1
|
Han X, Yang R, Wan X, Dou J, Yuan J, Chi B, Shen J. Antioxidant and multi-sensitive PNIPAAm/keratin double network gels for self-stripping wound dressing application. J Mater Chem B 2021; 9:6212-6225. [PMID: 34319336 DOI: 10.1039/d1tb00702e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogel is a potential wound dressing material due to its ability to maintain a humid environment, the strong absorptive capacity of exuded tissue fluid, and gas exchange function. Herein, poly(N-isopropyl acrylamide)/keratin double network (PNIPAAm/keratin DN) gels were fabricated through covalent and ionic double cross-linking strategy. The effects of PNIPAAm/keratin ratios on the morphology and swelling rate of gels were characterized. The DN gels could swell up from 2600% to 4600% in proportion to the keratin content, demonstrating their great ability to absorb tissue fluid. The gels possessed thermo-sensitiveness, imparting self-stripping property. Moreover, the antibacterial chlorhexidine acetate (CHX) was loaded into gels with a post-fabrication drug-loading strategy. The release behavior showed that CHX-loaded DN gels exhibited multiple responsive characteristics (temperature, pH, and ROS). Furthermore, the drug-loaded gels showed greater antibacterial activity than free CHX due to the sustained drug release effect. Meanwhile, the antioxidant efficiency of PNIPAAm/keratin DN gels was ca. 33.1%, while the PNIPAAm gel was just ca. 18.2%, indicating the strong oxidation resistance of DN gels. In the Sprague Dawley (SD) rat skin defect model, the hydrogel had better tissue regeneration ability than the commercial film. Taken together, the multifunctional PNIPAAm/keratin DN gels are potential candidates for clinical wound treatment.
Collapse
Affiliation(s)
- Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
2
|
Güngör A, Demir D, Bölgen N, Özdemir T, Genç R. Dual stimuli-responsive chitosan grafted poly(NIPAM-co-AAc)/poly(vinyl alcohol) hydrogels for drug delivery applications. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1765355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ahmet Güngör
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Didem Demir
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Nimet Bölgen
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Tonguç Özdemir
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Rükan Genç
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
3
|
Silva AS, Shopsowitz KE, Correa S, Morton SW, Dreaden EC, Casimiro T, Aguiar-Ricardo A, Hammond PT. Rational design of multistage drug delivery vehicles for pulmonary RNA interference therapy. Int J Pharm 2020; 591:119989. [PMID: 33122113 DOI: 10.1016/j.ijpharm.2020.119989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/09/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022]
Abstract
Small interfering RNA (siRNA) therapy has significant potential for the treatment of myriad diseases, including cancer. While intravenous routes of delivery have been found to be effective for efficient targeting to the liver, achieving high accumulations selectively in other organs, including lung tissues, can be a challenge. We demonstrate the rational design and engineering of a layer-by-layer (LbL) nanoparticle-containing aerosol that is able to achieve efficient, multistage delivery of siRNA in vitro. For the purpose, LbL nanoparticles were, for the first time, encapsulated in composite porous micro scale particles using a supercritical CO2-assisted spray drying (SASD) apparatus using chitosan as an excipient. Such particles exhibited aerodynamic properties highly favorable for pulmonary administration, and effective silencing of mutant KRAS in lung cancer cells derived from tumors of a non-small cell lung cancer (NSCLC) autochthonous model. Furthermore, efficient alveolar accumulation following inhalation in healthy mice was also observed, corroborating in vitro aerodynamic results, and opening new perspectives for further studies of effective lung therapies These results show that multistage aerosols assembled by supercritical CO2-assisted spray drying can enable efficient RNA interference therapy of pulmonary diseases including lung cancer.
Collapse
Affiliation(s)
- A Sofia Silva
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Kevin E Shopsowitz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Santiago Correa
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Stephen W Morton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Erik C Dreaden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Teresa Casimiro
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Aguiar-Ricardo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| |
Collapse
|
4
|
Durkut S. Thermoresponsive poly (N-vinylcaprolactam)-g-galactosylated chitosan hydrogel: synthesis, characterization, and controlled release properties. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1525546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Serap Durkut
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara, Turkey
| |
Collapse
|
5
|
Kankala RK, Zhang YS, Wang SB, Lee CH, Chen AZ. Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications. Adv Healthc Mater 2017; 6:10.1002/adhm.201700433. [PMID: 28752598 PMCID: PMC5849475 DOI: 10.1002/adhm.201700433] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/12/2017] [Indexed: 12/18/2022]
Abstract
During the past few decades, supercritical fluid (SCF) has emerged as an effective alternative for many traditional pharmaceutical manufacturing processes. Operating active pharmaceutical ingredients (APIs) alone or in combination with various biodegradable polymeric carriers in high-pressure conditions provides enhanced features with respect to their physical properties such as bioavailability enhancement, is of relevance to the application of SCF in the pharmaceutical industry. Herein, recent advances in drug delivery systems manufactured using the SCF technology are reviewed. We provide a brief description of the history, principle, and various preparation methods involved in the SCF technology. Next, we aim to give a brief overview, which provides an emphasis and discussion of recent reports using supercritical carbon dioxide (SC-CO2 ) for fabrication of polymeric carriers, for applications in areas related to drug delivery, tissue engineering, bio-imaging, and other biomedical applications. We finally summarize with perspectives.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, P. R. China
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Ai-Zheng Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, P. R. China
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
6
|
Araújo M, Viveiros R, Philippart A, Miola M, Doumett S, Baldi G, Perez J, Boccaccini A, Aguiar-Ricardo A, Verné E. Bioactivity, mechanical properties and drug delivery ability of bioactive glass-ceramic scaffolds coated with a natural-derived polymer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:342-351. [DOI: 10.1016/j.msec.2017.03.169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 11/30/2022]
|
7
|
Silva AS, Sousa AM, Cabral RP, Silva MC, Costa C, Miguel SP, Bonifácio VD, Casimiro T, Correia IJ, Aguiar-Ricardo A. Aerosolizable gold nano-in-micro dry powder formulations for theragnosis and lung delivery. Int J Pharm 2017; 519:240-249. [DOI: 10.1016/j.ijpharm.2017.01.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/19/2022]
|
8
|
Ibuprofen loaded PVA/chitosan membranes: A highly efficient strategy towards an improved skin wound healing. Carbohydr Polym 2016; 159:136-145. [PMID: 28038742 DOI: 10.1016/j.carbpol.2016.12.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 10/24/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
During wound healing, an early inflammation can cause an increase of the wound size and the healing process can be considerably belated if a disproportionate inflammatory response occurs. (S)-ibuprofen (IBP), a non-steroidal anti-inflammatory agent, has been used for muscle healing and to treat venous leg ulcers, but its effect in skin wound healing has not been thoroughly studied thus far. Herein, IBP-β-cyclodextrins carriers were designed to customise the release profile of IBP from poly(vinyl alcohol)/chitosan (PVA/CS) dressings in order to promote a faster skin regeneration. The dressings were produced using supercritical carbon dioxide (scCO2)-assisted technique. In vitro IBP release studies showed that β-cyclodextrins allowed a controlled drug release from the hydrogels which is crucial for their application in wound management. Moreover, the in vivo assays revealed that the presence of PVA/CS membranes containing IBP-β-cyclodextrins carriers avoided scab formation and an excessive inflammation, enabling an earlier skin healing.
Collapse
|
9
|
Cabral R, Sousa A, Silva A, Paninho A, Temtem M, Costa E, Casimiro T, Aguiar-Ricardo A. Design of experiments approach on the preparation of dry inhaler chitosan composite formulations by supercritical CO2-assisted spray-drying. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Karimi M, Zangabad PS, Ghasemi A, Amiri M, Bahrami M, Malekzad H, Asl HG, Mahdieh Z, Bozorgomid M, Ghasemi A, Boyuk MRRT, Hamblin MR. Temperature-Responsive Smart Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent Advances. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21107-33. [PMID: 27349465 PMCID: PMC5003094 DOI: 10.1021/acsami.6b00371] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Smart drug delivery systems (DDSs) have attracted the attention of many scientists, as carriers that can be stimulated by changes in environmental parameters such as temperature, pH, light, electromagnetic fields, mechanical forces, etc. These smart nanocarriers can release their cargo on demand when their target is reached and the stimulus is applied. Using the techniques of nanotechnology, these nanocarriers can be tailored to be target-specific, and exhibit delayed or controlled release of drugs. Temperature-responsive nanocarriers are one of most important groups of smart nanoparticles (NPs) that have been investigated during the past decades. Temperature can either act as an external stimulus when heat is applied from the outside, or can be internal when pathological lesions have a naturally elevated termperature. A low critical solution temperature (LCST) is a special feature of some polymeric materials, and most of the temperature-responsive nanocarriers have been designed based on this feature. In this review, we attempt to summarize recent efforts to prepare innovative temperature-responsive nanocarriers and discuss their novel applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, 14588 Tehran, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, 14588 Tehran, Iran
| | - Mohammad Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, 14588 Tehran, Iran
| | - Mohsen Bahrami
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, 14588 Tehran, Iran
| | - Hedieh Malekzad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Department of Chemistry, Kharazmi University of Tehran, Tehran, Iran
| | - Hadi Ghahramanzadeh Asl
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, 14588 Tehran, Iran
| | - Zahra Mahdieh
- Department of Biomedical and Pharmaceutical Sciences, Material Science and Engineering, University of Montana, Missoula, Montana 59812, United States
| | - Mahnaz Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, 14588 Tehran, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | | | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: Role in drug delivery and tissue engineering. Macromol Res 2016. [DOI: 10.1007/s13233-016-4052-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Correia VG, Ferraria AM, Pinho MG, Aguiar-Ricardo A. Antimicrobial Contact-Active Oligo(2-oxazoline)s-Grafted Surfaces for Fast Water Disinfection at the Point-of-Use. Biomacromolecules 2015; 16:3904-15. [DOI: 10.1021/acs.biomac.5b01243] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Vanessa G. Correia
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
- Bacterial
Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República (EAN) 2780-157 Oeiras, Portugal
| | - Ana M. Ferraria
- Centro
de Química-Física Molecular (CQFM) and Institute of
Nanoscience and Nanotechnology (IN), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Mariana G. Pinho
- Bacterial
Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República (EAN) 2780-157 Oeiras, Portugal
| | - Ana Aguiar-Ricardo
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
13
|
Synthesis and characterization of pH- and temperature-sensitive materials based on alginate and poly(N-isopropylacrylamide/acrylic acid) for drug delivery. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1550-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Knipe JM, Peppas NA. Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regen Biomater 2014; 1:57-65. [PMID: 26816625 PMCID: PMC4669007 DOI: 10.1093/rb/rbu006] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 12/28/2022] Open
Abstract
Multi-responsive hydrogels, or 'intelligent' hydrogels that respond to more than one environmental stimulus, have demonstrated great utility as a regenerative biomaterial in recent years. They are structured biocompatible materials that provide specific and distinct responses to varied physiological or externally applied stimuli. As evidenced by a burgeoning number of investigators, multi-responsive hydrogels are endowed with tunable, controllable and even biomimetic behavior well-suited for drug delivery and tissue engineering or regenerative growth applications. This article encompasses recent developments and challenges regarding supramolecular, layer-by-layer assembled and covalently cross-linked multi-responsive hydrogel networks and their application to drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Jennifer M. Knipe
- Department of Chemical Engineering, C0400, The University of Texas at Austin, Austin, TX 78712, USA, Department of Biomedical Engineering, C0800, The University of Texas at Austin, Austin, TX 78712, USA, College of Pharmacy, C0400, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A. Peppas
- Department of Chemical Engineering, C0400, The University of Texas at Austin, Austin, TX 78712, USA, Department of Biomedical Engineering, C0800, The University of Texas at Austin, Austin, TX 78712, USA, College of Pharmacy, C0400, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
15
|
Barroso T, Viveiros R, Casimiro T, Aguiar-Ricardo A. Development of dual-responsive chitosan–collagen scaffolds for pulsatile release of bioactive molecules. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Araújo M, Viveiros R, Correia TR, Correia IJ, Bonifácio VD, Casimiro T, Aguiar-Ricardo A. Natural melanin: A potential pH-responsive drug release device. Int J Pharm 2014; 469:140-5. [DOI: 10.1016/j.ijpharm.2014.04.051] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 01/20/2023]
|
17
|
Baghaei S, Khorasani MT. Preparation and characterization of a thermal responsive of poly(N-isopropylacrylamide)/chitosan/gelatin hydrogels. ACTA ACUST UNITED AC 2014. [DOI: 10.12989/bme.2014.1.2.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Bocourt M, Bada N, Acosta N, Bucio E, Peniche C. Synthesis and characterization of novel pH-sensitive chitosan-poly(acrylamide-co-itaconic acid) hydrogels. POLYM INT 2014. [DOI: 10.1002/pi.4699] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michel Bocourt
- Centro de Biomateriales; Universidad de La Habana; Ave. Universidad s/n entre G y Ronda 10400 Havana Cuba
| | - Nancy Bada
- Centro de Biomateriales; Universidad de La Habana; Ave. Universidad s/n entre G y Ronda 10400 Havana Cuba
| | - Niuris Acosta
- Instituto de Estudios Biofuncionales/Dpto Química Física II, Facultad de Farmacia; Universidad Complutense de Madrid, Ciudad Universitaria; 28040 Madrid Spain
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria; 04510 Mexico D.F. Mexico
| | - Carlos Peniche
- Centro de Biomateriales; Universidad de La Habana; Ave. Universidad s/n entre G y Ronda 10400 Havana Cuba
| |
Collapse
|
19
|
Mouriño V, Cattalini JP, Roether JA, Dubey P, Roy I, Boccaccini AR. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opin Drug Deliv 2013; 10:1353-65. [PMID: 23777443 DOI: 10.1517/17425247.2013.808183] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Next-generation scaffolds for bone tissue engineering (BTE) should exhibit the appropriate combination of mechanical support and morphological guidance for cell proliferation and attachment while at the same time serving as matrices for sustained delivery of therapeutic drugs and/or biomolecular signals, such as growth factors. Drug delivery from BTE scaffolds to induce the formation of functional tissues, which may need to vary temporally and spatially, represents a versatile approach to manipulating the local environment for directing cell function and/or to treat common bone diseases or local infection. In addition, drug delivery from BTE is proposed to either increase the expression of tissue inductive factors or to block the expression of others factors that could inhibit bone tissue formation. Composite scaffolds which combine biopolymers and bioactive ceramics in mechanically competent 3D structures, including also organic-inorganic hybrids, are being widely developed for BTE, where the affinity and interaction between biomaterials and therapeutic drugs or biomolecular signals play a decisive role in controlling the release rate. AREAS COVERED This review covers current developments and applications of 3D composite scaffolds for BTE which exhibit the added capability of controlled delivery of therapeutic drugs or growth factors. A summary of drugs and biomolecules incorporated in composite scaffolds and approaches developed to combine biopolymers and bioceramics in composites for drug delivery systems for BTE is presented. Special attention is given to identify the main challenges and unmet needs of current designs and technologies for developing such multifunctional 3D composite scaffolds for BTE. EXPERT OPINION One of the major challenges for developing composite scaffolds for BTE is the incorporation of a drug delivery function of sufficient complexity to be able to induce the release patterns that may be necessary for effective osseointegration, vascularization and bone regeneration. Loading 3D scaffolds with different biomolecular agents should produce a codelivery system with different, predetermined release profiles. It is also envisaged that the number of relevant bioactive agents that can be loaded onto scaffolds will be increased, whilst the composite scaffold design should exploit synergistically the different degradation profiles of the organic and inorganic components.
Collapse
Affiliation(s)
- Viviana Mouriño
- University of Buenos Aires, Faculty of Pharmacy, Department of Pharmaceutical Technology , Buenos Aires 956 Junín St, 6th Floor, Buenos Aires CP1113 , Argentina
| | | | | | | | | | | |
Collapse
|
20
|
Barroso T, Hussain A, Roque ACA, Aguiar-Ricardo A. Functional monolithic platforms: Chromatographic tools for antibody purification. Biotechnol J 2013; 8:671-81. [DOI: 10.1002/biot.201200328] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/11/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022]
|
21
|
Correia VG, Coelho M, Barroso T, Raje VP, Bonifácio VDB, Casimiro T, Pinho MG, Aguiar-Ricardo A. Anti-biofouling 3D porous systems: the blend effect of oxazoline-based oligomers on chitosan scaffolds. BIOFOULING 2013; 29:273-282. [PMID: 23458129 DOI: 10.1080/08927014.2013.766172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The production, characterization and anti-biofouling activity of 3D porous scaffolds combining different blends of chitosan and oxazoline-based antimicrobial oligomers is reported. The incorporation of ammonium quaternized oligo(2-oxazoline)s into the composition of the scaffold enhances the stability of the chitosan scaffold under physiological conditions as well as its ability to repel protein adsorption. The blended scaffolds showed mean pore sizes in the range of 18-32 μm, a good pore interconnectivity and high porosity, as well as a large surface area, ultimate key features for anti-biofouling applications. Bovine serum albumin (BSA) adhesion profiles showed that the composition of the scaffolds plays a critical role in the chitosan-oligooxazoline system. Oligobisoxazoline-enriched scaffolds (20% w/w, CB8020) decreased protein adsorption (BSA) by up to 70%. Moreover, 1 mg of CB8020 was able to kill 99.9% of Escherichia coli cells upon contact, demonstrating its potential as promising material for production of tailored non-fouling 3D structures to be used in the construction of novel devices with applications in the biomedical field and water treatment processes.
Collapse
Affiliation(s)
- Vanessa G Correia
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Barroso T, Roque ACA, Aguiar-Ricardo A. Bioinspired and sustainable chitosan-based monoliths for antibody capture and release. RSC Adv 2012. [DOI: 10.1039/c2ra21687f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|