1
|
Zheng O, Cao X, Teng Y, Sun Q, Liu S. Inactivation effect and kinetics of cathepsin L from white shrimp ( Litopenaeus vannamei) by dense phase carbon dioxide. Curr Res Food Sci 2024; 9:100873. [PMID: 39435452 PMCID: PMC11491679 DOI: 10.1016/j.crfs.2024.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
The effects of dense phase carbon dioxide (DPCD) pressure and temperature on the activity of cathepsin L in white shrimp (Litopenaeus vannamei) were studied. Meanwhile the effects of DPCD and heat treatment on the activity of cathepsin L were compared. The results of inactivation kinetics showed that under the same treatment temperature, the inactivation effect of DPCD on cathepsin L increased gradually with the increase of pressure and time. The effect of DPCD pressure on the activity of cathepsin L accorded with the first-order kinetic model. Under the same treatment pressure, with the increase of temperature, the inactivation effect of cathepsin L was significant at the initial stage of DPCD treatment (rapid inactivation period), and decreased with the extension of time (stable inactivation period). The effect of DPCD treatment temperature on cathepsin L activity accorded with the first-order kinetic model at 35 °C, and two-stage kinetic model at 40-60 °C. The difference of relative enzyme activity between the two treatments showed that the dependence of DPCD on temperature was greater than that of heat. E a, F and E a, S of DPCD were higher than that of heat, which indicated that cathepsin L was more easily inactivated under DPCD treatment.
Collapse
Affiliation(s)
- Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| | - Xiaojie Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| | | | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
2
|
Mikšovsky P, Kornpointner C, Parandeh Z, Goessinger M, Bica-Schröder K, Halbwirth H. Enzyme-Assisted Supercritical Fluid Extraction of Flavonoids from Apple Pomace (Malus×domestica). CHEMSUSCHEM 2024; 17:e202301094. [PMID: 38084785 DOI: 10.1002/cssc.202301094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Indexed: 01/23/2024]
Abstract
Herein an enzyme-assisted supercritical fluid extraction (EA-SFE) was developed using the enzyme mix snailase to obtain flavonols and dihydrochalcones, subgroups of flavonoids, from globally abundant waste product apple pomace. Snailase, a commercially available mix of 20-30 enzymes, was successfully used to remove the sugar moieties from quercetin glycosides, kaempferol glycosides, phloridzin and 3-hydroxyphloridzin. The resulting flavonoid aglycones quercetin, kaempferol, phloretin and 3-hydroxyphloretin were extracted using supercritical carbon dioxide (scCO2) and minimum amounts of polar cosolvents. A sequential process of enzymatic hydrolysis and supercritical fluid extraction was developed, and the influence of the amount of snailase, pre-treatment of apple pomace, the time for enzymatic hydrolysis, the amount and type of cosolvent and the time for extraction, was studied. This revealed that even small amounts of snailase (0.25 %) provide a successful cleavage of sugar moieties up to 96 % after 2 h of enzymatic hydrolysis followed by supercritical fluid extraction with small amounts of methanol as cosolvent, leading up to 90 % of the total extraction yields after 1 h extraction time. Ultimately, a simultaneous process of EA-SFE successfully demonstrates the potential of snailase in scalable scCO2 extraction processes for dry and wet apple pomace with satisfactory enzyme activity, even under pressurized conditions.
Collapse
Affiliation(s)
- Philipp Mikšovsky
- TU Wien, Institute of Applied Synthetic Chemistry (E163), Getreidemarkt 9, 1060, Vienna, Austria
| | - Christoph Kornpointner
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering (E166), Getreidemarkt 9, 1060, Vienna, Austria
| | - Zahra Parandeh
- TU Wien, Institute of Applied Synthetic Chemistry (E163), Getreidemarkt 9, 1060, Vienna, Austria
| | - Manfred Goessinger
- Department of Fruit Processing, Federal College and Institute for Viticulture and Pomology, Wiener Strasse 74, 3400, Klosterneuburg, Austria
| | - Katharina Bica-Schröder
- TU Wien, Institute of Applied Synthetic Chemistry (E163), Getreidemarkt 9, 1060, Vienna, Austria
| | - Heidi Halbwirth
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering (E166), Getreidemarkt 9, 1060, Vienna, Austria
| |
Collapse
|
3
|
Badgujar KC, Badgujar JK, Bhanage BM. Improved biocatalytic activity of steapsin lipase in supercritical carbon dioxide medium for the synthesis of benzyl butyrate: A commercially important flavour compound. J Biotechnol 2024; 384:55-62. [PMID: 38401645 DOI: 10.1016/j.jbiotec.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Enzymatic synthesis of flavours, fragrances and food additives compounds have great demand and market value. Benzyl butyrate is commercially important flavour and food additive compound having global use around 100 metric tons/year and widely used in various industrial sectors. However, industrial synthesis of food additive benzyl butyrate is carried out by conventional chemical process which demands for the green biobased sustainable synthetic process. The present work reports steapsin catalyzed synthesis of benzyl butyrate for the first time in supercritical carbon dioxide (Sc-CO2) reaction medium. All reaction variables are optimized in details to obtain competent conversion of 99% in Sc-CO2 reaction medium. The developed steapsin catalyzed synthesis in Sc-CO2 medium offered almost four-fold higher conversion to benzyl butyrate than organic (conventional) solvent. The steapsin biocatalyst was effectually recycled up to five reaction cycles in Sc-CO2 medium. Moreover, the developed steapsin catalyzed protocol in Sc-CO2 medium was extended to synthesize different ten industrially significant flavour fragrance compounds that offers 99% conversion and three to five-folds higher conversion than organic medium. Thus, the present steapsin catalyzed protocol offered improved synthesis of various commercially significant flavour compounds in Sc-CO2. medium.
Collapse
Affiliation(s)
- Kirtikumar C Badgujar
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Jagruti K Badgujar
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Bhalchandra M Bhanage
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
4
|
Kumar P, Kermanshahi-pour A, Brar SK, Xu CC, He QS, Evans S, Rainey JK. Enzymatic digestibility of lignocellulosic wood biomass: Effect of enzyme treatment in supercritical carbon dioxide and biomass pretreatment. Heliyon 2023; 9:e21811. [PMID: 38027598 PMCID: PMC10660486 DOI: 10.1016/j.heliyon.2023.e21811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023] Open
Abstract
Energy and resource intensive mechanical and chemical pretreatment along with the use of hazardous chemicals are major bottlenecks in widespread lignocellulosic biomass utilization. Herein, the study investigated different pretreatment methods on spruce wood namely supercritical CO2 (scCO2) pretreatment, ultrasound-assisted alkaline pretreatment, and acetosolv pulping-alkaline hydrogen peroxide bleaching, to enhance the enzymatic digestibility of wood using optimized enzyme cocktail. Also, the effect of scCO2 pretreatment on enzyme cocktail was investigated after optimizing the concentration and temperature of cellulolytic enzymes. The impact of scCO2 and ultrasound-assisted alkaline pretreatments of wood were insignificant for the enzymatic digestibility, and acetosolv pulping-alkaline hydrogen peroxide bleaching was the most effective pretreatment that showed the release of total reducing sugar yield (TRS) of ∼95.0 wt% of total hydrolyzable sugars (THS) in enzymatic hydrolysis. The optimized enzyme cocktail showed higher yield than individual enzymes with degree of synergism 1.34 among the enzymes, and scCO2 pretreatment of cocktail for 0.5-1.0 h at 10.0-22.0 MPa and 38.0-54.0 °C had insignificant effect on the enzyme's primary and global secondary structure of cocktail and its activity.
Collapse
Affiliation(s)
- Pawan Kumar
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia B3 J 1Z1, Canada
| | - Azadeh Kermanshahi-pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia B3 J 1Z1, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Chunbao Charles Xu
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | - Sara Evans
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Biochemistry & Molecular Biology and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
5
|
Kumar P, Kermanshahi-Pour A, Brar SK, He QS, Rainey JK. Influence of elevated pressure and pressurized fluids on microenvironment and activity of enzymes. Biotechnol Adv 2023; 68:108219. [PMID: 37488056 DOI: 10.1016/j.biotechadv.2023.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Enzymes have great potential in bioprocess engineering due to their green and mild reaction conditions. However, there are challenges to their application, such as enzyme extraction and purification costs, enzyme recovery, and long reaction time. Enzymatic reaction rate enhancement and enzyme immobilization have the potential to overcome some of these challenges. Application of high pressure (e.g., hydrostatic pressure, supercritical carbon dioxide) has been shown to increase the activity of some enzymes, such as lipases and cellulases. Under high pressure, enzymes undergo multiple alterations simultaneously. High pressure reduces the bond lengths of molecules of reaction components and causes a reduction in the activation volume of enzyme-substrate complex. Supercritical CO2 interacts with enzyme molecules, catalyzes structural changes, and removes some water molecules from the enzyme's hydration layer. Interaction of scCO2 with the enzyme also leads to an overall change in secondary structure content. In the extreme, such changes may lead to enzyme denaturation, but enzyme activation and stabilization have also been observed. Immobilization of enzymes onto silica and zeolite-based supports has been shown to further stabilize the enzyme and provide resistance towards perturbation under subjection to high pressure and scCO2.
Collapse
Affiliation(s)
- Pawan Kumar
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada.
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Department of Chemistry, and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
6
|
Moreira RC, de Melo RPF, Martínez J, Marostica Junior MR, Pastore GM, Zorn H, Bicas JL. Supercritical CO 2 as a Valuable Tool for Aroma Technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289784 DOI: 10.1021/acs.jafc.3c01023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review addresses the possibilities of using supercritical carbon dioxide (SC-CO2) in the flavor industry in extraction and fractionation processes and its use as a reaction medium to generate aroma esters. The advantages and disadvantages are presented, comparing SC-CO2 processing with traditional methods. The most distinguishable features of SC-CO2 include mild reaction conditions, time savings, fewer toxicity concerns, higher sustainability, and the possibility of modulating solvent selectivity according to the process conditions (such as pressure and temperature). Thus, this review indicates the potential of using SC-CO2 to obtain a high selectivity of compounds that can be applied in aroma technology and related fields.
Collapse
Affiliation(s)
- Rafael Chelala Moreira
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition. Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Rayanne Priscilla França de Melo
- University of Campinas, School of Food Engineering, Department of Food Engineering and Technology. Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Julian Martínez
- University of Campinas, School of Food Engineering, Department of Food Engineering and Technology. Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Mario Roberto Marostica Junior
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition. Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Glaucia Maria Pastore
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition. Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring, 17, 35392 Giessen, Germany
| | - Juliano Lemos Bicas
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition. Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
7
|
Feiten MC, Morigi I, Di Luccio M, Oliveira JV. Activity and stability of lipase from Candida Antarctica after treatment in pressurized fluids. Biotechnol Lett 2023; 45:287-298. [PMID: 36592260 DOI: 10.1007/s10529-022-03335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 01/03/2023]
Abstract
Lipase B from Candida antarctica (CalB) is one of the biocatalysts most used in organic synthesis due to its ability to act in several medium, wide substrate specificity and enantioselectivity, tolerance to non-aqueous environment, and resistance to thermal deactivation. Thus, the objective of this work was to treat CalB in supercritical carbon dioxide (SC-CO2) and liquefied petroleum gas (LPG), and measure its activity before and after high-pressure treatment. Residual specific hydrolytic activities of 132% and 142% were observed when CalB was exposed to SC-CO2 at 35 ℃, 75 bar and 1 h and to LPG at 65 ℃, 30 bar and 1 h, respectively. Residual activity of the enzyme treated at high pressure was still above 100% until the 20th day of storage at low temperatures. There was no difference on the residual activity loss of CalB treated with LPG and stored at different temperatures over time. Greater difference was observed between CalB treated with CO2 and flash-frozen in liquid nitrogen (- 196 ℃) followed by storage in freezer (- 10 ℃) and CalB stored in freezer at - 10 ℃. Such findings encourage deeper studies on CalB as well as other enzymes behavior under different types of pressurized fluids aiming at industrial application.
Collapse
Affiliation(s)
- Mirian Cristina Feiten
- Department of Technology, State University of Maringá (UEM), Angelo Moreira da Fonseca Ave, Umuarama, Paraná, 87506-370, Brazil.
| | - Iasmin Morigi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Technology Center/C.P. 476, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Marco Di Luccio
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Technology Center/C.P. 476, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - José Vladimir Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Technology Center/C.P. 476, Florianópolis, Santa Catarina, 88040-900, Brazil
| |
Collapse
|
8
|
Combining the mechanical ball milling of the carbohydrate and the use of low solvent reaction media for the synthesis of fructose fatty acid esters by immobilized lipases. N Biotechnol 2022; 70:93-101. [DOI: 10.1016/j.nbt.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/10/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
|
9
|
Bhardwaj N, Kumar B, Agrawal K, Verma P. Current perspective on production and applications of microbial cellulases: a review. BIORESOUR BIOPROCESS 2021; 8:95. [PMID: 38650192 PMCID: PMC10992179 DOI: 10.1186/s40643-021-00447-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
The potential of cellulolytic enzymes has been widely studied and explored for bioconversion processes and plays a key role in various industrial applications. Cellulase, a key enzyme for cellulose-rich waste feedstock-based biorefinery, has increasing demand in various industries, e.g., paper and pulp, juice clarification, etc. Also, there has been constant progress in developing new strategies to enhance its production, such as the application of waste feedstock as the substrate for the production of individual or enzyme cocktails, process parameters control, and genetic manipulations for enzyme production with enhanced yield, efficiency, and specificity. Further, an insight into immobilization techniques has also been presented for improved reusability of cellulase, a critical factor that controls the cost of the enzyme at an industrial scale. In addition, the review also gives an insight into the status of the significant application of cellulase in the industrial sector, with its techno-economic analysis for future applications. The present review gives a complete overview of current perspectives on the production of microbial cellulases as a promising tool to develop a sustainable and greener concept for industrial applications.
Collapse
Affiliation(s)
- Nisha Bhardwaj
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Bikash Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
10
|
Melgosa R, Sanz MT, Beltrán S. Supercritical CO2 processing of omega-3 polyunsaturated fatty acids – Towards a biorefinery for fish waste valorization. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Performing under pressure: esterification activity of dry fermented solids in subcritical and supercritical CO 2. Biotechnol Lett 2020; 43:503-509. [PMID: 33051809 DOI: 10.1007/s10529-020-03029-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Lipases are often used in immobilized form, but commercial immobilized lipases are costly. An alternative is to produce lipases in solid-state fermentation, dry the solids and then use the "dry fermented solids" (DFS) directly. We produced DFS by growing Burkholderia contaminans on a mixture of sugarcane bagasse and sunflower seed meal and used the DFS to esterify oleic acid with ethanol in subcritical and supercritical CO2 at 40 °C. RESULTS Compared to a control without CO2 at atmospheric pressure, subcritical CO2 at 30 bar improved esterification activity 1.2-fold. Higher pressures, including supercritical pressures up to 150 bar, reduced activity to less than 80% of the control. At 30 bar, the esterification activity was improved a further 1.8-fold with the addition of 9% water (i.e. 9 g water per 100 g oleic acid) to the reaction medium. CONCLUSION A subcritical CO2 atmosphere, with the addition of a small amount of water, improved the esterification activity of DFS containing lipases of Burkholderia contaminans.
Collapse
|
12
|
Hojnik Podrepšek G, Knez Ž, Leitgeb M. Activation of cellulase cross-linked enzyme aggregates (CLEAs) in scCO2. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Supercritical CO2 assisted synthesis and concentration of monoacylglycerides rich in omega-3 polyunsaturated fatty acids. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Insights into the effect of imidazolium-based ionic liquids on chemical structure and hydrolytic activity of microbial lipase. Bioprocess Biosyst Eng 2019; 42:1235-1246. [DOI: 10.1007/s00449-019-02121-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/03/2019] [Indexed: 01/04/2023]
|
15
|
Baião Dias AL, da Cunha GN, dos Santos P, Meireles MAA, Martínez J. Fusel oil: Water adsorption and enzymatic synthesis of acetate esters in supercritical CO2. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Illera A, Sanz M, Trigueros E, Beltrán S, Melgosa R. Effect of high pressure carbon dioxide on tomato juice: Inactivation kinetics of pectin methylesterase and polygalacturonase and determination of other quality parameters. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Prando LT, de Souza Melchiors M, Torres TMS, de Oliveira VA, Veneral JG, Castiani MA, de Oliveira D, Vladimir de Oliveira J, Di Luccio M. Effect of high pressure and magnetic field treatments on stability of Candida antarctica lipase B (CALB) and lysozyme from chicken egg. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
18
|
Omar AM, Tengku Norsalwani T, Asmah M, Badrulhisham Z, Easa AM, Omar FM, Hossain MS, Zuknik M, Nik Norulaini N. Implementation of the supercritical carbon dioxide technology in oil palm fresh fruits bunch sterilization: A review. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Abdul Manan FM, Attan N, Widodo N, Aboul-Enein HY, Wahab RA. Rhizomucor miehei lipase immobilized on reinforced chitosan–chitin nanowhiskers support for synthesis of eugenyl benzoate. Prep Biochem Biotechnol 2018; 48:92-102. [DOI: 10.1080/10826068.2017.1405021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fatin Myra Abdul Manan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nursyafreena Attan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nashi Widodo
- Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Malaysia
| |
Collapse
|
20
|
Supercritical CO2 technology applied to the production of flavor ester compounds through lipase-catalyzed reaction: A review. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2017.11.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Chang P, Zhang Z, Tang S. Lipase-catalyzed Synthesis of Sugar Ester in Mixed Biphasic System of Ionic Liquids and Supercritical Carbon Dioxide. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Panpan Chang
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering & Technology; Tianjin University; Tianjin 300350 China
| | - Zhixia Zhang
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering & Technology; Tianjin University; Tianjin 300350 China
| | - Shaokun Tang
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering & Technology; Tianjin University; Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin University; Tianjin 300350 China
| |
Collapse
|
22
|
de Souza Melchiors M, Veneral JG, Furigo Junior A, de Oliveira JV, Di Luccio M, Prando LT, Terenzi H, de Oliveira D. Effect of compressed fluids on the enzymatic activity and structure of lysozyme. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
dos Santos P, Meireles MAA, Martínez J. Production of isoamyl acetate by enzymatic reactions in batch and packed bed reactors with supercritical CO 2. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Prando LT, de Lima PR, Rezzadori K, Oliveira JVD, Di Luccio M. Characterization of the Performance and Catalytic Activity of Lysozyme from Chicken Egg Submitted to Permanent Magnetic Field. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- L. Tiggemann Prando
- Department of Chemical and
Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - P. Rodrigues de Lima
- Department of Chemical and
Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - K. Rezzadori
- Department of Chemical and
Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - J. Vladimir de Oliveira
- Department of Chemical and
Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - M. Di Luccio
- Department of Chemical and
Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
25
|
Shi R, Li H, Wu E, Xiong L, Lv R, Guo R, Liu Y, Xu G, Kang Z, Liu J. Simultaneous enzymatic activity modulation and rapid determination of enzyme kinetics by highly crystalline graphite dots. NANOSCALE 2017; 9:8410-8417. [PMID: 28604895 DOI: 10.1039/c7nr02285a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The research field in enzyme-based biotechnology urgently requires the discovery of new materials and methods with high-performance. Here we report that highly crystalline graphite dots (GDs) can modulate enzyme activities, and simultaneously allow for real-time measurements on enzyme kinetics in combination with mass spectrometry (MS). A well-defined modulation of lipolytic activities from inhibition to enhancement can be realized by selectively coupling lipase enzymes with GDs containing specific functional groups on the surface. As a unique feature of our approach, GDs in the enzyme reaction can simultaneously serve as a versatile matrix for rapid and sensitive detection of the residual enzyme substrate, the intermediate or final product of lipolytic digestion using MS technology. Therefore, enzyme kinetic data can be collected in a real-time, high-throughput format. This work provides a new platform for enzymological research in hybrid bio-catalytic processes with advanced nanotechnology.
Collapse
Affiliation(s)
- Rui Shi
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Supercritical carbon dioxide as solvent in the lipase-catalyzed ethanolysis of fish oil: Kinetic study. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2016.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Effect of high pressure carbon dioxide processing on pectin methylesterase activity and other orange juice properties. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.07.069] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Feiten MC, Di Luccio M, Santos KF, de Oliveira D, Oliveira JV. X-Ray Crystallography as a Tool to Determine Three-Dimensional Structures of Commercial Enzymes Subjected to Treatment in Pressurized Fluids. Appl Biochem Biotechnol 2016; 182:429-451. [PMID: 27900555 DOI: 10.1007/s12010-016-2336-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
The study of enzyme function often involves a multi-disciplinary approach. Several techniques are documented in the literature towards determining secondary and tertiary structures of enzymes, and X-ray crystallography is the most explored technique for obtaining three-dimensional structures of proteins. Knowledge of three-dimensional structures is essential to understand reaction mechanisms at the atomic level. Additionally, structures can be used to modulate or improve functional activity of enzymes by the production of small molecules that act as substrates/cofactors or by engineering selected mutants with enhanced biological activity. This paper presentes a short overview on how to streamline sample preparation for crystallographic studies of treated enzymes. We additionally revise recent developments on the effects of pressurized fluid treatment on activity and stability of commercial enzymes. Future directions and perspectives on the the role of crystallography as a tool to access the molecular mechanisms underlying enzymatic activity modulation upon treatment in pressurized fluids are also addressed.
Collapse
Affiliation(s)
- Mirian Cristina Feiten
- EQA/UFSC, Department of Chemical and Food Engineering, Federal University of Santa Catarina, C.P. 476, Florianópolis, SC, CEP 88040-900, Brazil
| | - Marco Di Luccio
- EQA/UFSC, Department of Chemical and Food Engineering, Federal University of Santa Catarina, C.P. 476, Florianópolis, SC, CEP 88040-900, Brazil
| | | | - Débora de Oliveira
- EQA/UFSC, Department of Chemical and Food Engineering, Federal University of Santa Catarina, C.P. 476, Florianópolis, SC, CEP 88040-900, Brazil
| | - J Vladimir Oliveira
- EQA/UFSC, Department of Chemical and Food Engineering, Federal University of Santa Catarina, C.P. 476, Florianópolis, SC, CEP 88040-900, Brazil.
| |
Collapse
|
29
|
dos Santos P, Zabot GL, Meireles MAA, Mazutti MA, Martínez J. Synthesis of eugenyl acetate by enzymatic reactions in supercritical carbon dioxide. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Dong Y, Jiang H. Microbial production of metabolites and associated enzymatic reactions under high pressure. World J Microbiol Biotechnol 2016; 32:178. [PMID: 27628338 DOI: 10.1007/s11274-016-2136-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Abstract
High environmental pressure exerts an external stress on the survival of microorganisms that are commonly found under normal pressure. In response, many growth traits alter, including cell morphology and physiology, cellular structure, metabolism, physical and chemical properties, the reproductive process, and defense mechanisms. The high-pressure technology (HP) has been industrially utilized in pressurized sterilization, synthesis of stress-induced products, and microbial/enzymatic transformation of chemicals. This article reviews current research on pressure-induced production of metabolites in normal-pressure microbes and their enzymatic reactions. Factors that affect the production of such metabolites are summarized, as well as the effect of pressure on the performance of microbial fermentation and the yield of flavoring compounds, different categories of induced enzymatic reactions and their characteristics in the supercritical carbon dioxide fluid, effects on enzyme activity, and the selection of desirable bacterial strains. Technological challenges are discussed, and future research directions are proposed. Information presented here will benefit the research, development, and application of the HP technology to improve microbial fermentation and enzymatic production of biologically active substances, thereby help to meet their increasing demand from the ever-expanding market.
Collapse
Affiliation(s)
- Yongsheng Dong
- School of Bioengineering, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Jinan, 250353, Shandong, People's Republic of China
| | - Hua Jiang
- College of Food Science and Engineering, Qilu University of Technology, Jinan, 250353, Shandong, People's Republic of China.
| |
Collapse
|
31
|
Activity of immobilized lipase from Candida antarctica (Lipozyme 435) and its performance on the esterification of oleic acid in supercritical carbon dioxide. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Zdarta J, Klapiszewski Ł, Wysokowski M, Norman M, Kołodziejczak-Radzimska A, Moszyński D, Ehrlich H, Maciejewski H, Stelling AL, Jesionowski T. Chitin-lignin material as a novel matrix for enzyme immobilization. Mar Drugs 2015; 13:2424-46. [PMID: 25903282 PMCID: PMC4413219 DOI: 10.3390/md13042424] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/23/2015] [Accepted: 03/27/2015] [Indexed: 11/22/2022] Open
Abstract
Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of the composite support. The electrokinetic properties of the resulting systems were also determined. Results obtained from elemental analysis and by the Bradford method enabled the determination of optimum parameters for the immobilization process. Based on the hydrolysis reaction of para-nitrophenyl palmitate, a determination was made of the catalytic activity, thermal and pH stability, and reusability. The systems with immobilized enzymes were found to have a hydrolytic activity of 5.72 mU, and increased thermal and pH stability compared with the native lipase. The products were also shown to retain approximately 80% of their initial catalytic activity, even after 20 reaction cycles. The immobilization process, using a cheap, non-toxic matrix of natural origin, leads to systems with potential applications in wastewater remediation processes and in biosensors.
Collapse
Affiliation(s)
- Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland.
| | - Łukasz Klapiszewski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland.
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland.
| | - Małgorzata Norman
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland.
| | - Agnieszka Kołodziejczak-Radzimska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland.
| | - Dariusz Moszyński
- Institute of Inorganic Chemical Technology and Environmental Engineering, West Pomeranian University of Technology, Pulaskiego 10, 70322 Szczecin, Poland.
| | - Hermann Ehrlich
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Str. 23, 09599 Freiberg, Germany.
| | - Hieronim Maciejewski
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Umultowska 89b, 61614 Poznan, Poland.
- Poznan Science and Technology Park, Adam Mickiewicz University Fundation, Rubież 46, 61612 Poznan, Poland.
| | - Allison L Stelling
- Duke University, Center for Materials Genomics, Department of Mechanical Engineering and Materials Science,144 Hudson Hall, Durham, NC 27708, USA.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland.
| |
Collapse
|