1
|
Zhang L, Ma Y, Wei Z, Li Q. Toxicological Comparison between Gold Nanoparticles in Different Shapes: Nanospheres Exhibit Less Hepatotoxicity and Lipid Dysfunction and Nanotriangles Show Lower Neurotoxicity. ACS OMEGA 2024; 9:42990-43004. [PMID: 39464457 PMCID: PMC11500156 DOI: 10.1021/acsomega.4c05961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Gold nanoparticles (AuNPs) in different shapes have been developed and investigated for the treatment of various diseases. However, the potential toxicological vulnerability of different organs to morphologies of AuNPs and the complication of the toxicological profile of AuNPs by other health risk factors (e.g., plastic particles) have rarely been investigated systematically. Therefore, in this study, we aimed to investigate the toxicological differences between the spherical and triangular AuNPs (denoted as AuS and AuT, respectively) and the toxicological modulations by micro- or nanosized polystyrene plastic particles (denoted as mPS and nPS, respectively) in mice. Systemic biochemical characterizations were performed after a 90 day oral gavage feeding to obtain toxicological comparisons in different organs. In the case of single exposure to gold nanoparticles, AuT was associated with significantly higher aspartate amino-transferase (168.2%, P < 0.05), superoxide dismutase (183.6%, P < 0.001), catalase (136.9%, P < 0.01), total cholesterol (132.6%, P < 0.01), high-density lipoprotein cholesterol (131.3%, P < 0.05), and low-density lipoprotein cholesterol (204.6%, P < 0.01) levels than AuS. In contrast, AuS was associated with a significantly higher nitric oxide level (355.1%, P < 0.01) than AuT. Considering the overall toxicological profiles in single exposure and coexposure with multiscale plastics, it has been found that AuS is associated with lower hepatotoxicity and lipid metabolism malfunction, and AuT is associated with lower neurotoxicity than AuS. This finding may facilitate the future therapeutic design by considering the priority in protections of different organs and utilizing appropriate material morphologies.
Collapse
Affiliation(s)
- Lan Zhang
- College
of Food Science and Engineering, Ocean University
of China, Qingdao 266003, China
| | - Yuyang Ma
- College
of Food Science and Engineering, Ocean University
of China, Qingdao 266003, China
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Zhiliang Wei
- Department
of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2105, United
States
| | - Qian Li
- College
of Food Science and Engineering, Ocean University
of China, Qingdao 266003, China
| |
Collapse
|
2
|
Jooyan N, Mortazavi SMJ, Goliaei B, Faraji-Dana R. Indirect effects of interference of two emerging environmental contaminants on cell health: Radiofrequency radiation and gold nanoparticles. CHEMOSPHERE 2024; 349:140942. [PMID: 38092171 DOI: 10.1016/j.chemosphere.2023.140942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND The global need for wireless technologies is growing rapidly. So, we have been exposed to a new type of environmental pollution: radiofrequency radiation (RFR). Recent studies have shown that RFR can cause not only direct effects but also indirect or non-targeted effects such as the bystander effect (BE). In this study, we investigated the BE induced by RFR in the present of gold nanoparticles (GNP). Moreover, we studied the expression of cyclooxygenase-2 (COX-2). METHODS Non-toxic dose of 15-nm GNP was used to treat the Chinese Hamster Ovary (CHO) cells. After 48 h of incubation, cells were exposed to 900 MHz GSM RFR for 24 h. Then we collected the cell culture medium of these cells (conditioned culture medium, CCM) and transferred it to new cells (bystander cells). Cell deaths, DNA breaks, oxidative stress and COX-2 expression were analyzed in all groups. RESULTS The results showed that RFR increased metabolic death in cells treated with GNP. Inversely, the colony formation ability was reduced in bystander cells and RFR exposed cells either in the presence or absence of GNP. Also, the level of reactive oxygen species (ROS) in GNP treated cells showed a significant reduction compared to those of untreated cells. However, RFR-induced DNA breaks and the frequencies of micronuclei (MN) were not significantly affected by GNP. The expression of COX-2 mRNA increased in RFR GNP treated cells, but the difference was not significant. CONCLUSION Our results for the first time indicated that RFR induce indirect effects in the presence of GNP. However, the molecular mediators of these effects differ from those in the absence of GNP. Also, to our knowledge, this is the first study to show that COX-2 is not involved in the bystander effect induced by 900 MHz RFR.
Collapse
Affiliation(s)
- Najmeh Jooyan
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Javad Mortazavi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Bahram Goliaei
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Reza Faraji-Dana
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MHJN, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int 2023; 23:280. [PMID: 37981671 PMCID: PMC10657605 DOI: 10.1186/s12935-023-03115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023] Open
Abstract
Gastrointestinal (GI) cancer is a major health problem worldwide, and current diagnostic and therapeutic approaches are often inadequate. Various metallic nanoparticles (MNPs) have been widely studied for several biomedical applications, including cancer. They may potentially overcome the challenges associated with conventional chemotherapy and significantly impact the overall survival of GI cancer patients. Functionalized MNPs with targeted ligands provide more efficient localization of tumor energy deposition, better solubility and stability, and specific targeting properties. In addition to enhanced therapeutic efficacy, MNPs are also a diagnostic tool for molecular imaging of malignant lesions, enabling non-invasive imaging or detection of tumor-specific or tumor-associated antigens. MNP-based therapeutic systems enable simultaneous stability and solubility of encapsulated drugs and regulate the delivery of therapeutic agents directly to tumor cells, which improves therapeutic efficacy and minimizes drug toxicity and leakage into normal cells. However, metal nanoparticles have been shown to have a cytotoxic effect on cells in vitro. This can be a concern when using metal nanoparticles for cancer treatment, as they may also kill healthy cells in addition to cancer cells. In this review, we provide an overview of the current state of the field, including preparation methods of MNPs, clinical applications, and advances in their use in targeted GI cancer therapy, as well as the advantages and limitations of using metal nanoparticles for the diagnosis and treatment of gastrointestinal cancer such as potential toxicity. We also discuss potential future directions and areas for further research, including the development of novel MNP-based approaches and the optimization of existing approaches.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arya Rezaian-Isfahni
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hassan Jafari Najaf Abadi
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Lou W, Xie L, Xu L, Xu M, Xu F, Zhao Q, Jiang T. Present and future of metal nanoparticles in tumor ablation therapy. NANOSCALE 2023; 15:17698-17726. [PMID: 37917010 DOI: 10.1039/d3nr04362b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer is an important factor affecting the quality of human life as well as causing death. Tumor ablation therapy is a minimally invasive local treatment modality with unique advantages in treating tumors that are difficult to remove surgically. However, due to its physical and chemical characteristics and the limitation of equipment technology, ablation therapy cannot completely kill all tumor tissues and cells at one time; moreover, it inevitably damages some normal tissues in the surrounding area during the ablation process. Therefore, this technology cannot be the first-line treatment for tumors at present. Metal nanoparticles themselves have good thermal and electrical conductivity and unique optical and magnetic properties. The combination of metal nanoparticles with tumor ablation technology, on the one hand, can enhance the killing and inhibiting effect of ablation technology on tumors by expanding the ablation range; on the other hand, the ablation technology changes the physicochemical microenvironment such as temperature, electric field, optics, oxygen content and pH in tumor tissues. It helps to stimulate the degree of local drug release of nanoparticles and increase the local content of anti-tumor drugs, thus forming a synergistic therapeutic effect with tumor ablation. Recent studies have found that some specific ablation methods will stimulate the body's immune response while physically killing tumor tissues, generating a large number of immune cells to cause secondary killing of tumor tissues and cells, and with the assistance of metal nanoparticles loaded with immune drugs, the effect of this anti-tumor immunotherapy can be further enhanced. Therefore, the combination of metal nanoparticles and ablative therapy has broad research potential. This review covers common metallic nanoparticles used for ablative therapy and discusses in detail their characteristics, mechanisms of action, potential challenges, and prospects in the field of ablation.
Collapse
Affiliation(s)
- Wenjing Lou
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Lei Xu
- Department of Ultrasound Medicine, Affiliated Jinhua Hospital Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Min Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Fan Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Qiyu Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
- Zhejiang University Cancer Center, Zhejiang, Hangzhou, China
| |
Collapse
|
5
|
Mohammadi A, Hashemi B, Mehdi Mahdavi SR, Solimani M, Banaei A. Radiosensitization effect of radiofrequency hyperthermia in the presence of PEGylated-gold nanoparticles on the MCF-7 breast cancer cells under 6 MeV electron irradiation. J Cancer Res Ther 2023; 19:S67-S73. [PMID: 37147985 DOI: 10.4103/jcrt.jcrt_1087_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Purpose The purpose of the study was to investigate the radiosensitization effect of radiofrequency (RF) hyperthermia in combination with PEGylated gold nanoparticles (PEG-GNPs) on MCF-7 breast cancer cells under electron beam radiotherapy (EBRT) based on the clonogenic assay. Materials and Methods The cell death of MCF-7 breast cancer cells treated with 13.56 MHz capacitive RF hyperthermia (power: 150W) for 2, 5, 10, and 15 min combined with 6 MeV EBRT, with a dose of 2 Gy, was evaluated in the presence of 20 nm PEG-GNPs with a low nontoxic concentration (20 mg/l). All the treatment groups were incubated for 14 days. Thereafter, survival fractions and viability of the cells were calculated and analyzed against the control group. Results The presence of PEG-GNPs inside the MCF-7 cancer cells during electron irradiation decreased cell survival significantly (16.7%) compared to irradiated cells without GNPs. Applying hyperthermia before electron irradiation with a capacitive RF system decreased cell survival by about 53.7%, while hyperthermia without irradiation did not show any significant effect on cell survival. Combining the hyperthermia with the presence of PEG-GNPs in the cells decreased the cell survival by about 67% at the electron irradiation, showing their additive radiosensitization effect. Conclusion Low nontoxic concentration of 20 nm PEG-GNPs increases the radiosensitization effect of combining 6 MeV EBRT and RF hyperthermia on MCF-7 cancer cells. Combining hyperthermia with PEG-GNPs in electron radiotherapy could be an appropriate method for enhancing radiotherapy effectiveness on cancerous cells which can be studied on different cells and electron energies in future research.
Collapse
Affiliation(s)
- Akram Mohammadi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bijan Hashemi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seied Rabi Mehdi Mahdavi
- Department of Medical Physics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Solimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Banaei
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Zhang Q, Shi D, Guo M, Zhao H, Zhao Y, Yang X. Radiofrequency-Activated Pyroptosis of Bi-Valent Gold Nanocluster for Cancer Immunotherapy. ACS NANO 2023; 17:515-529. [PMID: 36580577 DOI: 10.1021/acsnano.2c09242] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pyroptosis is gasdermin-mediated programmed necrosis that exhibits promising potential application in cancer immunotherapy, and the main challenge lies in how to provoke specific pyroptosis of tumor cells. Here, biGC@PNA with a precisely stoichiometric ratio of Au(I) ion/Au(0) atom induced pyroptosis of tumor cells by its radiofrequency (RF)-heating effect. An in vitro/in vivo assay on 4T1 tumor cells indicates RF-activated pyroptosis of tumor cells elicits a robust ICD effect, enhancing the synergistic antitumor efficacy of biGC@PNA with decitabine, significantly suppressing tumor metastasis and relapse by provoking systemic antitumor immune responses. Utilizing RF-activated pyroptotic immune responses, biGC@PNA efficiently enhances the antitumor efficacy of αPD-1 immunotherapy under RF irradiation and provides a promising strategy for improving cancer immunotherapy by the noninvasive RF field with high clinical transformation potential.
Collapse
Affiliation(s)
- Qingqing Zhang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Dingwen Shi
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Mengqin Guo
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Hao Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- GBA Research Innovation Institute for Nanotechnology, Guangdong510530, People's Republic of China
| |
Collapse
|
7
|
Hollar DW. The competition of ecological resonances in the quantum metabolic model of cancer: Potential energetic interventions. Biosystems 2022; 222:104798. [DOI: 10.1016/j.biosystems.2022.104798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/02/2022]
|
8
|
Deng Q, He M, Fu C, Feng K, Ma K, Zhang L. Radiofrequency ablation in the treatment of hepatocellular carcinoma. Int J Hyperthermia 2022; 39:1052-1063. [PMID: 35944905 DOI: 10.1080/02656736.2022.2059581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The purpose of this article is to discuss the use, comparative efficacy, and research progress of radiofrequency ablation (RFA), alone or in combination with other therapies, for the treatment of hepatocellular carcinoma (HCC). METHOD To search and summarize the basic and clinical studies of RFA in recent years. RESULTS RFA is one of the radical treatment methods listed in the guidelines for the diagnosis and treatment of HCC. It has the characteristics of being minimally invasive and safe and can obtain good local tumor control, and it can improve the local immune ability, improve the tumor microenvironment and enhance the efficacy of chemotherapy drugs. It is commonly used for HCC treatment before liver transplantation and combined ALPPS and hepatectomy for HCC. In addition, the technology of RFA is constantly developing. The birth of noninvasive, no-touch RFA technology and equipment and the precise RFA concept have improved the therapeutic effect of RFA. CONCLUSION RFA has good local tumor control ability, is minimally invasive, is safe and has other beneficial characteristics. It plays an increasingly important role in the comprehensive treatment strategy of HCC. Whether RFA alone or combined with other technologies expands the surgical indications of patients with HCC and provides more benefits for HCC patients needs to be determined.
Collapse
Affiliation(s)
- Qingsong Deng
- Army Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Minglian He
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunchuan Fu
- Department of Hepatobiliary Surgery, Xuanhan County People's Hospital, Xuanhan, China
| | - Kai Feng
- Army Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kuansheng Ma
- Army Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Leida Zhang
- Army Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
9
|
Sametova A, Kurmashev S, Ashikbayeva Z, Amantayeva A, Blanc W, Atabaev TS, Tosi D. Fiber-Optic Distributed Sensing Network for Thermal Mapping of Gold Nanoparticles-Mediated Radiofrequency Ablation. BIOSENSORS 2022; 12:352. [PMID: 35624653 PMCID: PMC9138323 DOI: 10.3390/bios12050352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022]
Abstract
In this work, we report the design of an optical fiber distributed sensing network for the 2-dimensional (2D) in situ thermal mapping of advanced methods for radiofrequency thermal ablation. The sensing system is based on six high-scattering MgO-doped optical fibers, interleaved by a scattering-level spatial multiplexing approach that allows simultaneous detection of each fiber location, in a 40 × 20 mm grid (7.8 mm2 pixel size). Radiofrequency ablation (RFA) was performed on bovine phantom, using a pristine approach and methods mediated by agarose and gold nanoparticles in order to enhance the ablation properties. The 2D sensors allow the detection of spatiotemporal patterns, evaluating the heating properties and investigating the repeatability. We observe that agarose-based ablation yields the widest ablated area in the best-case scenario, while gold nanoparticles-mediated ablation provides the best trade-off between the ablated area (53.0-65.1 mm2, 61.5 mm2 mean value) and repeatability.
Collapse
Affiliation(s)
- Akbota Sametova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (S.K.); (Z.A.); (A.A.)
| | - Sabit Kurmashev
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (S.K.); (Z.A.); (A.A.)
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (S.K.); (Z.A.); (A.A.)
| | - Aida Amantayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (S.K.); (Z.A.); (A.A.)
| | - Wilfried Blanc
- Université Côte d’Azur, INPHYNI, CNRS UMR7010, Avenue Joseph Vallot, 06108 Nice, France;
| | - Timur Sh. Atabaev
- Department of Chemistry, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 010000, Kazakhstan;
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (S.K.); (Z.A.); (A.A.)
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
10
|
Treasure on the Earth—Gold Nanoparticles and Their Biomedical Applications. MATERIALS 2022; 15:ma15093355. [PMID: 35591689 PMCID: PMC9105202 DOI: 10.3390/ma15093355] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023]
Abstract
Recent advances in the synthesis of metal nanoparticles (NPs) have led to tremendous expansion of their potential applications in different fields, ranging from healthcare research to microelectronics and food packaging. Among the approaches for exploiting nanotechnology in medicine, gold nanomaterials in particular have been found as the most promising due to their unique advantages, such as in sensing, image enhancement, and as delivery agents. Although, the first scientific article on gold nanoparticles was presented in 1857 by Faraday, during the last few years, the progress in manufacturing these nanomaterials has taken an enormous step forward. Due to the nanoscale counterparts of gold, which exhibit distinct properties and functionality compared to bulk material, gold nanoparticles stand out, in particular, in therapy, imaging, detection, diagnostics, and precise drug delivery. This review summarizes the current state-of-the-art knowledge in terms of biomedical applications of gold nanoparticles. The application of AuNPs in the following aspects are discussed: (i) imaging and diagnosing of specific target; (ii) treatment and therapies using AuNPs; and (iii) drug delivery systems with gold nanomaterials as a carrier. Among the different approaches in medical imaging, here we either consider AuNPs as a contrast agent in computed tomography (CT), or as a particle used in optical imaging, instead of fluorophores. Moreover, their nontoxic feature, compared to the gadolinium-based contrast agents used in magnetic resonance imaging, are shown. The tunable size, shape, and functionality of gold nanoparticles make them great carriers for targeted delivery. Therefore, here, we summarize gold-based nanodrugs that are FDA approved. Finally, various approaches to treat the specific diseases using AuNPs are discussed, i.e., photothermal or photodynamic therapy, and immunotherapy.
Collapse
|
11
|
Liu C, Zheng Y, Sanche L. Damage Induced to DNA and Its Constituents by 0-3 eV UV Photoelectrons †. Photochem Photobiol 2021; 98:546-563. [PMID: 34767635 DOI: 10.1111/php.13559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022]
Abstract
The complex physical and chemical interactions between DNA and 0-3 eV electrons released by UV photoionization can lead to the formation of various lesions such as base modifications and cleavage, crosslinks and single strand breaks. Furthermore, in the presence of platinum chemotherapeutic agents, these electrons can cause clustered lesions, including double strand breaks. We explain the mechanisms responsible for these damages via the production 0-3 eV electrons by UVC radiation, and by UV photons of any wavelengths, when they are produced by photoemission from nanoparticles lying within about 10 nm from DNA. We review experimental evidence showing that a single 0-3 eV electron can produce these damages. The foreseen benefits UV-irradiation of nanoparticles targeted to the cell nucleus are mentioned in the context of cancer therapy, as well as the potential hazards to human health when they are present in cells.
Collapse
Affiliation(s)
- Chaochao Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, China
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, China
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
12
|
Bienia A, Wiecheć-Cudak O, Murzyn AA, Krzykawska-Serda M. Photodynamic Therapy and Hyperthermia in Combination Treatment-Neglected Forces in the Fight against Cancer. Pharmaceutics 2021; 13:1147. [PMID: 34452108 PMCID: PMC8399393 DOI: 10.3390/pharmaceutics13081147] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of death in humans. Despite the progress in cancer treatment, and an increase in the effectiveness of diagnostic methods, cancer is still highly lethal and very difficult to treat in many cases. Combination therapy, in the context of cancer treatment, seems to be a promising option that may allow minimizing treatment side effects and may have a significant impact on the cure. It may also increase the effectiveness of anti-cancer therapies. Moreover, combination treatment can significantly increase delivery of drugs to cancerous tissues. Photodynamic therapy and hyperthermia seem to be ideal examples that prove the effectiveness of combination therapy. These two kinds of therapy can kill cancer cells through different mechanisms and activate various signaling pathways. Both PDT and hyperthermia play significant roles in the perfusion of a tumor and the network of blood vessels wrapped around it. The main goal of combination therapy is to combine separate mechanisms of action that will make cancer cells more sensitive to a given therapeutic agent. Such an approach in treatment may contribute toward increasing its effectiveness, optimizing the cancer treatment process in the future.
Collapse
Affiliation(s)
| | | | | | - Martyna Krzykawska-Serda
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (A.B.); (O.W.-C.); (A.A.M.)
| |
Collapse
|
13
|
Immunological effects of nano-enabled hyperthermia for solid tumors: opportunity and challenge. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
D'Acunto M, Cioni P, Gabellieri E, Presciuttini G. Exploiting gold nanoparticles for diagnosis and cancer treatments. NANOTECHNOLOGY 2021; 32:192001. [PMID: 33524960 DOI: 10.1088/1361-6528/abe1ed] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gold nanoparticles (AuNPs) represent a relatively simple nanosystem to be synthesised and functionalized. AuNPs offer numerous advantages over different nanomaterials, primarily due to highly optimized protocols for their production with sizes in the range 1-150 nm and shapes, spherical, nanorods (AuNRs), nanocages, nanostars or nanoshells (AuNSs), just to name a few. AuNPs possess unique properties both from the optical and chemical point of view. AuNPs can absorb and scatter light with remarkable efficiency. Their outstanding interaction with light is due to the conduction electrons on the metal surface undergoing a collective oscillation when they are excited by light at specific wavelengths. This oscillation, known as a localized surface plasmon resonance, causes the absorption and scattering intensities of AuNPs to be significantly higher than identically sized non-plasmonic nanoparticles. In addition, AuNP absorption and scattering properties can be tuned by controlling the particle size, shape, and the local refractive index near the particle surface. By the chemical side, AuNPs offer the advantage of functionalization with therapeutic agents through covalent and ionic binding, which can be useful for biomedical applications, with particular emphasis on cancer treatments. Functionalized AuNPs exhibit good biocompatibility and controllable distribution patterns when delivered in cells and tissues, which make them particularly fine candidates for the basis of innovative therapies. Currently, major available AuNP-based cancer therapeutic approaches are the photothermal therapy (PTT) or photodynamic therapy (PDT). PTT and PDT rely upon irradiation of surface plasmon resonant AuNPs (previously delivered in cancer cells) by light, in particular, in the near-infrared range. Under irradiation, AuNPs surface electrons are excited and resonate intensely, and fast conversion of light into heat takes place in about 1 ps. The cancer cells are destroyed by the induced hyperthermia, i.e. the condition under which cells are subject to temperature in the range of 41 °C-47 °C for tens of minutes. The review is focused on the description of the optical and thermal properties of AuNPs that underlie their continuous and progressive exploitation for diagnosis and cancer therapy.
Collapse
Affiliation(s)
- Mario D'Acunto
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Patrizia Cioni
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Edi Gabellieri
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Gianluca Presciuttini
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| |
Collapse
|
15
|
Rommelfanger NJ, Ou Z, Keck CH, Hong G. Differential heating of metal nanostructures at radio frequencies. PHYSICAL REVIEW APPLIED 2021; 15:054007. [PMID: 36268260 PMCID: PMC9581340 DOI: 10.1103/physrevapplied.15.054007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanoparticles with strong absorption of incident radio frequency (RF) or microwave irradiation are desirable for remote hyperthermia treatments. While controversy has surrounded the absorption properties of spherical metallic nanoparticles, other geometries such as prolate and oblate spheroids have not received sufficient attention for application in hyperthermia therapies. Here, we use the electrostatic approximation to calculate the relative absorption ratio of metallic nanoparticles in various biological tissues. We consider a broad parameter space, sweeping across frequencies from 1 MHz to 10 GHz, while also tuning the nanoparticle dimensions from spheres to high-aspect-ratio spheroids approximating nanowires and nanodiscs. We find that while spherical metallic nanoparticles do not offer differential heating in tissue, large absorption cross sections can be obtained from long prolate spheroids, while thin oblate spheroids offer minor potential for absorption. Our results suggest that metallic nanowires should be considered for RF- and microwave-based wireless hyperthermia treatments in many tissues going forward.
Collapse
Affiliation(s)
- Nicholas J. Rommelfanger
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Carl H.C. Keck
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
- Corresponding author:
| |
Collapse
|
16
|
Mocan T, Stiufiuc R, Popa C, Nenu I, Pestean C, Nagy AL, Mocan LP, Leucuta DC, Hajjar NA, Sparchez Z. Percutaneous ultrasound guided PEG-coated gold nanoparticles enhanced radiofrequency ablation in liver. Sci Rep 2021; 11:1316. [PMID: 33446793 PMCID: PMC7809408 DOI: 10.1038/s41598-020-79917-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023] Open
Abstract
To investigate the effects of PEG-coated gold nanoparticles on ablation zone volumes following in vivo radiofrequency ablation of porcine liver. This prospective study was performed following institutional animal care and committee approval was used. Radiofrequency ablations were performed in the livers of ten Sus scrofa domesticus swines. During each ablation, 10 mL (mL) of Peg-coated gold nanoparticles at two different concentrations (0.5 mg/mL and 0.01 mg/mL) were injected through the electrode channel into the target zone. For the control group, 10 mL of physiological saline was used. Five to ten minutes after each ablation, contrast enhanced ultrasound (CEUS) was performed to evaluate the volume of the coagulation zone. On day five we performed another CEUS and the animals were sacrificed. Treated tissues were explanted for quantification of the ablation zones' volumes. Hematoxylin and eosin (H&E) staining was also performed for histologic analysis. A total of 30 ablations were performed in the livers. The mean coagulation zone volume as measured by CEUS on day 5 after RFA was: 21.69 ± 3.39 cm3, 19.22 ± 5.77 cm3, and 8.80 ± 3.33 cm3 for N1, N2 and PS respectively. The coagulation zone volume after N1 and N2 treatments was significantly higher compared to PS treatment (p < 0.001 and p = 0.025 respectively). There was no difference between N1 and N2 treatment (p = 0.60). In our proof-of concept, pilot study we have shown for the first time that when injected directly into the target tissue during RFA, gold nanoparticles can substantially increase the coagulation zone.
Collapse
Affiliation(s)
- Tudor Mocan
- 3rd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Rares Stiufiuc
- Department of Bionanoscopy, MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 4-6, 400337, Cluj-Napoca, Romania
| | - Calin Popa
- 3rd Surgical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Iuliana Nenu
- 3rd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Cosmin Pestean
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur no. 3-5, 400372, Cluj-Napoca, Romania
| | - Andras Laszlo Nagy
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur no. 3-5, 400372, Cluj-Napoca, Romania
| | - Lavinia Patricia Mocan
- Histology Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Daniel Corneliu Leucuta
- Medical Informatics and Biostatistics Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- 3rd Surgical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Zeno Sparchez
- 3rd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania.
| |
Collapse
|
17
|
Dhanalekshmi KI, Sangeetha K, Magesan P, Johnson J, Zhang X, Jayamoorthy K. Photodynamic cancer therapy: role of Ag- and Au-based hybrid nano-photosensitizers. J Biomol Struct Dyn 2020; 40:4766-4773. [PMID: 33300461 DOI: 10.1080/07391102.2020.1858965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The utilization of photodynamic therapy (PDT) has been rapidly increasing due to its advantage as an effective treatment modality for cancer. The organic photosensitizers employed for PDT have some disadvantages, including high toxicity, non-selectivity toward tumors and poor absorption of light. The low light penetration into the tumor sites resulting from low wavelength of absorption and long-term skin photosensitivity. Hence, the attention toward non-toxic inorganic photosensitizers like noble metal nanoparticles (NPs) has been increasing nowadays. In bioscience, NPs are replacing organic dyes since they have photostability and non-toxicity. Generally, nanomaterials can easily form compounds with other substances as well as organic materials and the modified NPs surface enhances the chemical activity. Among the metal NPs, noble metals, especially gold and silver are attractive because of their size and shape-dependent unique optoelectronic properties. The coating of inorganic/organic materials on top of the noble metal makes the NPs bio-compatible and less toxic. Furthermore, Ag- and Au-based inorganic/organic complex NPs could offer a new possibility because of their unique structures. Meanwhile, the coating of inorganic/organic complex NPs protects the noble metals and stabilizes them against chemical corrosion and enhances the production of reactive oxygen species. Thus, in this review, we have highlighted the role of Ag- and Au-based inorganic/organic hybrid nano-photosensitizers in photodynamic therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K I Dhanalekshmi
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
| | - K Sangeetha
- Department of IBT, Bharath Institute of Higher Education & Research, Bharath University, Chennai, Tamil Nadu, India
| | - P Magesan
- Department of Chemistry, Bharath Institute of Higher Education & Research, Bharath University, Chennai, Tamil Nadu, India
| | - Jijo Johnson
- Department of Chemistry, Santhom Malankara Arts and Science College, Edanji, Thiruvananthapuram, Kerala, India
| | - Xiang Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
| | - K Jayamoorthy
- Department of Chemistry, St. Joseph's College of Engineering, Chennai, Tamil Nadu, India
| |
Collapse
|
18
|
Bai L, Jiang F, Wang R, Lee C, Wang H, Zhang W, Jiang W, Li D, Ji B, Li Z, Gao S, Xie J, Ma Q. Ultrathin gold nanowires to enhance radiation therapy. J Nanobiotechnology 2020; 18:131. [PMID: 32917209 PMCID: PMC7488570 DOI: 10.1186/s12951-020-00678-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/17/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Radiation therapy is a main treatment option for cancer. Due to normal tissue toxicity, radiosensitizers are commonly used to enhance RT. In particular, heavy metal or high-Z materials, such as gold nanoparticles, have been investigated as radiosensitizers. So far, however, the related studies have been focused on spherical gold nanoparticles. In this study, we assessed the potential of ultra-thin gold nanowires as a radiosensitizer, which is the first time. METHODS Gold nanowires were synthesized by the reduction of HAuCl4 in hexane. The as-synthesized gold nanowires were then coated with a layer of PEGylated phospholipid to be rendered soluble in water. Spherical gold nanoparticles coated with the same phospholipid were also synthesized as a comparison. Gold nanowires and gold nanospheres were first tested in solutions for their ability to enhance radical production under irradiation. They were then incubated with 4T1 cells to assess whether they could elevate cell oxidative stress under irradiation. Lastly, gold nanowires and gold nanoparticles were intratumorally injected into a 4T1 xenograft model, followed by irradiation applied to tumors (3 Gy/per day for three days). Tumor growth was monitored and compared. RESULTS Our studies showed that gold nanowires are superior to gold nanospheres in enhancing radical production under X-ray radiation. In vitro analysis found that the presence of gold nanowires caused elevated lipid peroxidation and intracellular oxidative stress under radiation. When tested in vivo, gold nanowires plus irradiation led to better tumor suppression than gold nanospheres plus radiation. Moreover, gold nanowires were found to be gradually reduced to shorter nanowires by glutathione, which may benefit fractionated radiation. CONCLUSION Our studies suggest that gold nanowires are a promising type of radiosensitizer that can be safely injected into tumors to enhance radiotherapy. While the current study was conducted in a breast cancer model, the approach can be extended to the treatment of other cancer types.
Collapse
Affiliation(s)
- Lin Bai
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, Jilin, China
| | - Fangchao Jiang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Renjie Wang
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, Jilin, China
| | - Chaebin Lee
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Hui Wang
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Wen Jiang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Dandan Li
- Department of Gastrointestinal Medicine, Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Bin Ji
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, Jilin, China
| | - Zibo Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, Jilin, China
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.
| | - Qingjie Ma
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
19
|
Narasimh An AK, Chakaravarthi G, Rao MSR, Arunachalam K. Study of absorption of radio frequency field by gold nanoparticles and nanoclusters in biological medium. Electromagn Biol Med 2020; 39:183-195. [PMID: 32408843 DOI: 10.1080/15368378.2020.1762637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Gold nanoparticles (AuNPs) and gold nanoclusters (AuNCs) are gaining interest in medical diagnosis and therapy as they are bio-compatible and are easy to functionalize. Their interaction with radiofrequency (RF) field for hyperthermia treatment is ambiguous and needs further investigation. A systematic study of the absorption of capacitive RF field by AuNPs and AuNCs dispersed in phosphate-buffered saline (PBS) is reported here in tissue mimicking phantom. The stability of AuNPs and AuNCs dispersed in PBS was confirmed for a range of pH and temperature expected during RF hyperthermia treatment. Colloidal gold solutions with AuNPs (10 nm) and AuNCs (2 nm), and control, i.e. PBS without nanogold, were loaded individually in 3 ml wells in a tissue phantom. Phantom heating was carried out using 27 MHz short-wave diathermy equipment at 200 and 400 W for control and colloidal gold solutions. Experiments were conducted for colloidal gold at varying gold concentrations (10-100 µg/ml). Temperature rise measured in the phantom wells did not show dependence on the concentration and size of the AuNPs. Furthermore, temperature rise recorded in the control was comparable with the measurements recorded in both nanogold suspensions (2, 10 nm). Dielectric property measurements of control and colloidal gold showed <3% difference in electrical conductivity between the control and colloidal gold for both nanoparticle sizes. From the measurements, it is concluded that AuNPs and AuNCs do not enhance the absorption of RF-capacitive field and power absorption observed in the biological medium is due to the ions present in the medium.
Collapse
Affiliation(s)
- Ashwin Kumar Narasimh An
- Department of Biomedical Engineering, SRM Institute of Science and Technology , Kattankulathur, India
| | - Geetha Chakaravarthi
- Department of Instrumentation and Control Engineering, NIT Trichy , Tiruchirappalli, India
| | - M S Ramachandra Rao
- Nano Functional Materials Technology Centre, Department of Physics, Indian Institute of Technology Madras , Chennai, India
| | - Kavitha Arunachalam
- Department of Engineering Design, Indian Institute of Technology Madras , Chennai, India
| |
Collapse
|
20
|
Zhao P, Chen X, Wang Q, Zou H, Xie Y, Liu H, Zhou Y, Liu P, Dai H. Differential toxicity mechanism of gold nanoparticles in HK-2 renal proximal tubular cells and 786-0 carcinoma cells. Nanomedicine (Lond) 2020; 15:1079-1096. [PMID: 32031480 DOI: 10.2217/nnm-2019-0417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To research the influence and mechanism of gold nanoparticles (AuNPs) with different size for HK-2 cells (kidney normal cells) and 786-0 cells (kidney cancer cells). Materials & methods: HK-2 cells and 786-0 cells were treated with 5 and 200 nm AuNPs at 1 and 10 μg/ml. The cell viability, intracellular reactive oxygen species levels, cell apoptosis, cell autophagy, and related cell signaling pathways were analyzed. Results: In HK-2 cells, AuNPs reduced the activity of Akt and mTOR and upregulated the expression of LC3 II. In 786-0 cells, the activity of p38 was upregulated, which leaded to the increase of caspase 3 and initiated apoptosis. Conclusion: AuNPs of 5 and 200 nm at 10 μg/ml exerted antitumor effect by prompting apoptosis and inhibiting proliferation, while autophagy was activated to protect HK-2 cells from AuNPs-induced cytotoxicity.
Collapse
Affiliation(s)
- Peipei Zhao
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
| | - Xiaojing Chen
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Qiaoling Wang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Hanbing Zou
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yuexia Xie
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Hongmei Liu
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yan Zhou
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Huili Dai
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| |
Collapse
|
21
|
Ahmad T, Sarwar R, Iqbal A, Bashir U, Farooq U, Halim SA, Khan A, Al-Harrasi A. Recent advances in combinatorial cancer therapy via multifunctionalized gold nanoparticles. Nanomedicine (Lond) 2020; 15:1221-1237. [DOI: 10.2217/nnm-2020-0051] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The diverse behavior of nanogold in the therapeutic field is related to its unique size and shape. Nanogold offers improvements in modern diagnostic and therapeutic implications, increases disease specificity and targeted drug delivery, and is relatively economical compared with other chemotherapeutic protocols. The diagnosis of cancer and photothermal therapy improve drastically with the implementation of nanotechnology. Different types of nanoparticles, that is, gold silica nanoshells, nanorods and nanospheres of diverse shapes and geometries, are used widely in the photothermal therapy of cancerous cells and nodules. Numerous reviews have been published on the therapeutic applications of gold nanoparticles, but studies on combinatorial applications of nanogold in cancer therapy are limited. This review focuses on the combinatorial cancer therapy using optical properties of nanogold with different shapes and geometries, and their therapeutic applications in cancer diagnosis, photothermal therapy, cancer imaging and targeted drug delivery.
Collapse
Affiliation(s)
- Touqeer Ahmad
- Natural & Medical Sciences Research Center, University of Nizwa, PO Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman
| | - Rizwana Sarwar
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Ayesha Iqbal
- Division of Pharmacy Practice & Policy, School of pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Uzma Bashir
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Sobia Ahsan Halim
- Natural & Medical Sciences Research Center, University of Nizwa, PO Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman
| | - Ajmal Khan
- Natural & Medical Sciences Research Center, University of Nizwa, PO Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, PO Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman
| |
Collapse
|
22
|
Singh S, Melnik R. Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions. Electromagn Biol Med 2020; 39:49-88. [PMID: 32233691 DOI: 10.1080/15368378.2020.1741383] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Percutaneous thermal ablation has proven to be an effective modality for treating both benign and malignant tumours in various tissues. Among these modalities, radiofrequency ablation (RFA) is the most promising and widely adopted approach that has been extensively studied in the past decades. Microwave ablation (MWA) is a newly emerging modality that is gaining rapid momentum due to its capability of inducing rapid heating and attaining larger ablation volumes, and its lesser susceptibility to the heat sink effects as compared to RFA. Although the goal of both these therapies is to attain cell death in the target tissue by virtue of heating above 50°C, their underlying mechanism of action and principles greatly differs. Computational modelling is a powerful tool for studying the effect of electromagnetic interactions within the biological tissues and predicting the treatment outcomes during thermal ablative therapies. Such a priori estimation can assist the clinical practitioners during treatment planning with the goal of attaining successful tumour destruction and preservation of the surrounding healthy tissue and critical structures. This review provides current state-of-the-art developments and associated challenges in the computational modelling of thermal ablative techniques, viz., RFA and MWA, as well as touch upon several promising avenues in the modelling of laser ablation, nanoparticles assisted magnetic hyperthermia and non-invasive RFA. The application of RFA in pain relief has been extensively reviewed from modelling point of view. Additionally, future directions have also been provided to improve these models for their successful translation and integration into the hospital work flow.
Collapse
Affiliation(s)
- Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada.,BCAM - Basque Center for Applied Mathematics, Bilbao, Spain
| |
Collapse
|
23
|
Liebl M, Schulze-Hagen M, Zimmermann M, Pedersoli F, Kuhl C, Bruners P, Isfort P. Microwave Ablation in the Proximity of Surgical Clips: Is there a Safety Issue? Cardiovasc Intervent Radiol 2020; 43:918-923. [PMID: 32236668 PMCID: PMC7225190 DOI: 10.1007/s00270-020-02453-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
Abstract
Purpose The purpose of this study was to evaluate the heat generation of surgical clips within the target area of MWA and the influences on the ablation volume. Materials and Methods In bovine liver tissue, 42 ex vivo microwave ablations (60 W; 180 s) were performed. During ablation, the temperature was measured continuously at 4 points of interest (POI), in a distance of 7.5 and 15 mm on each side of the microwave antenna, with a titanium surgical placed at one 7.5-mm POI. Ablation volumes containing large vessels (n = 10) were excluded. For every POI, the mean temperature of 32 ablations was calculated. The mean temperatures were compared between the 4 POI and statistically analyzed using the Student’s t test. Results The mean maximum temperatures at the side of the clip were 88.76 °C/ 195 s and 52.97 °C/ 195 s and at the side without clip 78.75 °C/ 195 s and 43.16 °C/ 195 s, respectively, at POI 7.5 mm and POI 15 mm. The maximum difference of mean temperatures for POI 7.5 mm was 12.91 °C at 84 s (p = 0.022) and for POI 15 mm 9.77 °C at 195 s (p = 0.009). No significant changes in size and shape of the ablation zone could be determined. Conclusions Our study demonstrated significantly higher temperatures adjacent to surgical clips. Also, the temperatures distal to the titanium clip were higher compared to the control location without clip. These findings suggest an increased risk of thermal damage to surrounding tissues during MWA, especially in case of immediate contact to surgical clips.
Collapse
Affiliation(s)
- Martin Liebl
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.,Hôpital Kirchberg (Hôpitaux Robert Schuman), 9, Rue Edward Steichen, 2540, Luxembourg, Luxembourg
| | - Maximilian Schulze-Hagen
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Markus Zimmermann
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Federico Pedersoli
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Philipp Bruners
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Peter Isfort
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
24
|
Janairo JIB, Sy-Janairo MLL. Estimating the Effectiveness of Gold and Iron Oxide Nanoparticles for Hepatocellular Carcinoma Ablation Therapy: a Meta-Analysis. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00733-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Ashikbayeva Z, Tosi D, Balmassov D, Schena E, Saccomandi P, Inglezakis V. Application of Nanoparticles and Nanomaterials in Thermal Ablation Therapy of Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1195. [PMID: 31450616 PMCID: PMC6780818 DOI: 10.3390/nano9091195] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 01/21/2023]
Abstract
Cancer is one of the major health issues with increasing incidence worldwide. In spite of the existing conventional cancer treatment techniques, the cases of cancer diagnosis and death rates are rising year by year. Thus, new approaches are required to advance the traditional ways of cancer therapy. Currently, nanomedicine, employing nanoparticles and nanocomposites, offers great promise and new opportunities to increase the efficacy of cancer treatment in combination with thermal therapy. Nanomaterials can generate and specifically enhance the heating capacity at the tumor region due to optical and magnetic properties. The mentioned unique properties of nanomaterials allow inducing the heat and destroying the cancerous cells. This paper provides an overview of the utilization of nanoparticles and nanomaterials such as magnetic iron oxide nanoparticles, nanorods, nanoshells, nanocomposites, carbon nanotubes, and other nanoparticles in the thermal ablation of tumors, demonstrating their advantages over the conventional heating methods.
Collapse
Affiliation(s)
- Zhannat Ashikbayeva
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Daniele Tosi
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
- PI National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Damir Balmassov
- Department of Pedagogical Sciences, Astana International University, 8 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Emiliano Schena
- Measurements and Biomedical Instrumentation Lab, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milano, Italy
| | - Vassilis Inglezakis
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan.
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan.
| |
Collapse
|
26
|
Chen CC, Chen CL, Li JJ, Chen YY, Wang CY, Wang YS, Chi KH, Wang HE. Presence of Gold Nanoparticles in Cells Associated with the Cell-Killing Effect of Modulated Electro-Hyperthermia. ACS APPLIED BIO MATERIALS 2019; 2:3573-3581. [PMID: 35030743 DOI: 10.1021/acsabm.9b00453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The efficacy of gold nanoparticle (AuNP)-assisted radiofrequency (RF)-induced hyperthermia employing the Kanzius device remains controversial. Different from the Kanzius device, modulated electro-hyperthermia (mEHT) utilizes the capacitive-impedance coupled 13.56 MHz radiofrequency (RF) current and has been approved for clinical cancer treatment. In this study, we investigated the heating characteristics of spherical-, urchin-, and rod-like AuNPs of a similar 50 nm size upon exposure to a 13.56 MHz radiofrequency using the LabEHY-105CL, an in vivo mEHT device. We found that, regardless of the AuNPs' sphere-, urchin- or rod-like shape, purified gold nanoparticle solution would not promote heat generation. The temperature elevation during radiofrequency irradiation was solely attributed to the ionic background of the solution. The AuNPs present in the medium (≤25 ppm) showed no effect on selective cell killing of malignant cells, whereas the AuNPs incorporated in the cells diminished the cell selectivity as well as cell death and acted as protectors in mEHT cancer treatment. Our study suggested that (1) the temperature elevation induced by 50 nm AuNPs in the 13.56 MHz radiofrequency field was negligible and was shape-independent, and (2) the presence of AuNPs would alter the cell-killing effect of modulated electro-hyperthermia.
Collapse
Affiliation(s)
- Chao-Cheng Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Jia-Je Li
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Ya-Yun Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Chung-Yih Wang
- Department of Radiotherapy, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Yu-Shan Wang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 112, Taiwan
| | - Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
27
|
Gongalsky M, Gvindzhiliia G, Tamarov K, Shalygina O, Pavlikov A, Solovyev V, Kudryavtsev A, Sivakov V, Osminkina LA. Radiofrequency Hyperthermia of Cancer Cells Enhanced by Silicic Acid Ions Released During the Biodegradation of Porous Silicon Nanowires. ACS OMEGA 2019; 4:10662-10669. [PMID: 31460163 PMCID: PMC6648043 DOI: 10.1021/acsomega.9b01030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/04/2019] [Indexed: 05/09/2023]
Abstract
The radiofrequency (RF) mild hyperthermia effect sensitized by biodegradable nanoparticles is a promising approach for therapy and diagnostics of numerous human diseases including cancer. Herein, we report the significant enhancement of local destruction of cancer cells induced by RF hyperthermia in the presence of degraded low-toxic porous silicon (PSi) nanowires (NWs). Proper selection of RF irradiation time (10 min), intensity, concentration of PSi NWs, and incubation time (24 h) decreased cell viability to 10%, which can be potentially used for cancer treatment. The incubation for 24 h is critical for degradation of PSi NWs and the formation of silicic acid ions H+ and H3SiO4 - in abundance. The ions drastically change the solution conductivity in the vicinity of PSi NWs, which enhances the absorption of RF radiation and increases the hyperthermia effect. The high biodegradability and efficient photoluminescence of PSi NWs were governed by their mesoporous structure. The average size of pores was 10 nm, and the sizes of silicon nanocrystals (quantum dots) were 3-5 nm. Degradation of PSi NWs was observed as a significant decrease of optical absorbance, photoluminescence, and Raman signals of PSi NW suspensions after 24 h of incubation. Localization of PSi NWs at cell membranes revealed by confocal microscopy suggested that thermal poration of membranes could cause cell death. Thus, efficient photoluminescence in combination with RF-induced cell membrane breakdown indicates promising opportunities for theranostic applications of PSi NWs.
Collapse
Affiliation(s)
- Maxim Gongalsky
- Department
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- E-mail: (M.G.)
| | - Georgii Gvindzhiliia
- Department
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Konstantin Tamarov
- Department
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- University
of Eastern Finland - Kuopio Campus, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Olga Shalygina
- Department
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Alexander Pavlikov
- Department
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Valery Solovyev
- Institute
of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, 142290 Moscow Region, Russia
| | - Andrey Kudryavtsev
- Institute
of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, 142290 Moscow Region, Russia
| | | | - Liubov A. Osminkina
- Department
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Institute
for Biological Instrumentation of Russian Academy of Sciences, Pushchino 142290, Russia
- E-mail: (L.A.O.)
| |
Collapse
|
28
|
|
29
|
Gold nanoparticles application in liver cancer. Photodiagnosis Photodyn Ther 2019; 25:389-400. [DOI: 10.1016/j.pdpdt.2019.01.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 12/16/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022]
|
30
|
Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, Patra HK. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun (Camb) 2019; 55:6964-6996. [DOI: 10.1039/c9cc01741k] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging properties of noble metal nanoparticles are attracting huge interest from the translational scientific community. In this feature article, we highlight recent advances in the adaptation of noble metal nanomaterials and their biomedical applications in therapeutics, diagnostics and sensing.
Collapse
Affiliation(s)
- Mohammad Azharuddin
- Department of Clinical and Experimental Medicine
- Linkoping University
- Linkoping
- Sweden
| | - Geyunjian H. Zhu
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge
- UK
| | - Debapratim Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Erdogan Ozgur
- Hacettepe University
- Faculty of Science
- Department of Chemistry
- Ankara
- Turkey
| | - Lokman Uzun
- Hacettepe University
- Faculty of Science
- Department of Chemistry
- Ankara
- Turkey
| | | | - Hirak K. Patra
- Department of Clinical and Experimental Medicine
- Linkoping University
- Linkoping
- Sweden
- Department of Chemical Engineering and Biotechnology
| |
Collapse
|
31
|
Amini SM. Gold nanostructures absorption capacities of various energy forms for thermal therapy applications. J Therm Biol 2018; 79:81-84. [PMID: 30612690 DOI: 10.1016/j.jtherbio.2018.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/04/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023]
Abstract
This mini-review has investigated the recent progress regarding gold nanostructures capacities of energy absorption for thermal therapy applications. Unselective thermal therapy of malignant and normal tissues could lead to irreversible damage to healthy tissues without effective treatment on target malignant tissues. In recent years, there has been a considerable progress in the field of cancer thermal therapy for treating target malignant tissues using nanostructures. Due to the remarkable physical properties of the gold nanoparticle, it has been considered as an exceptional element for thermal therapy techniques. Different types of gold nanoparticles have been used as energy absorbent for thermal therapy applications under several types of energy exposures. Electromagnetic, ultrasound, electric and magnetic field are examples for these energy sources. Well-known plasmonic photothermal therapy which applies electromagnetic radiation is under clinical investigation for the treatment of various medical conditions. However, there are many other techniques in this regard which should be explored.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Medical Nanotechnology Department, School of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
32
|
Affiliation(s)
- Krzysztof Sztandera
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
- Leibniz Institute of Polymer Research Dresden, 6 Hohe St., 01069 Dresden, Germany
| |
Collapse
|
33
|
Karpuz M, Silindir-Gunay M, Ozer AY. Current and Future Approaches for Effective Cancer Imaging and Treatment. Cancer Biother Radiopharm 2018; 33:39-51. [PMID: 29634415 DOI: 10.1089/cbr.2017.2378] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cancer poses a major health problem, not only due to cancer-related deaths but also because of treatment toxicities. This review discusses early diagnosis and strategies to overcome treatment difficulties, to facilitate recovery, and prevent deaths. Generally, noninvasive techniques such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission computed tomography (PET), and their hybrid systems, including SPECT/CT, PET/CT, and PET/MRI, are used in diagnosis of cancer. Cancer treatment in clinics still comprises conventional methods such as chemotherapy, radiotherapy, and surgery. However, these techniques and methods are often inadequate. Therefore, new approaches, including the formulation of actively and/or passively targeted nanosized drug delivery systems and combined treatment protocols, are being investigated. In this article, conventional cancer imaging and treatment are reviewed. In addition, the formulation of nanosized systems and their use in cancer treatment are discussed and combined diagnostic and therapeutic (theranostic) approach are proposed as additional cancer therapies.
Collapse
Affiliation(s)
- Merve Karpuz
- 1 Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University , Sihhiye, Ankara, Turkey .,2 Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University , Cigli, Izmir, Turkey
| | - Mine Silindir-Gunay
- 1 Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University , Sihhiye, Ankara, Turkey
| | - Asuman Yekta Ozer
- 1 Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University , Sihhiye, Ankara, Turkey
| |
Collapse
|
34
|
Tamarov K, Gongalsky M, Osminkina L, Huang Y, Omar M, Yakunin V, Ntziachristos V, Razansky D, Timoshenko V. Electrolytic conductivity-related radiofrequency heating of aqueous suspensions of nanoparticles for biomedicine. Phys Chem Chem Phys 2018; 19:11510-11517. [PMID: 28425519 DOI: 10.1039/c7cp00728k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of suitable contrast agents can significantly enhance the efficiency of modern imaging and treatment techniques, such as thermoacoustic (TA) tomography and radio-frequency (RF) hyperthermia of cancer. Here, we examine the heating of aqueous suspensions of silicon (Si) and gold (Au) nanoparticles (NPs) under RF irradiation in the MHz frequency range. The heating rate of aqueous suspensions of Si NPs exhibited non-monotonic dependency on the electrical conductivity of the suspension. The experimental results were explained by the mathematical model considering oscillating solvated ions as the main source of Joule heating. These ions could be the product of the dissolution of Si NPs or organic coating of Au NPs. Thus, the ions governed the conductivity of the suspensions, which in turn governs both the heating rate and the near-field RF TA response. The model predicted the contrast in different tissues taking into account both Joule heating and dielectric losses.
Collapse
Affiliation(s)
- Konstantin Tamarov
- Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia. and Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maxim Gongalsky
- Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia. and Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Liubov Osminkina
- Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia. and National Research Nuclear University "MEPhI", International Laboratory "Bionanophotonics", 115409 Moscow, Russia
| | - Yuanhui Huang
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging, Technische Universität München, 80333 Munich, Germany
| | - Murad Omar
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging, Technische Universität München, 80333 Munich, Germany
| | - Valery Yakunin
- Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging, Technische Universität München, 80333 Munich, Germany
| | - Daniel Razansky
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging, Technische Universität München, 80333 Munich, Germany
| | - Victor Timoshenko
- Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia. and National Research Nuclear University "MEPhI", International Laboratory "Bionanophotonics", 115409 Moscow, Russia
| |
Collapse
|
35
|
Jose A, Surendran M, Fazal S, Prasanth BP, Menon D. Multifunctional fluorescent iron quantum clusters for non-invasive radiofrequency ablationof cancer cells. Colloids Surf B Biointerfaces 2018. [PMID: 29525697 DOI: 10.1016/j.colsurfb.2018.02.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This work reports the potential of iron quantum clusters (FeQCs) as a hyperthermia agent for cancer, by testing its in-vitro response to shortwave (MHz range), radiofrequency (RF) waves non-invasively. Stable, fluorescent FeQCs of size ∼1 nm prepared by facile aqueous chemistry from endogenous protein haemoglobin were found to give a high thermal response, with a ΔT ∼50 °C at concentrationsas low as165 μg/mL. The as-prepared nanoclusters purified by lyophilization as well as dialysis showed a concentration, power and time-dependent RF response, with the lyophilized FeQCs exhibiting pronounced heating effects. FeQCs were found to be cytocompatible to NIH-3T3 fibroblast and 4T1 cancer cells treated at concentrations upto 1000 μg/mL for 24 h. Upon incubation with FeQCs and exposure to RF waves, significant cancer cell death was observed which proves its therapeutic ability. The fluorescent ability of the clusters could additionally be utilized for imaging cancer cells upon excitation at ∼450 nm. Further, to demonstrate the feasibility of imparting additional functionality such as drug/biomolecule/dye loading to FeQCs, they were self assembled with cationic polymers to form nanoparticles. Self assembly did not alter the RF heating potential of FeQCs and additionally enhanced its fluorescence. The multifunctional fluorescent FeQCs therefore show good promise as a novel therapeutic agent for RF hyperthermia and drug loading.
Collapse
Affiliation(s)
- Akhila Jose
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Mrudula Surendran
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sajid Fazal
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Bindhu-Paul Prasanth
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Deepthy Menon
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| |
Collapse
|
36
|
Affiliation(s)
- Ankush Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Amit K. Goyal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Goutam Rath
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| |
Collapse
|
37
|
Mironava T, Arachchilage VT, Myers KJ, Suchalkin S. Gold Nanoparticles and Radio Frequency Field Interactions: Effects of Nanoparticle Size, Charge, Aggregation, Radio Frequency, and Ionic Background. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13114-13124. [PMID: 29061042 DOI: 10.1021/acs.langmuir.7b03210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we investigated experimentally the dependency of radio frequency (rf) absorption by gold nanoparticles (AuNPs) on frequency (10 kHz to 450 MHz), NP size (3.5, 17, and 36 nm), charge of the ligand shell (positive amino and negative carboxylic functional groups), aggregation state, and presence of electrolytes (0-1 M NaCl). In addition, we examined the effect of protein corona on the rf absorption by AuNPs. For the first time, rf energy absorption by AuNPs was analyzed in the 10 kHz to 450 MHz rf range. We have demonstrated that the previously reported rf heating of AuNPs can be solely attributed to the heating of the ionic background and AuNPs do not absorb noticeable rf energy regardless of the NP size, charge, aggregation, and presence of electrolytes. However, the formation of protein corona on the AuNP surface resulted in rf energy absorption by AuNP-albumin constructs, suggesting that protein corona might be partially responsible for the heating of AuNPs observed in vivo. The optimal frequency of rf absorption for the AuNP-albumin constructs is significantly higher than conventional 13.56 MHz, suggesting that the heating of AuNPs in rf field should be performed at considerably higher frequencies for better results in vivo.
Collapse
Affiliation(s)
- Tatsiana Mironava
- Materials Science and Engineering and ‡Electrical and Computer Engineering, Stony Brook University , Stony Brook, New York 11794, United States
| | - Visal T Arachchilage
- Materials Science and Engineering and ‡Electrical and Computer Engineering, Stony Brook University , Stony Brook, New York 11794, United States
| | - Kenneth J Myers
- Materials Science and Engineering and ‡Electrical and Computer Engineering, Stony Brook University , Stony Brook, New York 11794, United States
| | - Sergey Suchalkin
- Materials Science and Engineering and ‡Electrical and Computer Engineering, Stony Brook University , Stony Brook, New York 11794, United States
| |
Collapse
|
38
|
Abstract
The fields of biomedical nanotechnology and theranostics have enjoyed exponential growth in recent years. The "Molecular Imaging in Nanotechnology and Theranostics" (MINT) Interest Group of the World Molecular Imaging Society (WMIS) was created in order to provide a more organized and focused forum on these topics within the WMIS and at the World Molecular Imaging Conference (WMIC). The interest group was founded in 2015 and was officially inaugurated during the 2016 WMIC. The overarching goal of MINT is to bring together the many scientists who work on molecular imaging approaches using nanotechnology and those that work on theranostic agents. MINT therefore represents scientists, labs, and institutes that are very diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of materials and approaches that drive these fields. In this short review, we attempt to provide a condensed overview over some of the key areas covered by MINT. Given the breadth of the fields and the given space constraints, we have limited the coverage to the realm of nanoconstructs, although theranostics is certainly not limited to this domain. We will also focus only on the most recent developments of the last 3-5 years, in order to provide the reader with an intuition of what is "in the pipeline" and has potential for clinical translation in the near future.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suchetan Pal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lara Rotter
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jiang Yang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
39
|
Choi K, Riviere JE, Monteiro-Riviere NA. Protein corona modulation of hepatocyte uptake and molecular mechanisms of gold nanoparticle toxicity. Nanotoxicology 2016; 11:64-75. [DOI: 10.1080/17435390.2016.1264638] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kyoungju Choi
- Department of Anatomy and Physiology, Kansas State University, Nanotechnology Innovation Center of Kansas State (NICKS), Manhattan, KS, USA
| | - Jim E. Riviere
- Department of Anatomy and Physiology, Kansas State University, Nanotechnology Innovation Center of Kansas State (NICKS), Manhattan, KS, USA
| | - Nancy A. Monteiro-Riviere
- Department of Anatomy and Physiology, Kansas State University, Nanotechnology Innovation Center of Kansas State (NICKS), Manhattan, KS, USA
| |
Collapse
|
40
|
Avvakumova S, Galbiati E, Sironi L, Locarno SA, Gambini L, Macchi C, Pandolfi L, Ruscica M, Magni P, Collini M, Colombo M, Corsi F, Chirico G, Romeo S, Prosperi D. Theranostic Nanocages for Imaging and Photothermal Therapy of Prostate Cancer Cells by Active Targeting of Neuropeptide-Y Receptor. Bioconjug Chem 2016; 27:2911-2922. [DOI: 10.1021/acs.bioconjchem.6b00568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | - Silvia A. Locarno
- Università degli Studi di Milano, Dipartimento di
Scienze Farmaceutiche, via Mangiagalli 25, 20133, Milano, Italy
| | - Luca Gambini
- Università degli Studi di Milano, Dipartimento di
Scienze Farmaceutiche, via Mangiagalli 25, 20133, Milano, Italy
| | - Chiara Macchi
- Università degli Studi di Milano, Dipartimento di
Scienze Farmacologiche e Biomolecolari, via Balzaretti 9, 20133, Milano, Italy
| | | | - Massimiliano Ruscica
- Università degli Studi di Milano, Dipartimento di
Scienze Farmacologiche e Biomolecolari, via Balzaretti 9, 20133, Milano, Italy
| | - Paolo Magni
- Università degli Studi di Milano, Dipartimento di
Scienze Farmacologiche e Biomolecolari, via Balzaretti 9, 20133, Milano, Italy
| | | | | | - Fabio Corsi
- Surgery
Department, Breast Unit, ICS Maugeri S.p.A. SB, via S. Maugeri 10, 27100, Pavia, Italy
- Department
of Biomedical and Clinical Sciences L. Sacco, University of Milan, Via. G.B. Grassi 74, 20157, Milano, Italy
| | | | - Sergio Romeo
- Università degli Studi di Milano, Dipartimento di
Scienze Farmaceutiche, via Mangiagalli 25, 20133, Milano, Italy
| | | |
Collapse
|
41
|
Wang Q, Huang JY, Li HQ, Chen Z, Zhao AZJ, Wang Y, Zhang KQ, Sun HT, Al-Deyab SS, Lai YK. TiO 2 nanotube platforms for smart drug delivery: a review. Int J Nanomedicine 2016; 11:4819-4834. [PMID: 27703349 PMCID: PMC5036548 DOI: 10.2147/ijn.s108847] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.
Collapse
Affiliation(s)
- Qun Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People’s Republic of China
| | - Jian-Ying Huang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
| | - Hua-Qiong Li
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Allan Zi-Jian Zhao
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Yi Wang
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
| | - Hong-Tao Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People’s Republic of China
| | - Salem S Al-Deyab
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yue-Kun Lai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
| |
Collapse
|
42
|
Wu CC, Yang YC, Hsu YT, Wu TC, Hung CF, Huang JT, Chang CL. Nanoparticle-induced intraperitoneal hyperthermia and targeted photoablation in treating ovarian cancer. Oncotarget 2016; 6:26861-75. [PMID: 26318039 PMCID: PMC4694958 DOI: 10.18632/oncotarget.4766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/22/2015] [Indexed: 12/22/2022] Open
Abstract
Hyperthermic intraperitoneal chemotherapy is effective in treating various intra-abdominal malignancies. However, this therapeutic modality can only be performed during surgical operations and cannot be used repeatedly. We propose repeatedly noninvasive hyperthermia mediated by pegylated silica-core gold nanoshells (pSGNs) in vivo with external near-infrared (NIR) laser irradiation. This study demonstrated that repeated photothermal treatment can effectively eliminate intraperitoneal tumors in mouse ovarian cancer models without damage of normal tissues. By conjugating pSGNs with anti-human CD47 monoclonal antibody, a significant photoablative effect can be achieved using lower amount of pSGNs and shorter NIR laser irradiation. Conjugated pSGNs specifically targeted and bound to cancer cells inside the peritoneal cavity. Our results indicate the possibility of a noninvasive method of repeated hyperthermia and photoablative therapies using nanoparticles. This has substantial clinical potential in treating ovarian and other intraperitoneal cancers.
Collapse
Affiliation(s)
- Chao-Chih Wu
- Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei City, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Yuh-Cheng Yang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Yun-Ting Hsu
- Department of Medical Research, Mackay Memorial Hospital, Taipei City, Taiwan
| | - T-C Wu
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, USA.,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland, USA.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland, USA.,Department of Molecular Microbiology and Immunology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, USA.,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland, USA.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland, USA.,Department of Molecular Microbiology and Immunology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Jung-Tang Huang
- Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei City, Taiwan
| | - Chih-Long Chang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, Sanchi, New Taipei City, Taiwan
| |
Collapse
|
43
|
Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamrava SK. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J Control Release 2016; 235:205-221. [DOI: 10.1016/j.jconrel.2016.05.062] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 01/05/2023]
|
44
|
Bartoş A, Bartoş D, Szabo B, Breazu C, Opincariu I, Mironiuc A, Iancu C. Recent achievements in colorectal cancer diagnostic and therapy by the use of nanoparticles. Drug Metab Rev 2016; 48:27-46. [PMID: 26828283 DOI: 10.3109/03602532.2015.1130052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Colorectal cancer is a major public health issue, being the third most common cancer in men and the second in women. It is one of the leading causes of cancer deaths. Nanomedicine is an emerging field of interest, many of its aspects being linked to cancer research. Chemotherapy has a well-established role in colorectal cancer management, unfortunately being limited by inability to have a selective distribution, by multidrug resistance and adverse effects. Researches carried out in recent years about nanotechnologies aimed, among others, to resolve the issues mentioned above. Targeted and localized delivery of the chemotherapeutic drugs, using nanoparticles, with selective destruction of cancerous cells would minimize the toxicity on healthy tissues. Also, the use of nanomaterials as contrast agent could improve sensitivity and specificity of diagnosis. The purpose of this review is to highlight the recent achievements of cancer research by use of nanomaterials, in the idea of finding the ideal composite, capable to simultaneous diagnostic and treat cancer.
Collapse
Affiliation(s)
- Adrian Bartoş
- a Department of Surgery , "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology , Cluj Napoca , Romania
| | - Dana Bartoş
- b Department of Surgery , "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology; Anatomy and Embryology Department, UMF "Iuliu Haţieganu" , Cluj-Napoca , Romania
| | - Bianca Szabo
- c Department of Ophthalmology , Clinical Emergency Hospital Cluj; Anatomy and Embryology Department, UMF "Iuliu Haţieganu" , Cluj-Napoca , Romania
| | - Caius Breazu
- d Department of Anesthesiology and Intensive Care , "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, Department of Anesthesiology and Intensive Care, UMF "Iuliu Haţieganu" , Cluj-Napoca , Romania
| | - Iulian Opincariu
- e Anatomy and Embryology Department , UMF "Iuliu Haţieganu" , Cluj-Napoca , Romania
| | - Aurel Mironiuc
- f Department of Surgery , Clinical Emergency Hospital; Department of Surgery No II, UMF ''Iuliu Haţieganu'' , Cluj Napoca , Romania , and
| | - Cornel Iancu
- g Department of Surgery , " Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, Department of Surgery No III, UMF "Iuliu Haţieganu" , Cluj-Napoca , Romania
| |
Collapse
|
45
|
Nasseri B, Yilmaz M, Turk M, Kocum IC, Piskin E. Antenna-type radiofrequency generator in nanoparticle-mediated hyperthermia. RSC Adv 2016. [DOI: 10.1039/c6ra03197h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study covers the employment an antenna-type RF generator modulus at varying powers for different nanoparticle types to evaluate viability, apoptosis and necrosis of L-929 fibroblast and MCF-7 breast cancer cell lines.
Collapse
Affiliation(s)
- B. Nasseri
- Chemical Engineering Department and Bioengineering Division
- Centre for Bioengineering and Biyomedtek
- Hacettepe University
- Ankara
- Turkey
| | - M. Yilmaz
- Bioengineering Department
- Sinop University
- Sinop
- Turkey
| | - M. Turk
- Bioengineering Department
- Kirikkale University
- Kirikkale
- Turkey
| | - I. C. Kocum
- Biomedical Engineering Department
- Baskent University
- Ankara
- Turkey
| | - E. Piskin
- Chemical Engineering Department and Bioengineering Division
- Centre for Bioengineering and Biyomedtek
- Hacettepe University
- Ankara
- Turkey
| |
Collapse
|
46
|
Vasani RB, Janardanan N, Prieto-Simón B, Cifuentes-Rius A, Bradley SJ, Moore E, Kraus T, Voelcker NH. Microwave Heating of Poly(N-isopropylacrylamide)-Conjugated Gold Nanoparticles for Temperature-Controlled Display of Concanavalin A. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27755-27764. [PMID: 26629977 DOI: 10.1021/acsami.5b08765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate microwave-induced heating of gold nanoparticles and nanorods. An appreciably higher and concentration-dependent microwave-induced heating rate was observed with aqueous dispersions of the nanomaterials as opposed to pure water and other controls. Grafted with the thermoresponsive polymer poly(N-isopropylacrylamide), these gold nanomaterials react to microwave-induced heating with a conformational change in the polymer shell, leading to particle aggregation. We subsequently covalently immobilize concanavalin A (Con A) on the thermoresponsive gold nanoparticles. Con A is a bioreceptor commonly used in bacterial sensors because of its affinity for carbohydrates on bacterial cell surfaces. The microwave-induced thermal transitions of the polymer reversibly switch on and off the display of Con A on the particle surface and hence the interactions of the nanomaterials with carbohydrate-functionalized surfaces. This effect was determined using linear sweep voltammetry on a methyl-α-d-mannopyranoside-functionalized electrode.
Collapse
Affiliation(s)
- Roshan B Vasani
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Nayana Janardanan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Beatriz Prieto-Simón
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Anna Cifuentes-Rius
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Siobhan J Bradley
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Eli Moore
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Tobias Kraus
- INM-Leibniz Institute for New Materials , Campus D2 2, Saarbruecken, Saarland 66123, Germany
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
47
|
Nguyen DT, Barham W, Moss J, Zheng L, Shillinglaw B, Quaife R, Tzou WS, Sauer WH. Gadolinium Augmentation of Myocardial Tissue Heating During Radiofrequency Ablation. JACC Clin Electrophysiol 2015; 1:177-184. [DOI: 10.1016/j.jacep.2015.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/20/2015] [Accepted: 03/12/2015] [Indexed: 11/16/2022]
|
48
|
Katsumiti A, Arostegui I, Oron M, Gilliland D, Valsami-Jones E, Cajaraville MP. Cytotoxicity of Au, ZnO and SiO2NPs usingin vitroassays with mussel hemocytes and gill cells: Relevance of size, shape and additives. Nanotoxicology 2015; 10:185-93. [DOI: 10.3109/17435390.2015.1039092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Sasidharan A, Sivaram AJ, Retnakumari AP, Chandran P, Malarvizhi GL, Nair S, Koyakutty M. Radiofrequency ablation of drug-resistant cancer cells using molecularly targeted carboxyl-functionalized biodegradable graphene. Adv Healthc Mater 2015; 4:679-84. [PMID: 25586821 DOI: 10.1002/adhm.201400670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Under ultralow radiofrequency (RF) power, transferrin-conjugated graphene nanoparticles can thermally ablate drug- or radiation-resistant cancer cells very effectively. The results suggest that graphene-based RF hyperthermia can be an efficient method to manage drug-/radiation-resistant cancers.
Collapse
Affiliation(s)
- Abhilash Sasidharan
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | - Amal J. Sivaram
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | - Archana P. Retnakumari
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | - Parwathy Chandran
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | | | - Shantikumar Nair
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | - Manzoor Koyakutty
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| |
Collapse
|
50
|
Radio frequency responsive nano-biomaterials for cancer therapy. J Control Release 2015; 204:85-97. [DOI: 10.1016/j.jconrel.2015.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022]
|