dharmsinh Desai University , Gujarat , India
| | - Dinesh O Shah
- c Shah-Schulman Center for Surface Science and Nanotechnology, Dharmsinh Desai University , Gujarat , India.,d Department of Chemical Engineering and Department of Anaesthesiology , University of Florida , FL , USA , and.,e School of Earth and Environmental Sciences, Columbia University , New York , USA
| |
Collapse
|
25
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
26
|
Synthesis and adsorption properties of carbamazepine imprinted polymer by dispersion polymerization in supercritical carbon dioxide. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0178-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Kinetics of N-isopropylacrylamide polymerizations in supercritical carbon dioxide fluids. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Ferreira JP, Viveiros R, Lourenço A, Soares da Silva M, Rosatella A, Casimiro T, Afonso CAM. Integrated desulfurization of diesel by combination of metal-free oxidation and product removal by molecularly imprinted polymers. RSC Adv 2014. [DOI: 10.1039/c4ra11666f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The desulfurization of diesel containing dibenzothiophene (DBT) is achieved based on the combination of Brønsted acid catalyzed oxidation of DBT by H2O2 and the selective removal of the oxidized products using a molecularly imprinted polymer (MIP) produced in supercritical carbon dioxide.
Collapse
Affiliation(s)
- Joana P. Ferreira
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculty of Pharmacy
- University of Lisbon
- Lisboa, Portugal
| | - Raquel Viveiros
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica, Portugal
| | - Anita Lourenço
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica, Portugal
| | - Mara Soares da Silva
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica, Portugal
| | - Andreia Rosatella
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculty of Pharmacy
- University of Lisbon
- Lisboa, Portugal
| | - Teresa Casimiro
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica, Portugal
| | - Carlos A. M. Afonso
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculty of Pharmacy
- University of Lisbon
- Lisboa, Portugal
| |
Collapse
|
29
|
Synthesis and characterization of high selective molecularly imprinted polymers for bisphenol A and 2,4-dichlorophenoxyacetic acid by using supercritical fluid technology. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.11.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Imprinted polymers for chiral resolution of (±)-ephedrine, 4: Packed column supercritical fluid chromatography using molecularly imprinted chiral stationary phases. J Chromatogr A 2012; 1264:117-23. [DOI: 10.1016/j.chroma.2012.09.069] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 11/17/2022]
|
31
|
Soares da Silva M, Viveiros R, Aguiar-Ricardo A, Bonifácio VDB, Casimiro T. Supercritical fluid technology as a new strategy for the development of semi-covalent molecularly imprinted materials. RSC Adv 2012. [DOI: 10.1039/c2ra20426f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Soares da Silva M, Viveiros R, Coelho MB, Aguiar-Ricardo A, Casimiro T. Supercritical CO2-assisted preparation of a PMMA composite membrane for bisphenol A recognition in aqueous environment. Chem Eng Sci 2012. [DOI: 10.1016/j.ces.2011.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Supercritical fluid-mediated methods to encapsulate drugs: recent advances and new opportunities. Ther Deliv 2011; 2:1551-65. [DOI: 10.4155/tde.11.125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the advent of the development of novel pharmaceutical products and therapies, there is a need for effective delivery of these products to patients. Dependent on whether they are small-molecular weight drugs or biologics, many new compounds may suffer from poor solubility, poor stability or require frequent administration and therefore require optimized delivery. For example, the utilization of polymorphism and the enhanced solubility in the amorphous state is being exploited to improve the dissolution of small-molecular weight poorly soluble drugs. This can be achieved by the formation of solid dispersions in water-soluble matrices. In addition, encapsulation in biodegradable polymeric materials is one potential route to reduce the frequency of administration through the formation of sustained-release formulations. This is desirable for biologics, for example, which generally require administration once or twice daily. Supercritical fluid processing can achieve both of these outcomes, and this review focuses on the use of supercritical CO2 to encapsulate active pharmaceutical ingredients to enhance solubility or achieve sustained release. Using supercritical CO2-mediated processes provides a clean and potentially solvent-free route to prepare novel drug products and is therefore an attractive alternative to conventional manufacturing technologies.
Collapse
|
34
|
Levi L, Srebnik S. Simulation of Protein-Imprinted Polymers. 3. Imprinting Selectivity. J Phys Chem B 2011; 115:14469-74. [DOI: 10.1021/jp206940j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Liora Levi
- Department of Chemical Engineering, Technion — Israel Institute of Technology, Haifa, Israel 32000
| | - Simcha Srebnik
- Department of Chemical Engineering, Technion — Israel Institute of Technology, Haifa, Israel 32000
| |
Collapse
|
35
|
Development of 2-(dimethylamino)ethyl methacrylate-based molecular recognition devices for controlled drug delivery using supercritical fluid technology. Int J Pharm 2011; 416:61-8. [DOI: 10.1016/j.ijpharm.2011.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/01/2011] [Indexed: 11/30/2022]
|
36
|
Cao L, Hu Y, Zhang L, Ma C, Wang X, Wang J. Synthesis of cross-linked poly(4-vinylpyridine) and its copolymer microgels using supercritical carbon dioxide: Application in the adsorption of copper(II). J Supercrit Fluids 2011. [DOI: 10.1016/j.supflu.2011.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
da Silva MS, Nobrega FL, Aguiar-Ricardo A, Cabrita EJ, Casimiro T. Development of molecularly imprinted co-polymeric devices for controlled delivery of flufenamic acid using supercritical fluid technology. J Supercrit Fluids 2011. [DOI: 10.1016/j.supflu.2011.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
|
39
|
Yuan Y, Wang Y, Huang M, Xu R, Zeng H, Nie C, Kong J. Development and characterization of molecularly imprinted polymers for the selective enrichment of podophyllotoxin from traditional Chinese medicines. Anal Chim Acta 2011; 695:63-72. [DOI: 10.1016/j.aca.2011.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/16/2011] [Accepted: 04/10/2011] [Indexed: 10/18/2022]
|
40
|
Yañez F, Martikainen L, Braga MEM, Alvarez-Lorenzo C, Concheiro A, Duarte CMM, Gil MH, de Sousa HC. Supercritical fluid-assisted preparation of imprinted contact lenses for drug delivery. Acta Biomater 2011; 7:1019-30. [PMID: 20934541 DOI: 10.1016/j.actbio.2010.10.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/22/2010] [Accepted: 10/04/2010] [Indexed: 01/09/2023]
Abstract
The aim of this work was to develop an innovative supercritical fluid (SCF)-assisted molecular imprinting method to endow commercial soft contact lenses (SCLs) with the ability to load specific drugs and to control their release. This approach seeks to overcome the limitation of the common loading of preformed SCLs by immersion in concentrated drug solutions (only valid for highly water soluble drugs) and of the molecular imprinting methods that require choice of the drug before polymerization and thus to create drug-tailored networks. In particular, we focused on improving the flurbiprofen load/release capacity of daily wear Hilafilcon B commercial SCLs by the use of sequential SCF flurbiprofen impregnation and extraction steps. Supercritical carbon dioxide (scCO2) impregnation assays were performed at 12.0 MPa and 40 °C, while scCO2 extractions were performed at 20.0 MPa and 40 °C. Conventional flurbiprofen sorption and drug removal experiments in aqueous solutions were carried out for comparison purposes. SCF-processed SCLs showed a recognition ability and a higher affinity for flurbiprofen in aqueous solution than for the structurally related ibuprofen and dexamethasone, which suggests the creation of molecularly imprinted cavities driven by both physical (swelling/plasticization) and chemical (carbonyl groups in the network with the C-F group in the drug) interactions. Processing with scCO2 did not alter some of the critical functional properties of SCLs (glass transition temperature, transmittance, oxygen permeability, contact angle), enabled the control of drug loaded/released amounts (by the application of several consecutive processing cycles) and permitted the preparation of hydrophobic drug-based therapeutic SCLs in much shorter process times than those using conventional aqueous-based molecular imprinting methods.
Collapse
Affiliation(s)
- Fernando Yañez
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Design of submicron and nanoparticle delivery systems using supercritical carbon dioxide-mediated processes: an overview. Ther Deliv 2011; 2:259-77. [DOI: 10.4155/tde.10.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Supercritical carbon dioxide technology is an environmentally benign technique that allows precise control of particle morphology, while minimizing organic solvent use for a wide variety of biomedical and pharmaceutical applications. Supercritical carbon dioxide processes have benefits over the conventional particle formation methods in terms of improved control, flexibility and operational ease. This article gives an insight into a variety of supercritical fluid techniques relevant to drug formulation, recent advances and novel applications in the field of controlled delivery. These new methods have been designed to alleviate the scaling-up of the traditional methods for nanoparticle formulation either in the form of polymeric scaffolds, impregnation or nanoencapsules using a simple one-step process to produce micron-size particles.
Collapse
|
42
|
Levi L, Srebnik S. Simulation of Protein-Imprinted Polymers. 2. Imprinting Efficiency. J Phys Chem B 2010; 114:16744-51. [DOI: 10.1021/jp108762t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Liora Levi
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 32000 Israel
| | - Simcha Srebnik
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 32000 Israel
| |
Collapse
|
43
|
Kılıçay E, Çakmaklı B, Hazer B, Denkbaş EB, Açıkgöz B. Acetylsalicylic acid loading and release studies of the PMMA-g-polymeric oils/oily acids micro and nanospheres. J Appl Polym Sci 2010. [DOI: 10.1002/app.32825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Levi L, Srebnik S. Structural Characterization of Protein-Imprinted Gels Using Lattice Monte Carlo Simulation. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/masy.201050530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Soares da Silva M, Vão ER, Temtem M, Mafra L, Caldeira J, Aguiar-Ricardo A, Casimiro T. Clean synthesis of molecular recognition polymeric materials with chiral sensing capability using supercritical fluid technology. Application as HPLC stationary phases. Biosens Bioelectron 2010; 25:1742-7. [DOI: 10.1016/j.bios.2009.12.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/10/2009] [Accepted: 12/18/2009] [Indexed: 11/26/2022]
|
46
|
Levi L, Srebnik S. Simulation of Protein-Imprinted Polymers. 1. Imprinted Pore Properties. J Phys Chem B 2009; 114:107-14. [DOI: 10.1021/jp9087767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liora Levi
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel 32000
| | - Simcha Srebnik
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel 32000
| |
Collapse
|
47
|
Kryscio DR, Peppas NA. Mimicking Biological Delivery Through Feedback-Controlled Drug Release Systems Based on Molecular Imprinting. AIChE J 2009; 55:1311-1324. [PMID: 26500352 DOI: 10.1002/aic.11779] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intelligent drug delivery systems (DDS) are able to rapidly detect a biological event and respond appropriately by releasing a therapeutic agent; thus, they are advantageous over their conventional counterparts. Molecular imprinting is a promising area that generates a polymeric network which can selectively recognize a desired analyte. This field has been studied for a variety of applications over a long period of time, but only recently has it been investigated for biomedical and pharmaceutical applications. Recent work in the area of molecularly imprinted polymers in drug delivery highlights the potential of these recognitive networks as environmentally responsive DDS that can ultimately lead to feedback controlled recognitive release systems.
Collapse
Affiliation(s)
- David R Kryscio
- Dept. of Chemical Engineering, The University of Texas at Austin, Cockrell School of Engineering, Austin, TX 78712
| | - Nicholas A Peppas
- Dept. of Chemical Engineering and Dept. of Biomedical Engineering, The University of Texas at Austin, Cockrell School of Engineering, Austin, TX 78712 Dept. of Pharmaceutics, The University of Texas at Austin, College of Pharmacy, Austin, TX 78712
| |
Collapse
|
48
|
Temtem M, Pompeu D, Jaraquemada G, Cabrita EJ, Casimiro T, Aguiar-Ricardo A. Development of PMMA membranes functionalized with hydroxypropyl-beta-cyclodextrins for controlled drug delivery using a supercritical CO(2)-assisted technology. Int J Pharm 2009; 376:110-5. [PMID: 19409460 DOI: 10.1016/j.ijpharm.2009.04.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 11/29/2022]
Abstract
Cyclodextrin-containing polymers have proved themselves to be useful for controlled release. Herein we describe the preparation of membranes of poly(methylmethacrylate) (PMMA) containing hydroxypropyl-beta-cyclodextrins (HP-beta-CDs) using a supercritical CO(2)-assisted phase inversion method, for potential application as drug delivery devices. Results are reported on the membrane preparation, physical properties, and drug elution profile of a model drug. The polymeric membranes were obtained with HP-beta-CD contents ranging from 0 to 33.4 wt%, by changing the composition of the casting solution, and were further impregnated with ibuprofen using supercritical carbon dioxide (scCO(2)) in batch mode. The influence of the membrane functionalization in the controlled release of ibuprofen was studied by performing in vitro experiments in buffer solution pH at 7.4. The release of the anti-inflammatory drug could be tuned by varying the cyclodextrin content on the membranes.
Collapse
Affiliation(s)
- M Temtem
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | | | | | | | |
Collapse
|
49
|
Kan X, Geng Z, Zhao Y, Wang Z, Zhu JJ. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release. NANOTECHNOLOGY 2009; 20:165601. [PMID: 19420571 DOI: 10.1088/0957-4484/20/16/165601] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe(3)O(4) nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.
Collapse
Affiliation(s)
- Xianwen Kan
- State Key Laboratory of Coordination Chemistry, MOE Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, People's Republic of China
| | | | | | | | | |
Collapse
|
50
|
Mantelis CA, Meyer T. Supercritical Reaction Calorimetry: Versatile Tool for Measuring Heat Transfer Properties and Monitoring Chemical Reactions in Supercritical Fluids. Ind Eng Chem Res 2008. [DOI: 10.1021/ie0712030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Charalampos A. Mantelis
- Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Group of Chemical and Physical Safety, Station 6, CH-1015, Lausanne, Switzerland
| | - Thierry Meyer
- Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Group of Chemical and Physical Safety, Station 6, CH-1015, Lausanne, Switzerland
| |
Collapse
|