1
|
Periferakis A, Periferakis K, Badarau IA, Petran EM, Popa DC, Caruntu A, Costache RS, Scheau C, Caruntu C, Costache DO. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int J Mol Sci 2022; 23:ijms232315054. [PMID: 36499380 PMCID: PMC9740324 DOI: 10.3390/ijms232315054] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Flavonoids are a category of plant-derived compounds which exhibit a large number of health-related effects. One of the most well-known and studied flavonoids is kaempferol, which can be found in a wide variety of herbs and plant families. Apart from their anticarcinogenic and anti-inflammatory effects, kaempferol and its associated compounds also exhibit antibacterial, antifungal, and antiprotozoal activities. The development of drugs and treatment schemes based on these compounds is becoming increasingly important in the face of emerging resistance of numerous pathogens as well as complex molecular interactions between various drug therapies. In addition, many of the kaempferol-containing plants are used in traditional systems all over the world for centuries to treat numerous conditions. Due to its variety of sources and associated compounds, some molecular mechanisms of kaempferol antimicrobial activity are well known while others are still under analysis. This paper thoroughly documents the vegetal and food sources of kaempferol as well as the most recent and significant studies regarding its antimicrobial applications.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
- Orasis Acupuncture Institute, 11526 Athens, Greece
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Elena Madalina Petran
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Toxicology, Grigore Alexandrescu Emergency Children’s Hospital, 011743 Bucharest, Romania
| | - Delia Codruta Popa
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania
| | - Raluca Simona Costache
- Department of Gastroenterology, Gastroenterology and Internal Medicine Clinic, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Internal Medicine and Gastroenterology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Daniel Octavian Costache
- Department of Dermatology, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
| |
Collapse
|
2
|
da Silva GF, de Souza Júnior ET, Almeida RN, Fianco ALB, do Espirito Santo AT, Lucas AM, Vargas RMF, Cassel E. The Response Surface Optimization of Supercritical CO 2 Modified with Ethanol Extraction of p-Anisic Acid from Acacia mearnsii Flowers and Mathematical Modeling of the Mass Transfer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030970. [PMID: 35164235 PMCID: PMC8840752 DOI: 10.3390/molecules27030970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
Abstract
A widely disseminated native species from Australia, Acacia mearnsii, which is mainly cultivated in Brazil and South Africa, represents a rich source of natural tannins used in the tanning process. Many flowers of the Acacia species are used as sources of compounds of interest for the cosmetic industry, such as phenolic compounds. In this study, supercritical fluid extraction was used to obtain non-volatile compounds from A. mearnsii flowers for the first time. The extract showed antimicrobial activity and the presence of p-anisic acid, a substance with industrial and pharmaceutical applications. The fractionation of the extract was performed using a chromatographic column and the fraction containing p-anisic acid presented better minimum inhibitory concentration (MIC) results than the crude extract. Thus, the extraction process was optimized to maximize the p-anisic acid extraction. The response surface methodology and the Box–Behnken design was used to evaluate the pressure, temperature, the cosolvent, and the influence of the particle size on the extraction process. After the optimization process, the p-anisic acid yield was 2.51% w/w and the extraction curve was plotted as a function of time. The simulation of the extraction process was performed using the three models available in the literature.
Collapse
|
3
|
Bodini RB, Pugine SMP, de Melo MP, de Carvalho RA. Antioxidant and anti-inflammatory properties of orally disintegrating films based on starch and hydroxypropyl methylcellulose incorporated with Cordia verbenacea (erva baleeira) extract. Int J Biol Macromol 2020; 159:714-724. [DOI: 10.1016/j.ijbiomac.2020.05.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023]
|
4
|
Kaunda JS, Zhang YJ. The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:77-137. [PMID: 30868423 PMCID: PMC6426945 DOI: 10.1007/s13659-019-0201-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/27/2019] [Indexed: 05/08/2023]
Abstract
Over the past 30 years, the genus Solanum has received considerable attention in chemical and biological studies. Solanum is the largest genus in the family Solanaceae, comprising of about 2000 species distributed in the subtropical and tropical regions of Africa, Australia, and parts of Asia, e.g., China, India and Japan. Many of them are economically significant species. Previous phytochemical investigations on Solanum species led to the identification of steroidal saponins, steroidal alkaloids, terpenes, flavonoids, lignans, sterols, phenolic comopunds, coumarins, amongst other compounds. Many species belonging to this genus present huge range of pharmacological activities such as cytotoxicity to different tumors as breast cancer (4T1 and EMT), colorectal cancer (HCT116, HT29, and SW480), and prostate cancer (DU145) cell lines. The biological activities have been attributed to a number of steroidal saponins, steroidal alkaloids and phenols. This review features 65 phytochemically studied species of Solanum between 1990 and 2018, fetched from SciFinder, Pubmed, ScienceDirect, Wikipedia and Baidu, using "Solanum" and the species' names as search terms ("all fields").
Collapse
Affiliation(s)
- Joseph Sakah Kaunda
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
5
|
Olalere OA, Abdurahman HN, Yunus RBM, Alara OR, Ahmad MM, Zaki YH, Abdlrhman HSM. Parameter study, antioxidant activities, morphological and functional characteristics in microwave extraction of medicinal oleoresins from black and white pepper. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1080/16583655.2018.1515323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Olusegun Abayomi Olalere
- Centre of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang, Pahang, Malaysia
| | - Hamid Nour Abdurahman
- Centre of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang, Pahang, Malaysia
| | - Rosli bin Mohd Yunus
- Centre of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang, Pahang, Malaysia
| | - Oluwaseun Ruth Alara
- Centre of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang, Pahang, Malaysia
| | - Malam Mani Ahmad
- Centre of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang, Pahang, Malaysia
| | - Yasmeen Hafiz Zaki
- Centre of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang, Pahang, Malaysia
| | | |
Collapse
|
6
|
Lopes LAA, Dos Santos Rodrigues JB, Magnani M, de Souza EL, de Siqueira-Júnior JP. Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. Microb Pathog 2017; 107:193-197. [PMID: 28365326 DOI: 10.1016/j.micpath.2017.03.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 12/16/2022]
Abstract
This study evaluated the efficacy of glycone (myricitrin, hesperidin and phloridzin) and aglycone flavonoids (myricetin, hesperetin and phloretin) in inhibiting biofilm formation by Staphylococcus aureus RN4220 and S. aureus SA1199B that overexpress the msrA and norA efflux protein genes, respectively. The minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC50 - defined as the lowest concentration that resulted in ≥50% inhibition of biofilm formation) of flavonoids were determined using microdilution in broth procedures. The flavonoids showed MIC >1024 μg/mL against S. aureus RN4220 and S. aureus SA1199B; however, these compounds at lower concentrations (1-256 μg/mL) showed inhibitory effects on biofilm formation by these strains. Aglycone flavonoids showed lower MBIC50 values than their respective glycone forms. The lowest MBIC50 values (1 and 4 μg/mL) were observed against S. aureus RN4220. Myricetin, hesperetin and phloretin exhibited biofilm formation inhibition >70% for S. aureus RN4220, and lower biofilm formation inhibition against S. aureus SA1199B. These results indicate that sub-MICs of the tested flavonoids inhibit biofilm formation by S. aureus strains that overexpress efflux protein genes. These effects are more strongly established by aglycone flavonoids.
Collapse
Affiliation(s)
- Laênia Angélica Andrade Lopes
- Laboratório de Genética de Microrganismos, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Jéssica Bezerra Dos Santos Rodrigues
- Laboratório de Processos Microbianos em Alimentos, Departamento de Engenharia de Alimentos, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Marciane Magnani
- Laboratório de Processos Microbianos em Alimentos, Departamento de Engenharia de Alimentos, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Evandro Leite de Souza
- Laboratório de Microbiologia de Alimentos, Departamento de Nutrição, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
| | - José P de Siqueira-Júnior
- Laboratório de Genética de Microrganismos, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
7
|
Inhibition of In Vivo Growth of Plasmodium berghei by Launaea taraxacifolia and Amaranthus viridis in Mice. Malar Res Treat 2016; 2016:9248024. [PMID: 28050307 PMCID: PMC5165229 DOI: 10.1155/2016/9248024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/28/2016] [Indexed: 11/18/2022] Open
Abstract
Launaea taraxacifolia and Amaranthus viridis used by people of Western Africa in the treatment of malaria and related symptoms were assessed for their antiplasmodial value against the chloroquine sensitive strain of Plasmodium berghei. Crude extracts (200 mg/kg) and chloroquine (5 mg/kg) were administered to different groups of Swiss mice. The percentage of parasitemia, survival time, and haematological parameters were determined. Both extracts significantly (p < 0.05) inhibited parasitemia and improved survival time in infected mice. The crude extracts prevented loss of some haematological parameters. A. viridis had a distinct effect on the packed cell volume. The extract was able to protect the liver from some of the damage. This study however showed that the methanolic extracts of A. viridis and L. taraxacifolia possess antiplasmodial activity. The results of this study can be used as a basis for further phytochemical investigations in the search for new and locally affordable antimalarial agents.
Collapse
|
8
|
Biological activities and chemical composition of Morus leaves extracts obtained by maceration and supercritical fluid extraction. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Costa AR, Freitas LA, Mendiola J, Ibáñez E. Copaifera langsdorffii supercritical fluid extraction: Chemical and functional characterization by LC/MS and in vitro assays. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|