1
|
Kumar R, Thakur AK, Kali G, Pitchaiah KC, Arya RK, Kulabhi A. Particle preparation of pharmaceutical compounds using supercritical antisolvent process: current status and future perspectives. Drug Deliv Transl Res 2023; 13:946-965. [PMID: 36575354 DOI: 10.1007/s13346-022-01283-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 12/29/2022]
Abstract
The low aqueous solubility and subsequently slow dissolution rate, as well as the poor bioavailability of several active pharmaceutical ingredients (APIs), are major challenges in the pharmaceutical industry. In this review, the particle engineering approaches using supercritical carbon dioxide (SC CO2) as an antisolvent are critically reviewed. The different SC CO2-based antisolvent processes, such as the gas antisolvent process (GAS), supercritical antisolvent process (SAS), and a solution-enhanced dispersion system (SEDS), are described. The effect of process parameters such as temperature, pressure, solute concentration, nozzle diameter, SC CO2 flow rate, solvent type, and solution flow rate on the average particle size, particle size distribution, and particle morphology is discussed from the fundamental perspective of the SAS process. The applications of the SAS process in different formulation approaches such as solid dispersion, polymorphs, cocrystallization, inclusion complexation, and encapsulation to enhance the dissolution rate, solubility, and bioavailability are critically reviewed. This review highlights some areas where the SAS process has not been adequately explored yet. This review will be helpful to researchers working in this area or planning to explore SAS process to particle engineering approaches to tackle the challenge of low solubility and subsequently slow dissolution rate and poor bioavailability.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India.
| | - Amit K Thakur
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | | | - Raj Kumar Arya
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, 144011, Punjab, India
| | - Anurag Kulabhi
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
2
|
Guamán-Balcázar MDC, Montes A, Valor D, Coronel Y, De los Santos DM, Pereyra C, Martínez de la Ossa EJ. Inclusion of Natural Antioxidants of Mango Leaves in Porous Ceramic Matrices by Supercritical CO 2 Impregnation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5934. [PMID: 36079317 PMCID: PMC9457324 DOI: 10.3390/ma15175934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Mango is one of the most important, medicinal tropical plants in the world from an economic point of view due to the presence of effective bioactive substances as co-products in its leaves. The aim of this work was to enhance the impregnation of natural antioxidants from mango leaves into a porous ceramic matrix. The effects of pressure, temperature, impregnation time, concentration of the extract and different porous silica on impregnation of phenolic compounds and antioxidant activity were analyzed. The volume of the pressurized fluid extract and amount of porous ceramic matrix remained constant. The best impregnation conditions were obtained at 6 h, 300 bar, 60 mg/mL, 35 °C and with MSU-H porous silica. The results indicated that increasing the pressure, concentration of the extract and temperature during impregnation with phenolic compounds such as gallic acid and iriflophenone 3-C (2-O-p-hydroxybenzolyl)-β-D-glucoside increased the antioxidant activity and the amount of total phenols.
Collapse
Affiliation(s)
- María del Cisne Guamán-Balcázar
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
- Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto sn, AP, Loja 1101608, Ecuador
| | - Antonio Montes
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| | - Diego Valor
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| | - Yorky Coronel
- Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto sn, AP, Loja 1101608, Ecuador
| | - Desireé M. De los Santos
- Department of Physical Chemistry, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| | - Clara Pereyra
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| | - Enrique J. Martínez de la Ossa
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| |
Collapse
|
3
|
Garcia-Partida JA, Torres-Sanchez S, MacDowell K, Fernández-Ponce MT, Casas L, Mantell C, Soto-Montenegro ML, Romero-Miguel D, Lamanna-Rama N, Leza JC, Desco M, Berrocoso E. The effects of mango leaf extract during adolescence and adulthood in a rat model of schizophrenia. Front Pharmacol 2022; 13:886514. [PMID: 35959428 PMCID: PMC9360613 DOI: 10.3389/fphar.2022.886514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
There is evidence that in schizophrenia, imbalances in inflammatory and oxidative processes occur during pregnancy and in the early postnatal period, generating interest in the potential therapeutic efficacy of anti-inflammatory and antioxidant compounds. Mangiferin is a polyphenolic compound abundant in the leaves of Mangifera indica L. that has robust antioxidant and anti-inflammatory properties, making it a potential candidate for preventive or co-adjuvant therapy in schizophrenia. Hence, this study set-out to evaluate the effect of mango leaf extract (MLE) in a model of schizophrenia based on maternal immune activation, in which Poly I:C (4 mg/kg) is administered intravenously to pregnant rats. Young adult (postnatal day 60-70) or adolescent (postnatal day 35-49) male offspring received MLE (50 mg/kg of mangiferin) daily, and the effects of MLE in adolescence were compared to those of risperidone, assessing behavior, brain magnetic resonance imaging (MRI), and oxidative/inflammatory and antioxidant mediators in the adult offspring. MLE treatment in adulthood reversed the deficit in prepulse inhibition (PPI) but it failed to attenuate the sensitivity to amphetamine and the deficit in novel object recognition (NOR) induced. By contrast, adolescent MLE treatment prevented the sensorimotor gating deficit in the PPI test, producing an effect similar to that of risperidone. This MLE treatment also produced a reduction in grooming behavior, but it had no effect on anxiety or novel object recognition memory. MRI studies revealed that adolescent MLE administration partially counteracted the cortical shrinkage, and cerebellum and ventricle enlargement. In addition, MLE administration in adolescence reduced iNOS mediated inflammatory activation and it promoted the expression of biomarkers of compensatory antioxidant activity in the prefrontal cortex and hippocampus, as witnessed through the reduction of Keap1 and the accumulation of NRF2 and HO1. Together, these findings suggest that MLE might be an alternative therapeutic or preventive add-on strategy to improve the clinical expression of schizophrenia in adulthood, while also modifying the time course of this disease at earlier stages in populations at high-risk.
Collapse
Affiliation(s)
- Jose Antonio Garcia-Partida
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Sonia Torres-Sanchez
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, Cádiz, Spain
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
| | - Karina MacDowell
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Health Research Institute Hospital 12 de Octubre (imas12), Institute of Research in Neurochemistry IUIN-UCM, Madrid, Spain
| | | | - Lourdes Casas
- Department of Chemical Engineering and Food Technology, Science Faculty, University of Cádiz, Cádiz, Spain
| | - Casimiro Mantell
- Department of Chemical Engineering and Food Technology, Science Faculty, University of Cádiz, Cádiz, Spain
| | - María Luisa Soto-Montenegro
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), Universidad Rey Juan Carlos, Madrid, Spain
| | - Diego Romero-Miguel
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Juan Carlos Leza
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Health Research Institute Hospital 12 de Octubre (imas12), Institute of Research in Neurochemistry IUIN-UCM, Madrid, Spain
| | - Manuel Desco
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Esther Berrocoso
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, Cádiz, Spain
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
4
|
Mei S, Perumal M, Battino M, Kitts DD, Xiao J, Ma H, Chen X. Mangiferin: a review of dietary sources, absorption, metabolism, bioavailability, and safety. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34606395 DOI: 10.1080/10408398.2021.1983767] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mangiferin is a potential candidate for use in nutraceutical and functional food applications due to its numerous bioactivities. However, the low bioavailability of mangiferin is a major limitation for establishing efficacy for use. This review describes current information on known food sources and factors that influence mangiferin contents, absorption, and metabolism features, and recent progress that has come from research efforts to increase the bioavailability of mangiferin. We also list patents that targeted to enhance mangiferin bioavailability. Mangifera indica L. is the major dietary source for mangiferin, a xanthone that varies widely in different parts of the plant and is influenced by many factors that involve plant propagation and post-harvest processing. Mangiferin absorption occurs mostly in the small intestine by passive diffusion with varying absorption capacities in different segments of the gastrointestinal tract. Recent research has led to the development of novel technologies to encapsulate mangiferin in nano/microparticle carrier systems as well as generate mangiferin derivatives to improve solubility and bioavailability. Preclinical studies reported that mangiferin < 2000 mg/kg is generally nontoxic. The safety and the increase in bioavailability are key limiting factors for developing successful applications for mangiferin as a nutritional dietary supplement or nutraceutical.
Collapse
Affiliation(s)
- Suhuan Mei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Manivel Perumal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Maurizio Battino
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - David D Kitts
- Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Klettenhammer S, Ferrentino G, Morozova K, Scampicchio M. Novel Technologies Based on Supercritical Fluids for the Encapsulation of Food Grade Bioactive Compounds. Foods 2020; 9:E1395. [PMID: 33023107 PMCID: PMC7601192 DOI: 10.3390/foods9101395] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, the demand for nutritive, functional and healthy foods has increased. This trend has induced the food industry to investigate novel technologies able to produce ingredients with enhanced functional and physicochemical properties. Among these technologies, one of the most promising is the encapsulation based on supercritical fluids. Thanks to the inherent absence of organic solvent, the low temperature of the process to reach a supercritical state and the capacity to dissolve lipid soluble bioactives, the encapsulation with supercritical carbon dioxide represents a green technology to produce several functional ingredients, with enhanced stability, high load and tailored protection from environmental factors. Furthermore, from the fine-tuning of the process parameters like temperature, pressure and flow rate, the resulting functional ingredient can be easily designed to tailor the controlled release of the bioactive, or to reach specific levels of taste, odor and color. Accordingly, the aim of the present review is to summarize the state of the art of the techniques based on supercritical carbon dioxide for the encapsulation of bioactive compounds of food interest. Pros and cons of such techniques will be highlighted, giving emphasis to their innovative aspects that could be of interest to the food industry.
Collapse
Affiliation(s)
| | - Giovanna Ferrentino
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (S.K.); (K.M.); (M.S.)
| | | | | |
Collapse
|
6
|
Co-precipitation of fluorescein with extracts of mango leaves by supercritical antisolvent process. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Quintana SE, Villanueva-Bermejo D, Reglero G, García-Risco MR, Fornari T. Supercritical antisolvent particle precipitation and fractionation of rosemary (Rosmarinus officinalis L.) extracts. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Ballesteros-Vivas D, Alvarez-Rivera G, García Ocampo AF, Morantes SJ, Sánchez Camargo ADP, Cifuentes A, Parada-Alfonso F, Ibánez E. Supercritical antisolvent fractionation as a tool for enhancing antiproliferative activity of mango seed kernel extracts against colon cancer cells. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Gil-Ramírez A, Rodriguez-Meizoso I. Purification of Natural Products by Selective Precipitation Using Supercritical/Gas Antisolvent Techniques (SAS/GAS). SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1617737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alicia Gil-Ramírez
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
10
|
Montes A, Hanke F, Williamson D, Guamán-Balcázar M, Valor D, Pereyra C, Teipel U, Martínez de la Ossa E. Precipitation of powerful antioxidant nanoparticles from orange leaves by means of supercritical CO2. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Guamán-Balcázar M, Montes A, Pereyra C, Martínez de la Ossa E. Production of submicron particles of the antioxidants of mango leaves/PVP by supercritical antisolvent extraction process. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Investigation of crystallization mechanisms for polymorphic and habit control from the Supercritical AntiSolvent process. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Fernández-Ponce M, Medina-Ruiz E, Casas L, Mantell C, Martínez de la Ossa-Fernández E. Development of cotton fabric impregnated with antioxidant mango polyphenols by means of supercritical fluids. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
García-Casas I, Montes A, Valor D, Pereyra C, Martínez de la Ossa E. Impregnation of mesoporous silica with mangiferin using supercritical CO2. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Generation of potent antioxidant nanoparticles from mango leaves by supercritical antisolvent extraction. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Belizón M, Fernández-Ponce M, Casas L, Mantell C, Martínez de la Ossa-Fernández E. Supercritical impregnation of antioxidant mango polyphenols into a multilayer PET/PP food-grade film. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|