1
|
Machado AMR, Teodoro AJ, Mariutti LRB, Fonseca JCND. Tamarillo ( Solanum betaceum Cav.) wastes and by-products: Bioactive composition and health benefits. Heliyon 2024; 10:e37600. [PMID: 39309964 PMCID: PMC11416485 DOI: 10.1016/j.heliyon.2024.e37600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction During processing, a large amount of by-products is produced from tamarillo fruits in the form of stalks, outer skins, and pomace (residual seeds and inner skins). This material is a renewable source of bioactive compounds with high economic value and positive effects on human health. Previous reviews have focused on the ethnobotanical, traditional uses, and phytochemistry of the tamarillo fruit. This report aims to compile production and cultivation data, as well as the valorization of this agro-industrial residue, green extraction methods used for extracting the bioactive compounds, and their biological activity. Method In this study, a literature search was conducted in five scientific databases: Web of Science, ScienceDirect, Scopus, PubMed, and Google Scholar to retrieve research published in English, Spanish, or Portuguese between 2009 and 2024, which mentions the composition and extraction methods of bioactive compounds from tamarillo wastes and by-products and the health benefits associated with these compounds. The data extracted was compiled and shown in this scoping review. Results Tamarillo wastes and by products have a rich nutritional and bioactive composition, including high protein, vitamins A and C, minerals, dietary fiber, sugars, terpenes, flavonoids, carotenoids, anthocyanins, and other phytochemicals. Green methods have been effective, yielding high amounts of these compounds while preserving their integrity. Natural polyphenols have shown antioxidant, anticholinesterase, anti-inflammatory, antimicrobial, anti-diabetic, and anti-obesity properties. The antioxidant fibers, mucilage, and pectin of the pomace contribute to improved intestinal health. Conclusion Therefore, these wastes and by-products have potential uses as natural colorant, antioxidants, supplements, functional foods, active biobased films, and in pharmaceutical and cosmeceutical sectors due to their effective bioactive molecules. Future research should focus on the use of tamarillo by-products as a source of functional ingredients in several other formulations that are still little explored, as well as their use as a natural colorant and antioxidant. More studies are necessary on the composition-activity relationship, physiological mechanisms, and clinical response.
Collapse
Affiliation(s)
| | - Anderson Junger Teodoro
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
2
|
Rito M, Marques J, da Costa RMF, Correia S, Lopes T, Martin D, Canhoto JMPL, Batista de Carvalho LAE, Marques MPM. Antioxidant Potential of Tamarillo Fruits-Chemical and Infrared Spectroscopy Analysis. Antioxidants (Basel) 2023; 12:antiox12020536. [PMID: 36830094 PMCID: PMC9952541 DOI: 10.3390/antiox12020536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Native to South America, tamarillo (Solanum betaceum Cav.) is a small tree cultivated as a fruit crop in several regions of the world. Known for its sweet and sour taste, tamarillo fruits are very nutritious due to the presence of health-beneficial components such as fiber, vitamins, and antioxidants. Despite its nutritional value, tamarillo remains poorly known in global markets. The present work aims to study the antioxidant activity of four genotypes of tamarillo. Several chemical assays were performed to assess the antioxidant components and antioxidant activity of aqueous ethanolic extracts from each genotype. Overall, the Mealhada genotype (a red cultivar) showed the most interesting results, displaying the highest amount of total phenolic, flavonoids, and anthocyanin contents, as well as higher antioxidant activity. To evaluate the composition of the extract, Fourier-transform infrared spectroscopy (FTIR) was used to characterize important components in aqueous ethanolic extracts of the fruits, having revealed the presence of high amounts of phenols (the main compounds responsible for antioxidant activity), as well as triterpenoids and polysaccharides. The present results highlight the potential nutraceutical importance of tamarillo fruits.
Collapse
Affiliation(s)
- Miguel Rito
- Centre for Functional Ecology, Associate Laboratory Terra, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Joana Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Ricardo M. F. da Costa
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Correspondence:
| | - Sandra Correia
- Centre for Functional Ecology, Associate Laboratory Terra, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, Estrada de Gil Vaz, 7351-901 Elvas, Portugal
| | - Tércia Lopes
- Centre for Functional Ecology, Associate Laboratory Terra, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Daniel Martin
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Jorge M. P. L. Canhoto
- Centre for Functional Ecology, Associate Laboratory Terra, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | | | - Maria Paula M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
3
|
Isla MI, Orqueda ME, Moreno MA, Torres S, Zampini IC. Solanum betaceum Fruits Waste: A Valuable Source of Bioactive Compounds to Be Used in Foods and Non-Foods Applications. Foods 2022; 11:3363. [PMID: 36359974 PMCID: PMC9659268 DOI: 10.3390/foods11213363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 07/30/2023] Open
Abstract
The fruit supply chain generates large amounts of waste that are often used as animal feed and in the production of both composts and fertilizers and biogas (anaerobic digestion). Since these types of procedures imply high economic costs related to drying, storage, and transport processes, more efficient and environmentally friendly utilization and recycling of this kind of waste are becoming significant for governments and industries. However, improper waste disposal increases the burden on the environment. Many of these fruit wastes, such as Solanum betaceum fruit waste, viz., peels, seeds, and pomace, could be considered potent bio-resource materials for several applications in the food and non-food industries due to their richness in valuable compounds. The basic composition of Solanum betaceum fruits seed has a high content of protein (20%), fiber (around 25%), sugar (11-20%) and low lipid content (0.4%), while S. betaceum peel has a low content of sugar (2-9%), protein (8-10%) and lipid (0.2-0.8%) and high fiber content (23%). Regarding the phytochemicals, the wastes have a high level of phenolics (0.2-0.6%) and pigments such as anthocyanins (0.06%). The inherent bioactive compounds of waste can be used as natural ingredients for foods, cosmetics, medicines, and the production of packaging materials production. Along this line, the present review covers all possible approaches for the valorization of S.betaceum waste in the food and non-food sectors.
Collapse
Affiliation(s)
- María Inés Isla
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), San Miguel de Tucumán, Tucumán 4000, Argentina
- Biolates Network for Sustainable Use of Ibero-American Vegetable Biomass Resources in Cosmetics (BIOLATES, CYTED), Tucumán 4000, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán 4000, Argentina
| | - María Eugenia Orqueda
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), San Miguel de Tucumán, Tucumán 4000, Argentina
- Biolates Network for Sustainable Use of Ibero-American Vegetable Biomass Resources in Cosmetics (BIOLATES, CYTED), Tucumán 4000, Argentina
| | - María Alejandra Moreno
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), San Miguel de Tucumán, Tucumán 4000, Argentina
- Biolates Network for Sustainable Use of Ibero-American Vegetable Biomass Resources in Cosmetics (BIOLATES, CYTED), Tucumán 4000, Argentina
| | - Sebastián Torres
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), San Miguel de Tucumán, Tucumán 4000, Argentina
- Biolates Network for Sustainable Use of Ibero-American Vegetable Biomass Resources in Cosmetics (BIOLATES, CYTED), Tucumán 4000, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán 4000, Argentina
| | - Iris Catiana Zampini
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), San Miguel de Tucumán, Tucumán 4000, Argentina
- Biolates Network for Sustainable Use of Ibero-American Vegetable Biomass Resources in Cosmetics (BIOLATES, CYTED), Tucumán 4000, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán 4000, Argentina
| |
Collapse
|
4
|
Šojić B, Putnik P, Danilović B, Teslić N, Bursać Kovačević D, Pavlić B. Lipid Extracts Obtained by Supercritical Fluid Extraction and Their Application in Meat Products. Antioxidants (Basel) 2022; 11:antiox11040716. [PMID: 35453401 PMCID: PMC9024703 DOI: 10.3390/antiox11040716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Supercritical fluid extraction (SFE) has been recognized as the green and clean technique without any negative impact on the environment. Although this technique has shown high selectivity towards lipophilic bioactive compounds, very few case studies on the application of these extracts in final products and different food matrices were observed. Considering the recent developments in food science and the increasing application of supercritical extracts in meat products in the last decade (2012–2022), the aim of this manuscript was to provide a systematic review of the lipid extracts and bioactives successfully obtained by supercritical fluid extraction and their application in meat products as antioxidant and/or antimicrobial agents. Lipophilic bioactives from natural resources were explained in the first step, which was followed by the fundamentals of supercritical fluid extraction and application on recovery of these bioactives. Finally, the application of natural extracts and bioactives obtained by this technique as functional additives in meat and meat products were thoroughly discussed in order to review the state-of-the-art techniques and set the challenges for further studies.
Collapse
Affiliation(s)
- Branislav Šojić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Predrag Putnik
- Department of Food Technology, University North, 48000 Koprivnica, Croatia;
| | - Bojana Danilović
- Faculty of Technology, University of Niš, 16000 Leskovac, Serbia;
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (D.B.K.); (B.P.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
- Correspondence: (D.B.K.); (B.P.)
| |
Collapse
|
5
|
Diep TT, Yoo MJY, Rush E. Effect of In Vitro Gastrointestinal Digestion on Amino Acids, Polyphenols and Antioxidant Capacity of Tamarillo Yoghurts. Int J Mol Sci 2022; 23:ijms23052526. [PMID: 35269670 PMCID: PMC8910476 DOI: 10.3390/ijms23052526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Laird’s Large tamarillo powder is high in protein (10%) essential amino acids (EAAs), gamma-aminobutyric acid (GABA) and polyphenols (0.6% phenolics plus anthocyanins) and fibre 25%. This study aimed to investigate, using a standardized static in vitro digestion model, the stability of amino acids and antioxidant capacity of polyphenols in yoghurt fortified with 5, 10 and 15% tamarillo powder either before (PRE) or after (POS) fermentation. Compared to plain yoghurt, the fruit polyphenols (rutinosides and glycosides) were retained and substantial increases in FEAAs (free essential amino acids), total phenolic content (TPC) and antioxidant activity were observed particularly at the end of intestinal phase of digestion. Together with SDS-PAGE results, peptides and proteins in tamarillo yoghurts were more easily digested and therefore may be better absorbed in the small intestine compared to the control. TPC and antioxidant activity of fortified yoghurts increased significantly after in vitro digestion. Relatively high bioaccessibilty of chlorogenic acid and kaempferol-3-rutinoside in digested PRE samples was observed. The results suggest that the yoghurt matrix might protect some compounds from degradation, increasing bioaccessibility and in the small intestine allow increased absorption and utilization possible. Fortification would deliver intact polyphenols and fibre to the large intestine and improve gut health. Further research of acceptability, shelf life, and then trials for health effects should be implemented.
Collapse
Affiliation(s)
- Tung Thanh Diep
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
- Riddet Institute, Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
| | - Michelle Ji Yeon Yoo
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
- Riddet Institute, Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
- Correspondence: ; Tel.: +64-9921-9999 (ext. 6456)
| | - Elaine Rush
- Riddet Institute, Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
- School of Sport and Recreation, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
6
|
Viera W, Samaniego I, Camacho D, Habibi N, Ron L, Sediqui N, Álvarez J, Viteri P, Sotomayor A, Merino J, Vásquez-Castillo W, Brito B. Phytochemical Characterization of a Tree Tomato ( Solanum betaceum Cav.) Breeding Population Grown in the Inter-Andean Valley of Ecuador. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030268. [PMID: 35161251 PMCID: PMC8838755 DOI: 10.3390/plants11030268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 05/12/2023]
Abstract
Tree tomato (Solanum betaceum Cav.) is an Andean fruit crop that is grown in Ecuador. It is an exceptional source of minerals and vitamins, thus has nutraceutical properties. The objective of this research was to carry out a phytochemical characterization of a breeding population composed of 90 segregants. Pulp (including mesocarp, mucilage, seeds and placenta) was ground and sieved in order to obtain the liquid pulp to be lyophilized for the chemical analyzes. Antioxidants compounds were determined by spectrophotometry and vitamin C by reflectometry. Data were analyzed by principal components, grouping, and variance analyses; in addition, Z Score estimation was carried out to select elite individuals. There was a broad variability in the data obtained for the breeding population, polyphenol content varied from 5.11 to 16.59 mg GAE g-1, flavonoids from 1.24 to 6.70 mg cat g-1, carotenoids from 50.39 to 460.72 µg β-carotene g-1, anthocyanins from 1.06 to 240.49 mg cy-3-glu 100 g-1, antioxidant capacity from 49.51 to 312.30 µm Trolox g-1, and vitamin C from 78.29 to 420.16 mg 100 g-1. It can be concluded that tree tomato is a good source of beneficial biocompounds and has a high antioxidant capacity.
Collapse
Affiliation(s)
- William Viera
- National Institute of Agricultural Research (INIAP), Santa Catalina Research Site, Fruit Program, Tumbaco Experimental Farm, Tumbaco 170902, Ecuador; (W.V.); (P.V.); (A.S.); (J.M.)
| | - Iván Samaniego
- Department of Nutrition and Quality, Santa Catalina Research Site, National Institute of Agricultural Research (INIAP), Cutuglahua 171107, Ecuador; (I.S.); (J.Á.)
| | - Diana Camacho
- Faculty of Chemistry Sciences, Universidad Central del Ecuador (UCE), Quito 170521, Ecuador;
| | | | - Lenin Ron
- Faculty of Veterinary Medicine and Zoothecnics, Universidad Central del Ecuador (UCE), Quito 170521, Ecuador;
| | | | - Javier Álvarez
- Department of Nutrition and Quality, Santa Catalina Research Site, National Institute of Agricultural Research (INIAP), Cutuglahua 171107, Ecuador; (I.S.); (J.Á.)
| | - Pablo Viteri
- National Institute of Agricultural Research (INIAP), Santa Catalina Research Site, Fruit Program, Tumbaco Experimental Farm, Tumbaco 170902, Ecuador; (W.V.); (P.V.); (A.S.); (J.M.)
| | - Andrea Sotomayor
- National Institute of Agricultural Research (INIAP), Santa Catalina Research Site, Fruit Program, Tumbaco Experimental Farm, Tumbaco 170902, Ecuador; (W.V.); (P.V.); (A.S.); (J.M.)
| | - Jorge Merino
- National Institute of Agricultural Research (INIAP), Santa Catalina Research Site, Fruit Program, Tumbaco Experimental Farm, Tumbaco 170902, Ecuador; (W.V.); (P.V.); (A.S.); (J.M.)
| | - Wilson Vásquez-Castillo
- Agroindustry and Food Science, Universidad de las Américas (UDLA), Quito 170503, Ecuador
- Correspondence: ; Tel.: +593-984-659-247
| | | |
Collapse
|
7
|
Suárez-Montenegro ZJ, Ballesteros-Vivas D, Gallego R, Valdés A, Sánchez-Martínez JD, Parada-Alfonso F, Ibáñez E, Cifuentes A. Neuroprotective Potential of Tamarillo ( Cyphomandra betacea) Epicarp Extracts Obtained by Sustainable Extraction Process. Front Nutr 2021; 8:769617. [PMID: 34869538 PMCID: PMC8634709 DOI: 10.3389/fnut.2021.769617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
Tamarillo (Cyphomandra betacea (Cav.) Sendt.), or tree tomato, is a tropical fruit from the Andean region of South America; it is highly rich in vitamins, minerals, and polyphenolic compounds. In this study, extracts from tamarillo epicarp (TE) were obtained by pressurized liquid extraction (PLE), and their in-vitro neuroprotective potential was assessed. A central composite design with response surface methodology was performed to optimize PLE as a function of solvent composition and temperature. Selected response variables were extraction yield, total phenolic content (TPC), total flavonoid content (TFC), total carotenoid content (TCC), antioxidant (ABTS), and anti-inflammatory (LOX) activities, and anti-acetylcholinesterase (AChE) inhibitory capacity. According to the desirability function, the optimal conditions were 100% ethanol and 180°C with a 0.87 desirability value. Next, the anti-butyrylcholinesterase enzyme (BChE), reactive oxygen species (ROS), and reactive nitrogen species (RNS) inhibition as well as cytotoxicity in HK-2, THP-1 monocytes, and SH-5YSY neuroblastoma cell lines were studied for the TE extract obtained under optimized conditions. The optimum TE extract provided the following results: extraction yield (36.25%), TPC (92.09 mg GAE/g extract), TFC (4.4 mg QE/g extract), TCC (107.15 mg CE/g extract), antioxidant capacity (ABTS, IC50 = 6.33 mg/ml extract), LOX (IC50 = 48.3 mg/ml extract), and AChE (IC50 = 97.46 mg/ml extract), and showed no toxicity at concentration up to 120 μg/ml extract for all the tested cell lines. Finally, chemical characterization by liquid chromatography-tandem mass spectrometry (UHPLC-q-TOF-MS/MS) of the optimum TE extract exhibited an important presence of hydroxycinnamic acid derivatives and other phenolic acids as well as quercetin hexoside and rutin, as main metabolites responsible for the observed biological properties. All these results suggested that TE, which represents between 8 and 15% of the total fruit, could become a promising natural by-product with a potential "multitarget" activity against Alzheimer's disease.
Collapse
Affiliation(s)
- Zully Jimena Suárez-Montenegro
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain.,Departamento de Procesos Industriales, Facultad de Ingenieria Agroindustrial, Universidad de Nariño, Pasto, Colombia
| | - Diego Ballesteros-Vivas
- High Pressure Laboratory, Departamento de Química, Facultad de Ciencias, Food Chemistry Research Group, Universidad Nacional de Colombia, Bogotá, Colombia.,Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Rocío Gallego
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| | - Alberto Valdés
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| | | | - Fabián Parada-Alfonso
- High Pressure Laboratory, Departamento de Química, Facultad de Ciencias, Food Chemistry Research Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Elena Ibáñez
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| | - Alejandro Cifuentes
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| |
Collapse
|
8
|
Ha HTN, Van Tai N, Thuy NM. Physicochemical Characteristics and Bioactive Compounds of New Black Cherry Tomato ( Solanum lycopersicum) Varieties Grown in Vietnam. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10102134. [PMID: 34685943 PMCID: PMC8538466 DOI: 10.3390/plants10102134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 06/01/2023]
Abstract
Some physicochemical characteristics and bioactive compounds of three varieties of black cherry tomato (Indigo Rose, OG, F1:001) grown in Vietnam were investigated. The results showed that the two varieties OG and F1:001 have roughly the same size with weight, height, diameter, geometric diameter and surface area ranging from 21.62 to 22.25 g, 25.69 to 26.40 mm, 24.46 to 25.11 mm, 24.86 to 25.53 mm and 19.47 to 20.51 cm2, respectively. Meanwhile, the Indigo variety is twice as large with the corresponding parameters as 45.2 g, 48.03 mm, 55.18 mm, 52.69 mm and 87.20 cm2. All three varieties are in a spherical shape with sphericity and aspect ratios ranging from 96.72 to 109.69% and 0.951 to 1.149, respectively. The variety of OG contained higher levels of bioactive compounds, especially anthocyanin, not only in the skin but also in the outer tissue. Six anthocyanin compounds were identified in the two varieties of OG and Indigo Rose while only four anthocyanin compounds were found in the variety of F1:001. Among them, two new compounds (delphinidin-3-(p-coumaroyl)-glucoside and delphinidin-3-(p-coumaroyl)-glucoside-arabinoside) were discovered in all three varieties. The finding of this study will be a basis for consumers to better understand the nutritious properties of black cherry tomatoes grown in Vietnam, thereby promoting the need to grow and consume this beneficial fruit. The study also provides the important physicochemical parameters of black cherry tomatoes, which are the initial basis for fruit preservation and processing.
Collapse
Affiliation(s)
- Ho Thi Ngan Ha
- Department of Food Technology, Faculty of Agriculture and Natural Resources, An Giang University, Long Xuyên City 90100, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Department of Food Technology, College of Agriculture, Can Tho University, Can Tho City 900000, Vietnam;
| | - Ngo Van Tai
- Department of Food Technology, College of Agriculture, Can Tho University, Can Tho City 900000, Vietnam;
| | - Nguyen Minh Thuy
- Department of Food Technology, College of Agriculture, Can Tho University, Can Tho City 900000, Vietnam;
| |
Collapse
|
9
|
Rohilla S, Mahanta CL. Optimization of extraction conditions for ultrasound-assisted extraction of phenolic compounds from tamarillo fruit (Solanum betaceum) using response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00751-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Essential oil and supercritical extracts of winter savory (Satureja montana L.) as antioxidants in precooked pork chops during chilled storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Diep TT, Rush EC, Yoo MJY. Tamarillo (Solanum betaceum Cav.): A Review of Physicochemical and Bioactive Properties and Potential Applications. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1804931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tung Thanh Diep
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Auckland, New Zealand
- The Riddet Institute, Centre of Research Excellence, Palmerston North, New Zealand
| | - Elaine C. Rush
- The Riddet Institute, Centre of Research Excellence, Palmerston North, New Zealand
- School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Michelle Ji Yeon Yoo
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Auckland, New Zealand
- The Riddet Institute, Centre of Research Excellence, Palmerston North, New Zealand
| |
Collapse
|
12
|
Phenolic and Anthocyanin Compounds and Antioxidant Activity of Tamarillo ( Solanum betaceum Cav.). Antioxidants (Basel) 2020; 9:antiox9020169. [PMID: 32085645 PMCID: PMC7070485 DOI: 10.3390/antiox9020169] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/03/2022] Open
Abstract
This study examined phenolics and anthocyanins present in Amber, Laird’s Large and Mulligan cultivars of tamarillo that were cultivated in Whangarei, Northland of New Zealand. Samples were further separated by their tissue types, peel and pulp. Using LC-MS/MS, twelve polyphenols were quantified and six (ellagic acid, rutin, catechin, epicatechin, kaempferol-3-rutinoside and isorhamnetin-3-rutinoside) were detected for the first time in tamarillo. Mulligan cultivar showed the highest amounts of phenolic and anthocyanin compounds and the highest antioxidant activity. Phenolic compounds were mostly synthesized from shikimic acid route, and chlorogenic acid dominated the profile regardless of cultivar and tissue types. Anthocyanin profile was dominated by delphinidin-3-rutinoside in pulp. Higher amounts of anthocyanins were detected in this study, which may be explained by favourable growth conditions (high light intensity and low temperature) for anthocyanin biosynthesis in New Zealand. Higher antioxidant activity and total phenolic content in peels than in pulps were found when assessed by Cupric Ion-Reducing Antioxidant Capacity (CUPRAC), Ferric Reducing Ability of Plasma (FRAP) and Folin–Ciocalteu assays, and a positive correlation (r > 0.9, p ≤ 0.01) between the three assays was observed. Current findings endorse that tamarillo has a great bioactive potential to be developed further as a functional ingredient with considerable levels of antioxidant compounds and antioxidant activity.
Collapse
|
13
|
Tamarillo (Solanum betaceum): Chemical composition, biological properties, and product innovation. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Assessment of the bioactive capacity of extracts from Leptocarpha rivularis stalks using ethanol-modified supercritical CO2. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Castro-Vargas HI, Ballesteros Vivas D, Ortega Barbosa J, Morantes Medina SJ, Aristizabal Gutiérrez F, Parada-Alfonso F. Bioactive Phenolic Compounds from the Agroindustrial Waste of Colombian Mango Cultivars 'Sugar Mango' and 'Tommy Atkins'-An Alternative for Their Use and Valorization. Antioxidants (Basel) 2019; 8:E41. [PMID: 30781395 PMCID: PMC6406469 DOI: 10.3390/antiox8020041] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to explore the potential of the agroindustrial waste from two Colombian mango cultivars as sources of bioactive phenolic compounds. Phenolic extracts from mango waste (peels, seed coats, and seed kernels) of 'sugar mango' and 'Tommy Atkins' cultivars were obtained. The bioactive properties of the phenolic extracts were accessed by measuring their free radical scavenging activity and antioxidant effects against lipid oxidation in food products; moreover, their antiproliferative effects against some cell lines of human cancer were explored. It is observed that the agroindustrial waste studied provides promising sources of bioactive phenolics. 'Sugar mango' waste provided extracts with the highest antioxidant effect in food products and antiproliferative activity; these extracts reduced lipid oxidation and cell growth by more than 57% and 75%, respectively. The seed kernel from 'sugar mango' supplied the extract with the best bioactive qualities; in addition, some recognized bioactive phenolics (such as mangiferin and several galloyl glucosides) were observed in this extract and related with its properties. The results obtained suggest that 'sugar mango' waste may be considered a source of bioactive phenolics, with promising uses in food and pharmaceutical products. Thus, a suitable alternative for the use and valorization of agroindustrial waste from Colombian mango cultivars is presented.
Collapse
Affiliation(s)
- Henry I Castro-Vargas
- Faculty of Engineering, Universidad Libre, Seccional Bogotá, Carrera 70 No 53-40, Bogotá D.C. 111071, Colombia.
- Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No 45-03, Bogotá D.C. 111321, Colombia.
| | - Diego Ballesteros Vivas
- Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No 45-03, Bogotá D.C. 111321, Colombia.
| | - Jenny Ortega Barbosa
- Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No 45-03, Bogotá D.C. 111321, Colombia.
| | - Sandra Johanna Morantes Medina
- Unit of Basic Oral Investigation (UIBO), School of Dentistry, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá D.C. 110121, Colombia.
| | - Fabio Aristizabal Gutiérrez
- Department of Farmacy, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No 45-03, Bogotá D.C. 111321, Colombia.
| | - Fabián Parada-Alfonso
- Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No 45-03, Bogotá D.C. 111321, Colombia.
| |
Collapse
|
16
|
Dorado Achicanoy D, Hurtado Benavides A, Martínez-Correa HA. Study of supercritical CO 2 extraction of tamarillo (Cyphomandra Betacea) seed oil containing high added value compounds. Electrophoresis 2018; 39:1917-1925. [PMID: 29660149 DOI: 10.1002/elps.201700430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 11/08/2022]
Abstract
In the present investigation, the extraction of tamarillo seed oil was conducted using supercritical carbon dioxide (SC-CO2), under different conditions of pressure (20-38.1 MPa) and temperature (40-64°C). In order to determine the effect that these extraction parameters have over the yield and composition of the oil, a central composite design was used. The optimum yield was 21.07% obtained at 38.1 MPa and 64°C. The fatty acids of the tamarillo seed oil obtained with SC-CO2 were identified: linoleic (70.12%), oleic (16.18%), palmitic (9.68%), stearic (2.12%), linolenic (1.70%), and palmitoleic (0.23%). Other components, such as squalene (2.96-19.75 mg/mL), β-sitosterol (2.05-3.68 mg/mL), cycloartenol (1,23-2.81 mg/mL) dihydrolanosterol (0.28-0.70 mg/mL) sterols and γ-tocopherol (0.89-2.10 mg/mL) were also noted. The extraction kinetic was studied at 27.5 MPa -50°C and 38.1 MPa -64°C. The semi-empirical model of Sovová et al. [24] described 99.21% of the experimental behavior of extraction kinetics. High yields of tamarillo seed oil, as well as its unique composition of unsaturated fatty acids and minor components, show the potential for its application in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Daniela Dorado Achicanoy
- Emerging Technologies in Agroindustry Research Group (TEA), Agroindustrial Engineering Faculty, Universidad de Nariño, Pasto, Colombia
| | - Andrés Hurtado Benavides
- Emerging Technologies in Agroindustry Research Group (TEA), Agroindustrial Engineering Faculty, Universidad de Nariño, Pasto, Colombia
| | - Hugo A Martínez-Correa
- Universidad Nacional de Colombia-sede Palmira-Departamento de Ingeniería-Palmira-Colombia
| |
Collapse
|
17
|
Ospina M, Castro-Vargas HI, Parada-Alfonso F. Antioxidant capacity of Colombian seaweeds: 1. Extracts obtained from Gracilaria mammillaris by means of supercritical fluid extraction. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Alexandre EMC, Moreira SA, Castro LMG, Pintado M, Saraiva JA. Emerging technologies to extract high added value compounds from fruit residues: Sub/supercritical, ultrasound-, and enzyme-assisted extractions. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1359842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elisabete M. C. Alexandre
- Department of Chemistry, Research Unit of Química Orgânica, Produtos Naturaise Agroalimentares (QOPNA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Porto, Portugal
| | - Silvia A. Moreira
- Department of Chemistry, Research Unit of Química Orgânica, Produtos Naturaise Agroalimentares (QOPNA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Porto, Portugal
| | - Luís M. G. Castro
- Department of Chemistry, Research Unit of Química Orgânica, Produtos Naturaise Agroalimentares (QOPNA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Manuela Pintado
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Porto, Portugal
| | - Jorge A. Saraiva
- Department of Chemistry, Research Unit of Química Orgânica, Produtos Naturaise Agroalimentares (QOPNA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
19
|
Hurtado-Benavides A, Dorado A. D, Sánchez-Camargo ADP. Study of the fatty acid profile and the aroma composition of oil obtained from roasted Colombian coffee beans by supercritical fluid extraction. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Kumar Y, Yadav DN, Ahmad T, Narsaiah K. Recent Trends in the Use of Natural Antioxidants for Meat and Meat Products. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12156] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yogesh Kumar
- Livestock Products Technology, Central Inst. of Post Harvest Engineering and Technology; Punjab Agricultural Univ; Ludhiana India
| | - Deep Narayan Yadav
- Food Science and Technology, Central Inst. of Post Harvest Engineering and Technology; Punjab Agricultural Univ; Ludhiana India
| | - Tanbir Ahmad
- Livestock Products Technology, Central Inst. of Post Harvest Engineering and Technology; Punjab Agricultural Univ; Ludhiana India
| | - Kairam Narsaiah
- Agriculture Structure and Process Engineering, Central Inst. of Post Harvest Engineering and Technology; Punjab Agricultural Univ; Ludhiana India
| |
Collapse
|
21
|
|
22
|
|
23
|
Machado BAS, Pereira CG, Nunes SB, Padilha FF, Umsza-Guez MA. Supercritical Fluid Extraction Using CO2: Main Applications and Future Perspectives. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2013.811422] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|