1
|
Dashtian K, Kamalabadi M, Ghoorchian A, Ganjali MR, Rahimi-Nasrabadi M. Integrated supercritical fluid extraction of essential oils. J Chromatogr A 2024; 1733:465240. [PMID: 39154494 DOI: 10.1016/j.chroma.2024.465240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Supercritical fluid extraction (SFE) stands out as an incredibly efficient, environmentally conscious, and fast method for obtaining essential oils (EOs) from plants. These EOs are abundant in aromatic compounds that play a crucial role in various industries such as food, fragrances, cosmetics, perfumery, pharmaceuticals, and healthcare. While there is a wealth of existing literature on using supercritical fluids for extracting plant essential oils, there's still much to explore in terms of combining different techniques to enhance the SFE process. This comprehensive review presents a sophisticated framework that merges SFE with EO extraction methods. This inclusive categorization encompasses a range of methods, including the integration of pressurized liquid processes, ultrasound assistance, steam distillation integration, microfluidic techniques, enzyme integration, adsorbent facilitation, supercritical antisolvent treatments, molecular distillation, microwave assistance, milling process and mechanical pressing integration. Throughout this in-depth exploration, we not only elucidate these combined techniques but also engage in a thoughtful discussion about the challenges they entail and the array of opportunities they offer within the realm of SFE for EOs. By dissecting these complexities, our objective is to tackle the current challenges associated with enhancing SFE for commercial purposes. This endeavor will not only streamline the production of premium-grade essential oils with improved safety measures but also pave the way for novel applications in various fields.
Collapse
Affiliation(s)
- Kheibar Dashtian
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mahdie Kamalabadi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arash Ghoorchian
- Department of Chemistry, Research Center for Development of Advanced Technologies, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Valorization of Cereal Byproducts with Supercritical Technology: The Case of Corn. Processes (Basel) 2023. [DOI: 10.3390/pr11010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ethanol and starch are the main products generated after the processing of corn via dry grinding and wet milling, respectively. Milling generates byproducts including stover, condensed distillers’ solubles, gluten meal, and the dried distillers’ grains with solubles (DDGS), which are sources of valuable compounds for industry including lignin, oil, protein, carotenoids, and phenolic compounds. This manuscript reviews the current research scenario on the valorization of corn milling byproducts with supercritical technology, as well as the processing strategies and the challenges of reaching economic feasibility. The main products recently studied were biodiesel, biogas, microcapsules, and extracts of enriched nutrients. The pretreatment of solid byproducts for further hydrolysis to produce sugar oligomers and bioactive peptides is another recent strategy offered by supercritical technology to process corn milling byproducts. The patents invented to transform corn milling byproducts include oil fractionation, extraction of undesirable flavors, and synthesis of structured lipids and fermentable sugars. Process intensification via the integration of milling with equipment that operates with supercritical fluids was suggested to reduce processing costs and to generate novel products.
Collapse
|
3
|
Pomegranate (Punica granatum L.) Peel Extracts as Antimicrobial and Antioxidant Additives Used in Alfalfa Sprouts. Foods 2022; 11:foods11172588. [PMID: 36076774 PMCID: PMC9455905 DOI: 10.3390/foods11172588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Aqueous and ethanolic pomegranate peel extracts (PPE) were studied as a source of phenolic compounds with antimicrobial, anti-quorum sensing, and antioxidant properties. The aqueous extract showed higher total phenolic and flavonoid content (153.43 mg GAE/g and 45.74, respectively) and antioxidant capacity (DPPH radical inhibition: 86.12%, ABTS radical scavenging capacity: 958.21 mg TE/dw) compared to the ethanolic extract. The main phenolic compounds identified by UPLC-DAD were chlorogenic and gallic acids. The aqueous PPE extract showed antimicrobial activity against Listeria monocytogenes, Salmonella Typhimurium, Candida tropicalis (MICs 19–30 mg/mL), and anti-quorum sensing activity expressed as inhibition of Chromobacterium violaceum violacein production (%). The aqueous PPE extracts at 25 mg/mL applied on alfalfa sprouts reduced psychrophilic bacteria (1.12 Log CFU/100 g) and total coliforms (1.23 Log CFU/100 g) and increased the antioxidant capacity of the treated sprouts (55.13 µmol TE/100 g (DPPH) and 126.56 µmol TE/100 g (ABTS)) compared to untreated alfalfa. This study emphasizes PPE’s antioxidant and antimicrobial activities in alfalfa sprouts preservation.
Collapse
|
4
|
Adeyi O, Oke EO, Okolo BI, Adeyi AJ, Otolorin JA, Nwosu-Obieogu K, Adeyanju JA, Dzarma GW, Okhale S, Ogu D, Onu PN. Process optimization, scale-up studies, economic analysis and risk assessment of phenolic rich bioactive extracts production from Carica papaya L. leaves via heat-assisted extraction technology. Heliyon 2022; 8:e09216. [PMID: 35399389 PMCID: PMC8991258 DOI: 10.1016/j.heliyon.2022.e09216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/04/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
This work investigated the influence of process variables of extraction temperature (35–55 °C), solid to liquid ratio (1:20–1:50 g/mL) and time (100–200 min) on the total phenolic content (TPC) and yield (EY) of Carica papaya leaves (CPL) extracts using Box-Behnken experimental design available in Design Expert software. Bi-objective process optimization was also carried out using the desirability function algorithm. The optimum process variables were later used to design an integrated process for the production of CPL extracts with the assistance of SuperPro Designer software. Scale-up studies and economic analysis for CPL extracts production were investigated in the range of 0.638–20.431 × 103 kg CPL extracts/y to determine the most economically feasible production capacity based on the minimum unit production cost (UPC) of CPL extracts. The risk and sensitivity analyses of the most economically feasible production scale were carried out using the Monte Carlo simulation in Oracle Crystal Ball software. Process variables had notable influences on the TPC and EY of CPL extracts. The extraction temperature of 35 °C, solid to liquid ratio of 40.25 g/mL and time of 100 min gave the optimum TPC of 74.65 mg GAE/g d.b and EY of 18.76 % (w/w). HPLC results indicated that CPL extracts were rich in gallic, betulinic, chlorogenic, ellagic, ferulic and caffeic acids. The designed integrated process showed similar behavior with the laboratory scale of 0.18758 g CPL extracts/batch. The preliminary techno-economic analysis indicated that plant capacity has a strong dependence on the material & energy demands and process economics. Plant capacity of 19.857 × 103 kg CPL extracts/y possessed the least UPC and was selected as the most economically feasible scale. The certainty of obtaining base case UPC value of 525.21 US$/kg CPL extracts was 75.20%. Sensitivity analysis showed that extracts recovery, CPL/water, centrifuge purchase cost, extraction time, extractor purchase cost and extraction temperature contributed -5.3 %, +42.8%, +4.0%, +47.1%, +0.1%, and +0.5%, respectively to the variance in UPC of CPL extracts. Carica papaya leaves (CPL) extracts are rich in polyphenols. Heat assisted extraction technology was capable of recovering CPL extracts. Industrial extracts scale-ups were achievable using SuperPro Designer software. Plant capacity of 19.857 × 103 kg extracts/y was selected most economical scale. The 525.21 US$/kg extracts unit production cost base case certainty was 75.20%.
Collapse
Affiliation(s)
- Oladayo Adeyi
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
- Corresponding author.
| | - Emmanuel O. Oke
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
| | - Bernard I. Okolo
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
| | - Abiola J. Adeyi
- Department of Mechanical Engineering, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State, Nigeria
- Forest Research Institute of Nigeria, PMB 5054, Jericho Ibadan, Oyo State, Nigeria
| | - John A. Otolorin
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
| | - Kenechi Nwosu-Obieogu
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
| | - James A. Adeyanju
- Department of Food Engineering, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Goziya William Dzarma
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
| | - Samuel Okhale
- Department of Medicinal Plant Research and Traditional Medicine, National Institute for Pharmaceutical Research and Development, Abuja, Nigeria
| | - Denilson Ogu
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
| | - Precious N. Onu
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
| |
Collapse
|
5
|
Valencia-Hernandez LJ, Wong-Paz JE, Ascacio-Valdés JA, Chávez-González ML, Contreras-Esquivel JC, Aguilar CN. Procyanidins: From Agro-Industrial Waste to Food as Bioactive Molecules. Foods 2021; 10:3152. [PMID: 34945704 PMCID: PMC8701411 DOI: 10.3390/foods10123152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Procyanidins are an important group of bioactive molecules known for their benefits to human health. These compounds are promising in the treatment of chronic metabolic diseases such as cancer, diabetes, and cardiovascular disease, as they prevent cell damage related to oxidative stress. It is necessary to study effective extraction methods for the recovery of these components. In this review, advances in the recovery of procyanidins from agro-industrial wastes are presented, which are obtained through ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, pressurized fluid extraction and subcritical water extraction. Current trends focus on the extraction of procyanidins from seeds, peels, pomaces, leaves and bark in agro-industrial wastes, which are extracted by ultrasound. Some techniques have been coupled with environmentally friendly techniques. There are few studies focused on the extraction and evaluation of biological activities of procyanidins. The identification and quantification of these compounds are the result of the study of the polyphenolic profile of plant sources. Antioxidant, antibiotic, and anti-inflammatory activity are presented as the biological properties of greatest interest. Agro-industrial wastes can be an economical and easily accessible source for the extraction of procyanidins.
Collapse
Affiliation(s)
- Leidy Johana Valencia-Hernandez
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Jorge E. Wong-Paz
- Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Valles, Ciudad Valles C.P. 79010, SL, Mexico;
| | - Juan Alberto Ascacio-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Juan Carlos Contreras-Esquivel
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| |
Collapse
|
6
|
Vedovatto F, Bonatto C, Bazoti SF, Venturin B, Alves SL, Kunz A, Steinmetz RLR, Treichel H, Mazutti MA, Zabot GL, Tres MV. Production of biofuels from soybean straw and hull hydrolysates obtained by subcritical water hydrolysis. BIORESOURCE TECHNOLOGY 2021; 328:124837. [PMID: 33607449 DOI: 10.1016/j.biortech.2021.124837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to evaluate the ethanol production by Wickerhamomyces sp. using soybean straw and hull hydrolysates obtained by subcritical water hydrolysis and, afterward, the biogas production using the fermented hydrolysates. Ethanol was produced using the straw and hull hydrolysates diluted and supplement with glucose, reaching 5.57 ± 0.01 g/L and 6.11 ± 0.11 g/L, respectively. The fermentation in a bioreactor with changing the pH to 7.0 allowed achieving maximum ethanol production of 4.03 and 3.60 g/L for straw and hull hydrolysates at 24 h, respectively. The biogas productions obtained for the fermented hydrolysates of straw with and without changing the pH were 739 ± 37 and 652 ± 34 NmL/gVSad, respectively. The fermented hydrolysate of hull without changing the pH presented 620 ± 26 NmL/gVSad. The soybean residues produced biofuels, indicating these residues show potential as raw material for renewable energy production.
Collapse
Affiliation(s)
- Felipe Vedovatto
- Department of Agricultural Engineering, Federal University of Santa Maria, 1000, Roraima av., Santa Maria 97105-900, Brazil; Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040, Sete de Setembro av., Cachoeira do Sul 96506-322, Brazil
| | - Charline Bonatto
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, 200, ERS 135 - km 72, Erechim 99700-970, Brazil; Department of Chemical and Food Engineering, Federal University of Santa Catarina, Trindade, Florianópolis 88040-900, Brazil
| | - Suzana F Bazoti
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, 200, ERS 135 - km 72, Erechim 99700-970, Brazil
| | - Bruno Venturin
- Western Paraná State University, R. Universitária, Cascavel 85819-110, Brazil
| | - Sérgio L Alves
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Chapecó, 89815-899, Brazil
| | - Airton Kunz
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, 200, ERS 135 - km 72, Erechim 99700-970, Brazil; Western Paraná State University, R. Universitária, Cascavel 85819-110, Brazil; Embrapa Suínos e Aves, BR 153 - Km 110, Concórdia 89710-028, Brazil
| | | | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, 200, ERS 135 - km 72, Erechim 99700-970, Brazil
| | - Marcio A Mazutti
- Department of Agricultural Engineering, Federal University of Santa Maria, 1000, Roraima av., Santa Maria 97105-900, Brazil; Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima av., Santa Maria 97105-900, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040, Sete de Setembro av., Cachoeira do Sul 96506-322, Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040, Sete de Setembro av., Cachoeira do Sul 96506-322, Brazil.
| |
Collapse
|
7
|
|
8
|
Process integration for recovering high added-value products from Genipa americana L.: Process optimization and economic evaluation. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Santos MSND, Zabot GL, Mazutti MA, Ugalde GA, Rezzadori K, Tres MV. Optimization of subcritical water hydrolysis of pecan wastes biomasses in a semi-continuous mode. BIORESOURCE TECHNOLOGY 2020; 306:123129. [PMID: 32172095 DOI: 10.1016/j.biortech.2020.123129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Pecan cultivation has increased in recent years. Consequently, the amount of lignocellulosic residuals from its production has expanded. Thus, there is a necessity to explore and add value to their coproducts. The objective of this work was to obtain reducing sugars from pecan biomasses by the optimization of the subcritical water hydrolysis technology in a semi-continuous mode and the physicochemical and morphological characterization of these materials, such as SEM, TGA and FT-IR analysis. Temperatures of 180, 220 and 260 °C, water/solids mass ratio of 15 and 30 g water/g biomass and total reaction time of 15 min were used. The highest reducing sugar yield was 27.1 g/100 g of biomass, obtained at 220 °C and R-15 for pecan shells. TGA, SEM and FT-IR analysis indicated the modifications of structures and compositions of biomasses in fresh and hydrolyzed samples.
Collapse
Affiliation(s)
- Maicon S N Dos Santos
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Sete de Setembro St., 1040, Cachoeira do Sul, RS 96508-010, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Sete de Setembro St., 1040, Cachoeira do Sul, RS 96508-010, Brazil
| | - Marcio A Mazutti
- Departament of Chemical Engineering, Federal University of Santa Maria (UFSM), Roraima Av., 1000, Santa Maria, RS 97105-900, Brazil
| | - Gustavo A Ugalde
- Laboratory of Integrated Pest Management (LabMIP), Federal University of Santa Maria (UFSM), Roraima Av., 1000, Santa Maria, RS 97105-900, Brazil
| | - Katia Rezzadori
- Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul (UFRGS), Paulo Gama Av., 110, Porto Alegre, RS 90040-060, Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Sete de Setembro St., 1040, Cachoeira do Sul, RS 96508-010, Brazil.
| |
Collapse
|
10
|
Salami A, Asefi N, Kenari RE, Gharekhani M. Addition of pumpkin peel extract obtained by supercritical fluid and subcritical water as an effective strategy to retard canola oil oxidation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00491-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Dastangoo S, Hamed Mosavian MT, Yeganehzad S. Optimization of pulsed electric field conditions for sugar extraction from carrots. Food Sci Nutr 2020; 8:2025-2034. [PMID: 32328269 PMCID: PMC7174202 DOI: 10.1002/fsn3.1490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/10/2022] Open
Abstract
Physical destruction and thermal treatment are pretreatment methods used to destroy cell membranes and facilitate the release of solute extraction. In this paper, sugar extraction from carrots under different pulsed electric field conditions (field strengths of 250, 750, and 1,250 V/cm, pulse numbers of 10, 45, and 80, and pulse frequency of 1 Hz) and simultaneous thermal treatments (at 20, 45, and 70°C) were studied based on full factorial design experiments with 27 runs. Carrot slices treated with PEF were suspended in water at the desired temperature and liquid-to-solid weight ratio of L/S = 2. Immediately after the PEF treatment, a significant increase in solute extraction was observed due to the permeability of cell membrane that could lead to the enhancement of solute convection on the surface of the tissue. Optimum extraction parameters were obtained as follows: PEF with the field intensity of 750 V/cm, 10 pulses, and temperature of 45°C.
Collapse
Affiliation(s)
- Samere Dastangoo
- Department of Chemical EngineeringFaculty of EngineeringFerdowsi University of MashhadMashhadIran
| | | | - Samira Yeganehzad
- Food Processing DepartmentResearch Institute of Food Science and Technology (RIFST)MashhadIran
| |
Collapse
|
12
|
Alvarenga GL, Cuevas MS, Capellini MC, Crevellin EJ, de Moraes LAB, Rodrigues CEDC. Extraction of carotenoid-rich palm pressed fiber oil using mixtures of hydrocarbons and short chain alcohols. Food Res Int 2020; 128:108810. [PMID: 31955769 DOI: 10.1016/j.foodres.2019.108810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/16/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022]
Abstract
Solvent extraction is the most efficient method for recovering residual oil from palm pressed fiber (PPFO), which may contain up to eight times the carotenoid content of that found in crude palm oil. The objective of the present study is the use of binary mixtures of hydrocarbons (HC), hexane (Hex), cyclohexane (CHex) or heptane (Hep), and alcohols (ALC), ethanol (Eth) or isopropanol (IPA), in order to promote the highest recovery of a carotenoid-rich PPFO, in which the compositions of the mixtures are defined based on the calculation of solute-solvent distance (Ra) considering β-carotene as the solute. The extraction experiments were conducted in batch, at 60 ± 2 °C, or in a fixed-bed packed column, at 55 ± 3 °C. Hex and Hep:IPA provided 80% of batch PPFO extraction yield, while in column, the highest yields were obtained with Eth and Hex:IPA (66%). The total carotenoid content obtained was the same independent of the solvent and extraction configuration (from 1790 ± 230 up to 2539 ± 78 mg β-carotene/kg PPFO). In terms of the carotenoid profile, β-carotene was mostly extracted by Hex, Hex:Eth stood out in the extraction of α-carotene, and Eth extracted the highest content of lycopene. It is possible to infer that mixtures of HC and ALC with compositions defined based on Hansen Solubility Parameters (HSPs) demonstrated good ability to extract carotenoid-rich PPFO, maintaining their relatively stable fatty acids composition and free acidity, showing that partial substitution of HC by ALC is technically possible.
Collapse
Affiliation(s)
- Gabriela Lara Alvarenga
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Maitê Sarria Cuevas
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Maria Carolina Capellini
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Eduardo José Crevellin
- Departamento de Química, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, São Paulo, Brazil
| | | | - Christianne Elisabete da Costa Rodrigues
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil.
| |
Collapse
|
13
|
Oil Recovery from Palm Kernel Meal Using Subcritical Water Extraction in a Stirred Tank Reactor. Processes (Basel) 2019. [DOI: 10.3390/pr7110797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Palm kernel meal (PKM) is one of the main byproducts of the oil palm industry. PKM can be obtained as the result of solvent or mechanical extraction of palm kernel oil; in both cases, meal has a remaining oil content that could be recovered. In this work, PKM coming from a mechanical pressing extraction system with an initial oil content between 7 to 8% (wt.) was treated with subcritical water in a batch stirred reactor. To find the proper operational conditions, a three-step experimental process was performed. Extraction temperature, reaction time, particle size and alkaline catalyst usage were selected as process factors. After subcritical extraction, the system was cooled down and depressurized; then oil phase was separated by centrifugation. After extraction, meal was oven-dried at 80 °C. A maximum recovery of 0.034 kg-oil/kg-meal was obtained at 423 K, 720 s and particles smaller than 0.001 m. The experimental procedure showed consistent extraction yields of 40% without modifying the quality of the obtained oil.
Collapse
|
14
|
Abaide ER, Ugalde G, Di Luccio M, Moreira RDFPM, Tres MV, Zabot GL, Mazutti MA. Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode. BIORESOURCE TECHNOLOGY 2019; 272:510-520. [PMID: 30391844 DOI: 10.1016/j.biortech.2018.10.075] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
This work aimed at producing fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis at 25 MPa in a semi-continuous mode. The influences of temperature (180 °C; 220 °C; 260 °C) and liquid/solid ratio (7.5 g water/g husks; 15 g water/g husks) on reducing sugar yield (YRS), efficiency (E), kinetic profiles (0-15 min), composition of sugars, inhibitors and organic acids, and physicochemical characteristics of the remaining solid material were evaluated and discussed in the work. The highest YRS (18.0 ± 2.9 g/100 g husks) and E (39.5 ± 1.7 g sugars/100 g carbohydrates) were obtained at 220 °C and 7.5 gwater/g husks. In such condition, the hydrolyzed solutions presented cellobiose (18.0 g/L), xylose 17.7 g/L), arabinose (3.6 g/L), glucose (1.5 g/L), and levulinic acid (0.7 g/L). The fermentable sugars and bioproducts can be applied in several industrial fields, especially for the production of bioethanol and other higher value-added chemical compounds.
Collapse
Affiliation(s)
- Ederson R Abaide
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), 1040, Sete de Setembro St, Center DC, Cachoeira do Sul - RS 96508-010, Brazil
| | - Gustavo Ugalde
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Marco Di Luccio
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900, Brazil
| | - Regina de F P M Moreira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900, Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), 1040, Sete de Setembro St, Center DC, Cachoeira do Sul - RS 96508-010, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), 1040, Sete de Setembro St, Center DC, Cachoeira do Sul - RS 96508-010, Brazil.
| | - Marcio A Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
15
|
Luft L, Confortin TC, Todero I, Ugalde G, Zabot GL, Mazutti MA. Transformation of residual starch from brewer’s spent grain into fermentable sugars using supercritical technology. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Carmona PAO, Garcia LC, Ribeiro JADA, Valadares LF, Marçal ADF, de França LF, Mendonça S. Effect of Solids Content and Spray-Drying Operating Conditions on the Carotenoids Microencapsulation from Pressed Palm Fiber Oil Extracted with Supercritical CO2. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2132-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Transesterification of palm pressed-fibers (Elaeis guineensis Jacq.) oil by supercritical fluid carbon dioxide with entrainer ethanol. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Andérez-Fernández M, Pérez E, Martín A, Bermejo M. Hydrothermal CO 2 reduction using biomass derivatives as reductants. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Knez Ž, Hrnčič MK, Čolnik M, Škerget M. Chemicals and value added compounds from biomass using sub- and supercritical water. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Abstract
Hydrothermal conversion of biomass is a promising technology for the conversion of biomass into biofuels and biobased chemicals. This chapter is focused on the waste biomass conversion for production of biofuels and chemicals by applying sub- and supercritical fluids. One of the biggest disadvantages in biomass conversion by SCF is the extremely high energy requirement for heating the media above the water critical point (374 °C, 221 bar). The idea behind the recent research is to reduce the operating temperature and energy requirements by processing biomass with water at much higher pressures. The importance of knowledge on behavior of multicomponent systems at elevated pressures and temperatures is underlined. Methods, developed by the authors of this chapter for determination of thermodynamic and transport properties for multicomponent systems of different solid compounds and supercritical fluid under extreme conditions are described. Future perspective of hydrothermal technology as a tool to obtain advanced materials and the possible scope for future research is also discussed.
Collapse
|
21
|
Antonio AL, Pereira E, Pinela J, Heleno S, Pereira C, Ferreira IC. Determination of Antioxidant Compounds in Foodstuff. Food Saf (Tokyo) 2016. [DOI: 10.1002/9781119160588.ch6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
Advances in Eco-Friendly Pre-Treatment Methods and Utilization of Agro-Based Lignocelluloses. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
23
|
Dal Prá V, Soares JF, Monego DL, Vendruscolo RG, Freire DMG, Alexandri M, Koutinas A, Wagner R, Mazutti MA, da Rosa MB. Extraction of bioactive compounds from palm (Elaeis guineensis) pressed fiber using different compressed fluids. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Sub- and supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: A review. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2015.11.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Lachos-Perez D, Martinez-Jimenez F, Rezende C, Tompsett G, Timko M, Forster-Carneiro T. Subcritical water hydrolysis of sugarcane bagasse: An approach on solid residues characterization. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.10.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Yan LG, He L, Xi J. High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds—A review. Crit Rev Food Sci Nutr 2015; 57:2877-2888. [DOI: 10.1080/10408398.2015.1077193] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Liang-Gong Yan
- College of Chemical Engineering, Sichuan University, Chengdu, China
| | - Lang He
- College of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jun Xi
- College of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Duba KS, Fiori L. Extraction of bioactives from food processing residues using techniques performed at high pressures. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Pressurized liquid extraction and low-pressure solvent extraction of carotenoids from pressed palm fiber: Experimental and economical evaluation. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2015.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Subcritical Water Extraction of Bioactive Compounds from Plants and Algae: Applications in Pharmaceutical and Food Ingredients. FOOD ENGINEERING REVIEWS 2015. [DOI: 10.1007/s12393-015-9119-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
|
31
|
Moraes MN, Zabot GL, Meireles MAA. Extraction of tocotrienols from annatto seeds by a pseudo continuously operated SFE process integrated with low-pressure solvent extraction for bixin production. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2014.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
|