1
|
Lama-Muñoz A, Contreras MDM. Extraction Systems and Analytical Techniques for Food Phenolic Compounds: A Review. Foods 2022; 11:3671. [PMID: 36429261 PMCID: PMC9689915 DOI: 10.3390/foods11223671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Phenolic compounds are highly valuable food components due to their potential utilisation as natural bioactive and antioxidant molecules for the food, cosmetic, chemical, and pharmaceutical industries. For this purpose, the development and optimisation of efficient extraction methods is crucial to obtain phenolic-rich extracts and, for some applications, free of interfering compounds. It should be accompanied with robust analytical tools that enable the standardisation of phenolic-rich extracts for industrial applications. New methodologies based on both novel extraction and/or analysis are also implemented to characterise and elucidate novel chemical structures and to face safety, pharmacology, and toxicity issues related to phenolic compounds at the molecular level. Moreover, in combination with multivariate analysis, the extraction and analysis of phenolic compounds offer tools for plant chemotyping, food traceability and marker selection in omics studies. Therefore, this study reviews extraction techniques applied to recover phenolic compounds from foods and agri-food by-products, including liquid-liquid extraction, solid-liquid extraction assisted by intensification technologies, solid-phase extraction, and combined methods. It also provides an overview of the characterisation techniques, including UV-Vis, infra-red, nuclear magnetic resonance, mass spectrometry and others used in minor applications such as Raman spectroscopy and ion mobility spectrometry, coupled or not to chromatography. Overall, a wide range of methodologies are now available, which can be applied individually and combined to provide complementary results in the roadmap around the study of phenolic compounds.
Collapse
Affiliation(s)
- Antonio Lama-Muñoz
- Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, s/n, 23071 Jaén, Spain
| |
Collapse
|
2
|
Yeasmen N, Orsat V. Green extraction and characterization of leaves phenolic compounds: a comprehensive review. Crit Rev Food Sci Nutr 2021:1-39. [PMID: 34904469 DOI: 10.1080/10408398.2021.2013771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although containing significant levels of phenolic compounds (PCs), leaves biomass coming from either forest, agriculture, or the processing industry are considered as waste, which upon disposal, brings in environmental issues. As the demand for PCs in functional food, pharmaceutical, nutraceutical and cosmetic sector is escalating day by day, recovering PCs from leaves biomass would solve both the waste disposal problem while ensuring a valuable "societal health" ingredient thus highly contributing to a sustainable food chain from both economic and environmental perspectives. In our search for environmentally benign, efficient, and cost-cutting techniques for the extraction of PCs, green extraction (GE) is presenting itself as the best option in modern industrial processing. This current review aims to highlight the recent progress, constraints, legislative framework, and future directions in GE and characterization of PCs from leaves, concentrating particularly on five plant species (tea, moringa, stevia, sea buckthorn, and pistacia) based on the screened journals that precisely showed improvements in extraction efficiency along with maintaining extract quality. This overview will serve researchers and relevant industries engaged in the development of suitable techniques for the extraction of PCs with increasing yield.
Collapse
Affiliation(s)
- Nushrat Yeasmen
- Department of Bioresource Engineering, McGill University, Quebec, Canada.,Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Valérie Orsat
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| |
Collapse
|
3
|
Şen Arslan H, Cabi A, Yerlikaya S, Sariçoban C. Antibacterial and antioxidant activity of peach leaf extract prepared by air and microwave drying. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hülya Şen Arslan
- Department of Food Engineering Karamanoğlu Mehmetbey University Karaman Turkey
| | - Alime Cabi
- Department of Food Engineering Selçuk University Konya Turkey
| | - Sabire Yerlikaya
- Department of Food Engineering Karamanoğlu Mehmetbey University Karaman Turkey
| | | |
Collapse
|
4
|
Leyva-Jiménez FJ, Lozano-Sánchez J, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Arráez-Román D, Segura-Carretero A. Optimized Extraction of Phenylpropanoids and Flavonoids from Lemon Verbena Leaves by Supercritical Fluid System Using Response Surface Methodology. Foods 2020; 9:E931. [PMID: 32674478 PMCID: PMC7404463 DOI: 10.3390/foods9070931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/15/2023] Open
Abstract
The aim of this work was to optimize the recovery of phenolic compounds from Lippia citriodora using supercritical fluid extraction (SFE). To achieve this goal, response surface methodology based on a 23 central composite design was used to evaluate the effects of the following experimental factors: temperature, pressure and co-solvent percentage. The effects of these variables on the extraction yield and total polar compound contents were evaluated. With respect to the phytochemical composition, an exhaustive individual phenolic compound quantitation was carried out by HPLC-ESI-TOF-MS to analyze the functional ingredients produced by this system design. To the best of our knowledge, this is the first time that a standardized supercritical fluid process has been developed to obtain functional ingredients based on phenolic compounds from L. citriodora in which the individual compound concentration was monitored over the different SFE conditions. The results enabled the establishment of the optimal technical parameters for developing functional ingredients and revealed the main factors that should be included in the extraction process control. This functional food ingredient design could be used as a control system to be applied in nutraceutical and functional food production industry.
Collapse
Affiliation(s)
- Francisco Javier Leyva-Jiménez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
| | - Jesús Lozano-Sánchez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
- Department of Food Science and Nutrition, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Álvaro Fernández-Ochoa
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| | - María de la Luz Cádiz-Gurrea
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| | - David Arráez-Román
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| | - Antonio Segura-Carretero
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| |
Collapse
|
5
|
Koyu H, Kazan A, Nalbantsoy A, Yalcin HT, Yesil-Celiktas O. Cytotoxic, antimicrobial and nitric oxide inhibitory activities of supercritical carbon dioxide extracted Prunus persica leaves. Mol Biol Rep 2019; 47:569-581. [PMID: 31686285 DOI: 10.1007/s11033-019-05163-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022]
Abstract
Different parts of Prunus persica as fruits, flowers, leaves and kernels have been consumed with dietary and therapeutic purposes traditionally. During fruit production, remarkable amount of leaves which can hold important bioactive groups as phenolics, have been left unutilized. The aim of this study was to investigate cytotoxic, antimicrobial and nitric oxide inhibitory activities of supercritical carbondioxide extracts of Prunus persica leaves. Among studied cell lines, supercritical carbon dioxide extract which was processed at 150 bar, 60 °C, and 6% co-solvent ethanol, exhibited remarkable cytotoxic activity against HeLa, MPanc-96 and MCF-7 cell lines with IC50 values of 12.22 µg/ml, 28.17 µg/ml and 35.51 µg/ml respectively, whereas IC50 value of conventional solvent extract was above 50 µg/ml. Minimum inhibitory concentration values determined for antibacterial and antifungal activities against Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Enterococcus faecium and Candida albicans were found as 62.50 µg/ml. Strong nitric oxide inhibition was achieved with IC50 of 9.30 µg/ml. The promising results revealed that Prunus persica leaves may have remarkable potential as supplement both for drug and food industries. This study is the first report revealing cytotoxic, antimicrobial and nitric oxide inhibitory activity of supercritical carbon dioxide extract of Prunus persica leaves.
Collapse
Affiliation(s)
- Halil Koyu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Turkey.
| | - Aslihan Kazan
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | | | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
- Biomedical Technologies Graduate Programme, Graduate School of Natural and Applied Sciences, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
6
|
Kim B, Kim KW, Lee S, Jo C, Lee K, Ham I, Choi HY. Endothelium-Dependent Vasorelaxant Effect of Prunus Persica Branch on Isolated Rat Thoracic Aorta. Nutrients 2019; 11:nu11081816. [PMID: 31390819 PMCID: PMC6723590 DOI: 10.3390/nu11081816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 11/23/2022] Open
Abstract
Peach (Prunus persica (L.) Batsch) is a popular fruit consumed by people worldwide, owing to its pleasant flavor and high mineral nutrient content. A few plants from the genus Prunus, such as Prunus yedoensis, Prunus cerasus, and Prunus serotina have shown vasorelaxant and vasodilatory effects, to date, no study has investigated the vasorelaxation effects of the P. persica branch extract (PPE). The vasorelaxant effect of PPE was endothelium-dependent, and it was related to the NO-sGC-cGMP, vascular prostacyclin, and muscarinic receptor transduction pathway. K+ channels, such as the BKCa, KV, and KATP channels, were partially associated with PPE-induced vasorelaxation. PPE was effective in relaxing serotonin (5-HT)- or angiotensin II-induced contraction; furthermore, PPE attenuated Ca2+-induced vasoconstriction by IP3 receptors in the SR membrane, but its vasorelaxant effect was not associated with the influx of extracellular Ca2+ via receptor-operative Ca2+ channels or voltage-dependent Ca2+ channels. Recognizing the rising use of functional foods for hypertension treatment, our findings imply that PPE may be a natural antihypertensive agent.
Collapse
Affiliation(s)
- Bumjung Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Kwang-Woo Kim
- Department of Herbal Pharmacology, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Somin Lee
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Cheolmin Jo
- Department of Herbal Pharmacology, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Inhye Ham
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Ho-Young Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
7
|
Sevimli-Gur C, Yesil-Celiktas O. Cytotoxicity screening of supercritical fluid extracted seaweeds and phenylpropanoids. Mol Biol Rep 2019; 46:3691-3699. [PMID: 31004301 DOI: 10.1007/s11033-019-04812-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
Detached leaves of Posidonia oceanica and Zostera marina creating nuisance at the shores were extracted by means of supercritical CO2 enriched with a co-solvent, compared with that of soxhlet extraction. The extracts and their active compounds which are phenylpropanoids (chicoric, p-coumaric, rosmarinic, benzoic, ferulic and caffeic acids) were screened for cytotoxicity in cancer cell lines including human breast adenocarcinoma (MCF-7, MDA-MB-231, SK-BR-3), human colon adenocarcinoma (HT-29), human cervix adenocarcinoma (HeLa), human prostate adenocarcinoma (PC-3), Mus musculus neuroblastoma (Neuro 2A) cell lines and African green monkey kidney (VERO) as healthy cell line. Supercritical CO2 extracts proved to be more active than soxhlet counterparts. Particularly, Zostera marina extract obtained by supercritical CO2 at 250 bar, 80 °C, 20% co-solvent and a total flow rate of 15 g/min revealed the best IC50 values of 25, 20, 8 μg/ml in neuroblastoma, colon and cervix cancer cell lines. Among the major compounds tested, p-coumaric acid exhibited the highest cytotoxic against colon and cervix cell lines by with IC50 values of 25, 11 μg/ml. As for the effects on healthy cells, the extract was not cytotoxic indicating a selective cytotoxicity. Obtained supercritical CO2 extracts can be utilized as a supplement for preventive purposes.
Collapse
Affiliation(s)
- Canan Sevimli-Gur
- Department of Biology, Biotechnology Discipline, Science and Art Faculty, Kocaeli University, 41380, Izmit, Kocaeli, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
8
|
Alpak I, Askin Uzel R, Sargin S, Yesil-Celiktas O. Supercritical CO2 extraction of an immunosuppressant produced by solid-state fermentation. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Supercritical CO2 extraction of bioactive compounds from radish leaves: Yield, antioxidant capacity and cytotoxicity. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Koyu H, Kazan A, Demir S, Haznedaroglu MZ, Yesil-Celiktas O. Optimization of microwave assisted extraction of Morus nigra L. fruits maximizing tyrosinase inhibitory activity with isolation of bioactive constituents. Food Chem 2018; 248:183-191. [DOI: 10.1016/j.foodchem.2017.12.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/28/2017] [Accepted: 12/13/2017] [Indexed: 11/26/2022]
|
11
|
Pereira SV, Reis RA, Garbuio DC, Freitas LAPD. Dynamic maceration of Matricaria chamomilla inflorescences: optimal conditions for flavonoids and antioxidant activity. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Yildiz-Ozturk E, Yesil-Celiktas O. Supercritical CO 2 extraction of hydrocarbons from Botryococcus braunii as a promising bioresource. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Koyu H, Kazan A, Ozturk TK, Yesil-Celiktas O, Haznedaroglu MZ. Optimizing subcritical water extraction of Morus nigra L. fruits for maximization of tyrosinase inhibitory activity. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Valorisation of softwood bark through extraction of utilizable chemicals. A review. Biotechnol Adv 2017; 35:726-750. [PMID: 28739505 DOI: 10.1016/j.biotechadv.2017.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 01/31/2023]
Abstract
Softwood bark is an important source for producing chemicals and materials as well as bioenergy. Extraction is regarded as a key technology for obtaining chemicals in general, and valorizing bark as a source of such chemicals in particular. In this paper, properties of 237 compounds identified in various studies dealing with extraction of softwood bark were described. Finally, some challenges and perspectives on the production of chemicals from bark are discussed.
Collapse
|
15
|
Ahmadian-Kouchaksaraie Z, Niazmand R. Supercritical carbon dioxide extraction of antioxidants from Crocus sativus petals of saffron industry residues: Optimization using response surface methodology. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.11.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li HB. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int J Mol Sci 2017; 18:E96. [PMID: 28067795 PMCID: PMC5297730 DOI: 10.3390/ijms18010096] [Citation(s) in RCA: 489] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 01/17/2023] Open
Abstract
Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additives. The present paper provides comprehensive information on the green extraction technologies of natural antioxidants, assessment of antioxidant activity at chemical and cellular based levels and their main resources from food and medicinal plants.
Collapse
Affiliation(s)
- Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.01.018] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Costa AR, Freitas LA, Mendiola J, Ibáñez E. Copaifera langsdorffii supercritical fluid extraction: Chemical and functional characterization by LC/MS and in vitro assays. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|