1
|
Chen Z, Spilimbergo S, Mousavi Khaneghah A, Zhu Z, Marszałek K. The effect of supercritical carbon dioxide on the physiochemistry, endogenous enzymes, and nutritional composition of fruit and vegetables and its prospects for industrial application: a overview. Crit Rev Food Sci Nutr 2022; 64:5685-5699. [PMID: 36576196 DOI: 10.1080/10408398.2022.2157370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Consumers have an increasing demand for fruit and vegetables with high nutritional value worldwide. However, most fruit and vegetables are vulnerable to quality loss and spoilage during processing, transportation, and storage. Among the recently introduced emerging technologies, supercritical carbon dioxide (SCCO2) has been extensively utilized to treat and maintain fruit and vegetables mainly due to its nontoxicity, safety, and environmentally friendly. SCCO2 technology generates low processing costs and mild processing conditions (temperature and pressure) that allow for the application of CO2 at a supercritical state. This review aimed to summarize the current knowledge on the influence of SCCO2 technology on the quality attributes of fruit and vegetable products, such as physicochemical properties (pH, color, cloud, particle size distribution, texture), sensory quality, and nutritional composition (ascorbic acid, phenolic compounds, anthocyanins, carotenoids, and betalains). In addition, the effects and mechanisms of the SCCO2 technique on endogenous enzyme inactivation (polyphenol oxidase, peroxidase, and pectin methylesterase) were also elucidated. Finally, the prospects of the SCCO2 technique for industrial application was discussed from the economic and regulatory aspect.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Sara Spilimbergo
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Zhenzhou Zhu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
2
|
Du L, Sun Y, Han L, Su S. Inactivation of Saccharomyces cerevisiae by combined high pressure carbon dioxide and high pressure homogenization. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Leitgeb M, Knez Ž, Hojnik Podrepšek G. Effect of Green Food Processing Technology on the Enzyme Activity in Spelt Flour. Foods 2022; 11:foods11233832. [PMID: 36496639 PMCID: PMC9737601 DOI: 10.3390/foods11233832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
In this research, a new approach to enzyme inactivation in flour was presented by supercritical technology, considered a sustainable technology with lower energy consumption compared to other technologies that use ultra-high temperature processing. Total protein concentration and the activity of enzymes α-amylase, lipase, peroxidase, polyphenol oxidase, and protease were determined in flour pre-treated with scCO2. During the study, it was observed that the activity of enzymes such as lipase and polyphenol oxidase, was significantly reduced under certain conditions of scCO2 treatment, while the enzymes α-amylase and protease show better stability. In particular, polyphenol oxidase was effectively inactivated below the 60% of preserved activity at 200 bar and 3 h, whereas α-amylase under the same conditions retained its activity. Additionally, the moisture content of the scCO2-treated spelt flour was reduced by 5%, and the fat content was reduced by 58%, while the quality of scCO2-treated flour was maintained. In this regard, the sustainable scCO2 process could be a valuable tool for controlling the enzymatic activity of spelt flour since the use of scCO2 technology has a positive effect on the quality of flour, which was verified by the baking performance of spelt flour with the baked spelt bread as an indicator of quality.
Collapse
Affiliation(s)
- Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-2-2294-462
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| | - Gordana Hojnik Podrepšek
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| |
Collapse
|
4
|
Transcriptome Analysis of the Influence of High-Pressure Carbon Dioxide on Saccharomyces cerevisiae under Sub-Lethal Condition. J Fungi (Basel) 2022; 8:jof8101011. [PMID: 36294576 PMCID: PMC9605315 DOI: 10.3390/jof8101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
High-pressure carbon dioxide (HPCD), a novel non-thermal pasteurization technology, has attracted the attention of scientists due to its high pasteurization efficiency at a lower temperature and pressure. However, the inactivation mechanism has not been well researched, and this has hindered its commercial application. In this work, we used a sub-lethal HPCD condition (4.0 MPa, 30 °C) and a recovery condition (30 °C) to repair the damaged cells. Transcriptome analysis was performed by using RNA sequencing and gene ontology analysis to investigate the detailed lethal mechanism caused by HPCD treatment. RT-qPCR analysis was conducted for certain upregulated genes, and the influence of HPCD on protoplasts and single-gene deletion strains was investigated. Six major categories of upregulated genes were identified, including genes associated with the pentose phosphate pathway (oxidative phase), cell wall organization or biogenesis, glutathione metabolism, protein refolding, phosphatidylcholine biosynthesis, and AdoMet synthesis, which are all considered to be associated with cell death induced by HPCD. The inactivation or structure alteration of YNL194Cp in the organelle membrane is considered the critical reason for cell death. We believe this work contributes to elucidating the cell-death mechanism and providing a direction for further research on non-thermal HPCD sterilization technology.
Collapse
|
5
|
Vignali G, Gozzi M, Pelacci M, Stefanini R. Non-conventional Stabilization for Fruit and Vegetable Juices: Overview, Technological Constraints, and Energy Cost Comparison. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02772-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThis study will provide an overview and a description of the most promising alternatives to conventional thermal treatments for juice stabilization, as well as a review of the literature data on fruit and vegetable juice processing in terms of three key parameters in juice production, which are microbial reduction, enzyme inactivation, and nutrient-compound retention. The alternatives taken into consideration in this work can be divided, according to the action mechanism upon which these are based, in non-conventional thermal treatments, among which microwave heating (MWH) and ohmic heating (OH), and non-thermal treatments, among which electrical treatments, i.e., pulsed electric fields (PEF), high-pressure processing (HPP), radiation treatments such as ultraviolet light (UVL) and high-intensity pulsed light (PL), and sonication (HIUS) treatment, and inert-gas treatments, i.e., the pressure change technology (PCT) and supercritical carbon dioxide (SC-CO2) treatments. For each technology, a list of the main critical process parameters (CPP), advantages (PROS), and disadvantages (CONS) will be provided. In addition, for the non-thermal technologies, a summary of the most relevant published result of their application on fruit and vegetable juices will be presented. On top of that, a comparison of typical specific working energy costs for the main effective and considered technologies will be reported in terms of KJ per kilograms of processed product.
Collapse
|
6
|
Hart A, Anumudu C, Onyeaka H, Miri T. Application of supercritical fluid carbon dioxide in improving food shelf-life and safety by inactivating spores: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:417-428. [PMID: 35185167 PMCID: PMC8814202 DOI: 10.1007/s13197-021-05022-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 02/03/2023]
Abstract
Extending shelf-life of food, ensuring it is safe for consumers and meeting regulatory standards is the food industry's governing principle. Food safety is an essential aspect of food processing. Spores-forming microbes such as Bacillus spp. and Clostridium spp. are problematic in the food industry because of their ability to form endospores and survive processing conditions. Hence, their germination in food poses a threat to both shelf-life and safety of food. This paper reports on the current state of supercritical fluid carbon dioxide (SF-CO2) application in the inactivation of spores-forming microbes in food. Unlike high hydrostatic pressure and thermal processes which struggle to deactivate and destroy spores, and if they do, it impacts adversely on the food nutritional and quality attributes. This technique is viable to inactivate spores and maintain the foods structural and nutritional characteristics. The mechanisms of inactivation can be grouped into: (1) release of cellular content due to rupture of the cell wall, coat and cortex, and disruption of membranes, (2) degradation of proteins as a result of interaction with permeated and penetrated SF-CO2 and (3) deactivation of enzymatic activities. It was discovered that the synergistic effect of ultrasound another non-thermal technique or addition of co-solvent such as water, hydrogen peroxide and ethanol or antimicrobial peptide greatly enhanced inactivation of spores. This work harmonizes published perspectives on spores' inactivation mechanisms, and will help inform further research into the application of SF-CO2 in the sterilization of food products.
Collapse
Affiliation(s)
- Abarasi Hart
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
7
|
Barberi G, González-Alonso V, Spilimbergo S, Barolo M, Zambon A, Facco P. Optimization of the Appearance Quality in CO 2 Processed Ready-to-Eat Carrots through Image Analysis. Foods 2021; 10:foods10122999. [PMID: 34945550 PMCID: PMC8700774 DOI: 10.3390/foods10122999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/19/2023] Open
Abstract
A high-pressure CO2 process applied to ready-to-eat food products guarantees an increase of both their microbial safety and shelf-life. However, the treatment often produces unwanted changes in the visual appearance of products depending on the adopted process conditions. Accordingly, the alteration of the visual appearance influences consumers' perception and acceptability. This study aims at identifying the optimal treatment conditions in terms of visual appearance by using an artificial vision system. The developed methodology was applied to fresh-cut carrots (Daucus carota) as the test product. The results showed that carrots packaged in 100% CO2 and subsequently treated at 6 MPa and 40 °C for 15 min maintained an appearance similar to the fresh product for up to 7 days of storage at 4 °C. Mild appearance changes were identified at 7 and 14 days of storage in the processed products. Microbiological analysis performed on the optimal treatment condition showed the microbiological stability of the samples up to 14 days of storage at 4 °C. The artificial vision system, successfully applied to the CO2 pasteurization process, can easily be applied to any food process involving changes in the appearance of any food product.
Collapse
Affiliation(s)
- Gianmarco Barberi
- CAPE-Lab–Computer Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, Via Marzolo, 9-35131 Padova, Italy; (G.B.); (M.B.)
| | - Víctor González-Alonso
- Superunit–CO2 Innovation Lab, Department of Industrial Engineering, University of Padova, Via Marzolo, 9-35131 Padova, Italy; (V.G.-A.); (S.S.); (A.Z.)
| | - Sara Spilimbergo
- Superunit–CO2 Innovation Lab, Department of Industrial Engineering, University of Padova, Via Marzolo, 9-35131 Padova, Italy; (V.G.-A.); (S.S.); (A.Z.)
| | - Massimiliano Barolo
- CAPE-Lab–Computer Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, Via Marzolo, 9-35131 Padova, Italy; (G.B.); (M.B.)
| | - Alessandro Zambon
- Superunit–CO2 Innovation Lab, Department of Industrial Engineering, University of Padova, Via Marzolo, 9-35131 Padova, Italy; (V.G.-A.); (S.S.); (A.Z.)
| | - Pierantonio Facco
- CAPE-Lab–Computer Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, Via Marzolo, 9-35131 Padova, Italy; (G.B.); (M.B.)
- Correspondence:
| |
Collapse
|
8
|
Buszewski B, Wrona O, Mayya RP, Zakharenko AM, Kalenik TK, Golokhvast KS, Piekoszewski W, Rafińska K. The potential application of supercritical CO 2 in microbial inactivation of food raw materials and products. Crit Rev Food Sci Nutr 2021; 62:6535-6548. [PMID: 33938772 DOI: 10.1080/10408398.2021.1902939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The purpose of this study was to review the possibility of using supercritical CO2 as a green and sustainable technology for microbial inactivation of raw material for further application in the food industry. The history of the development of supercritical CO2 microbial inactivation has been widely described in this article. The fundamental scientific part of the process like mechanism of bactericidal action of CO2 or inactivation of key enzymes were characterized in detail. In summary, this study provides an overview of the latest literature on the use of supercritical carbon dioxide in microbial inactivation of food raw materials and products.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Olga Wrona
- Łukasiewicz Research Network - New Chemical Synthesis Institute, Puławy, Poland
| | - Razgonova P Mayya
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Sankt-Petersburg, Russia.,Far-Eastern Federal University, Vladivostok, Russia
| | - Alexander Mikhailovich Zakharenko
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Sankt-Petersburg, Russia.,Far-Eastern Federal University, Vladivostok, Russia
| | | | - Kirill Sergeevich Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Sankt-Petersburg, Russia.,Far-Eastern Federal University, Vladivostok, Russia.,Pacific Geographical Institute, Far-Eastern Branch of the Russian Academy of Sciences, Centralnaya, Presidium, Krasnoobsk, Russia.,Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, Krasnoobsk, Russia
| | - Wojciech Piekoszewski
- Far-Eastern Federal University, Vladivostok, Russia.,Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonien University, Gronostajowa, Kraków, Poland
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
9
|
Yu T, Kuwahara S, Ohno T, Iwahashi H. Recycling salmon meat by decontamination under mild conditions using high-pressure carbon dioxide. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 124:102-109. [PMID: 33611154 DOI: 10.1016/j.wasman.2021.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
The 2011-2016 reports from the Food and Agriculture Organization of the United Nations has stated that annual food loss and waste occurs on a massive scale in fisheries and aquaculture. This study aimed to explore advanced technologies to recycle wasted salmon as an industrial resource with high commercial value by applying enzymatic hydrolysis under HPCD. Our results showed that HPCD treatment at 50 °C and 1 MPa for 16 h effectively prevents salmon from microbial contamination. Real-time PCR analysis demonstrated that HPCD was also able to inhibit an increase in bacteria at moderate temperatures. Based on NGS analysis, there was a very low abundance of Bacillus and some histamine producers, such as Pseudomonas, Acinetobacter, Enterobacter, and Klebsiella, detected in samples treated using HPCD at 50 °C and 1 MPa for 16 h. Hydrolysate analysis showed that HPCD treatment at 1 MPa did not affect the hydrolysates from salmon. It is anticipated that the results from this study will support the application of HPCD in industrial enzymatic hydrolysis and increase the sustainability of bio-based materials.
Collapse
Affiliation(s)
- Tonghuan Yu
- The United Graduate School of Agricultural Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| | - Shinichi Kuwahara
- Faculty of Applied Biological Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| | - Tomoki Ohno
- Faculty of Applied Biological Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| | - Hitoshi Iwahashi
- Faculty of Applied Biological Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| |
Collapse
|
10
|
|
11
|
Abstract
The demand for safe, high-quality food has greatly increased, in recent times. As traditional thermal pasteurization can significantly impact the nutritional value and the color of fresh food, an increasing number of nonthermal pasteurization technologies have attracted attention. The bactericidal effect of high-pressure carbon dioxide has been known for many years, and its effect on food-related enzymes has been studied. This novel technology has many merits, owing to its use of relatively low pressures and temperatures, which make it a potentially valuable future method for nonthermal pasteurization. For example, the inactivation of polyphenol oxidase can be achieved with relatively low temperature and pressure, and this can contribute to food quality and better preserve nutrients, such as vitamin C. However, this novel technology has yet to be developed on an industrial scale due to insufficient test data. In order to support the further development of this application, on an industrial scale, we have reviewed the existing information on high-pressure carbon dioxide pasteurization technology. We include its bactericidal effects and its influence on food quality. We also pave the way for future studies, by highlighting key areas.
Collapse
|
12
|
Supercritical carbon dioxide technology: A promising technique for the non-thermal processing of freshly fruit and vegetable juices. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Subra-Paternault P, Harscoat-Schiavo C, Savoire R, Brun M, Velasco J, Ruiz-Mendez V. Utilization of pressurized CO2, pressurized ethanol and CO2-expanded ethanol mixtures for de-oiling spent bleaching earths. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|