1
|
Wu H, Wu X, Wu T, Miao X, Zheng S, Huang G, Cheng X. Detection Ewingella americana from a patient with Andersson lesion in ankylosing spondylitis by metagenomic next-generation sequencing test: a case report. BMC Musculoskelet Disord 2024; 25:568. [PMID: 39033154 PMCID: PMC11264891 DOI: 10.1186/s12891-024-07680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Andersen's lesion (AL) is a rare complication of ankylosing spondylitis (AS), characterized by nonneoplastic bone destruction, typically manifested as bone destruction and sclerosis in the vertebral body and/or intervertebral disc area. At present, there is no consensus on the pathology and etiology of AL. Repeated trauma, inflammation in essence and part of the natural history of Ankylosing spondylitis itself are the most widely recognized theories of the etiology of AL. However, positive bacteria cultured in bone biopsy of Andersen's lesion (AL) in Ankylosing spondylitis patients are extremely rare. Herein, we report a rare case of detecting Ewingella americana from a patient with Andersson lesion in ankylosing spondylitis by Metagenomic Next-Generation Sequencing (mNGS) Test. CASE PRESENTATION This case involved a 39-year-old male with a history of AS for 11 years, who developed AL (T11/12) in the thoracic vertebrae. After sufficient preoperative preparation, we successfully performed one-stage posterior approach corrective surgery and collected bone biopsies samples for examination. Cultured bacteria were not found, and pathological histology indicated infiltration of inflammatory cells. However, it is worth noting that we discovered a gram-negative bacterium, the Ewingella americana, through mNGS testing. Further histopathological examination suggests chronic inflammatory cell infiltration. After one-stage posterior approach corrective surgery, the patient's condition significantly improved. At the 6-month follow-up, the pain significantly decreased, and the patient returned to normal life. CONCLUSION We detected Ewinia americana in the bone biopsies of Andersson lesion (AL) in ankylosing spondylitis patient by mNGS.
Collapse
Affiliation(s)
- Hui Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiaoyun Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Tianlong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xinxin Miao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Sikuan Zheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Guanfeng Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xigao Cheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
2
|
Zaruba MM, Staggl S, Ghadge SK, Maurer T, Gavranovic-Novakovic J, Jeyakumar V, Schönherr P, Wimmer A, Pölzl G, Bauer A, Messner M. Roxadustat Attenuates Adverse Remodeling Following Myocardial Infarction in Mice. Cells 2024; 13:1074. [PMID: 38994928 PMCID: PMC11240812 DOI: 10.3390/cells13131074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Activation of the CXCL12/CXCR4/ACKR3 axis is known to aid myocardial repair through ischemia-triggered hypoxia-inducible factor-1α (HIF-1α). To enhance the upregulation of HIF-1α, we administered roxadustat, a novel prolyl hydroxylase inhibitor (PHI) clinically approved by the European Medicines Agency 2021 for the treatment of renal anemia, with the purpose of improving LV function and attenuating ischemic cardiomyopathy. METHODS We evaluated roxadustat's impact on HIF-1 stimulation, cardiac remodeling, and function after MI. Therefore, we analyzed nuclear HIF-1 expression, the mRNA and protein expression of key HIF-1 target genes (RT-PCR, Western blot), inflammatory cell infiltration (immunohistochemistry), and apoptosis (TUNEL staining) 7 days after MI. Additionally, we performed echocardiography in male and female C57BL/6 mice 28 days post-MI. RESULTS We found a substantial increase in nuclear HIF-1, associated with an upregulation of HIF-1α target genes like CXCL12/CXCR4/ACKR3 at the mRNA and protein levels. Roxadustat increased the proportion of myocardial reparative M2 CD206+ cells, suggesting beneficial alterations in immune cell migration and a trend towards reduced apoptosis. Echocardiography showed that roxadustat treatment significantly preserved ejection fraction and attenuated subsequent ventricular dilatation, thereby reducing adverse remodeling. CONCLUSIONS Our findings suggest that roxadustat is a promising clinically approved treatment option to preserve myocardial function by attenuating adverse remodeling.
Collapse
Affiliation(s)
- Marc-Michael Zaruba
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Simon Staggl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Santhosh Kumar Ghadge
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
- Valneva Austria GmbH, Campus Vienna Biocenter 3, 1030 Vienna, Austria
| | - Thomas Maurer
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Jasmina Gavranovic-Novakovic
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Vivek Jeyakumar
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Patric Schönherr
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Andreas Wimmer
- Department of Surgery, Kardinal Schwarzenberg Klinikum GmbH, 5620 Salzburg, Austria;
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Axel Bauer
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Moritz Messner
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| |
Collapse
|
3
|
Wang T, Xiao Y, Zhang J, Jing F, Zeng G. Dynamic regulation of HIF-1 signaling in the rhesus monkey heart after ischemic injury. BMC Cardiovasc Disord 2022; 22:407. [PMID: 36089604 PMCID: PMC9464399 DOI: 10.1186/s12872-022-02841-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Hypoxia inducible factor-1 (HIF-1) plays a key role in modulating post-infarct healing after myocardial ischemic injury through transcriptional regulation of hundreds of genes involved in diverse cardiac remodeling processes. However, the dynamic changes in HIF-1 target gene expression in the ischemic heart after myocardial infarction (MI) have not been well characterized. Methods We employed a rhesus monkey model of MI induced by left anterior descending artery ligation and examined the expression pattern of HIF-1 target genes in the ischemic heart at 1, 7, and 28 days after injury by bulk RNA-sequencing analysis. Results Myocardial transcriptomic analysis demonstrated a temporal-specific regulation of genes associated with the inflammatory response, cell proliferation, fibrosis and mitochondrial metabolism during the pathological progression of MI. HIF-1 target genes involved in processes related to glycolysis, angiogenesis, and extracellular matrix (ECM) remodeling also exhibited distinct expression patterns during MI progression. Copper concentrations were gradually decreased in the heart after ischemic injury, which was positively correlated with the expression of HIF-1-mediated angiogenic and glycolytic genes but negatively correlated with the expression of HIF-1-mediated ECM remodeling genes. Moreover, genes related to intracellular copper trafficking and storage were suppressed along with the loss of myocardial copper in the ischemic heart. Conclusions This study demonstrated a dynamic, functional-specific regulation of HIF-1 target gene expression during the progression of MI. The fine-tuning of HIF-1 signaling in the ischemic heart may be relate to the alteration in myocardial copper homeostasis. These findings provide transcriptomic insights into the distinct roles of HIF-1 signaling in the heart after ischemic injury, which will help determine the beneficial cutoff point for HIF-1 targeted therapy in ischemic heart diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02841-0.
Collapse
|
4
|
Wen X, Peng Y, Gao M, Zhu Y, Zhu Y, Yu F, Zhou T, Shao J, Feng L, Ma X. Endothelial Transient Receptor Potential Canonical Channel Regulates Angiogenesis and Promotes Recovery After Myocardial Infarction. J Am Heart Assoc 2022; 11:e023678. [PMID: 35253458 PMCID: PMC9075314 DOI: 10.1161/jaha.121.023678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background
Transient receptor potential canonical (TRPC) channels play a role in angiogenesis. However, the involvement of TRPC1 in myocardial infarction (MI) remains unclear. The present study was aimed at investigating whether TRPC1 can improve the recovery of cardiac function via prompting angiogenesis following MI.
Methods and Results
In vitro, coronary artery endothelial cells from floxed TRPC1 mice and endothelial cell‐specific TRPC1 channel knockout mice were cultured to access EC angiogenesis. Both EC tube formation and migration were significantly suppressed in mouse coronary artery endothelial cells from endothelial cell‐specific TRPC1 channel knockout mice. In vivo, coronary artery endothelial cells from floxed TRPC1 and endothelial cell‐specific TRPC1 channel knockout mice were subjected to MI, then echocardiography, triphenyltetrazolium chloride staining and immunofluorescence were performed to assess cardiac repair on day 28. Endothelial cell‐specific TRPC1 channel knockout mice had higher ejection fraction change, larger myocardial infarct size, and reduced capillary density in the infarct area compared with coronary artery endothelial cells from floxed TRPC1 mice. Furthermore, we found underlying regulation by HIF‐1α (hypoxic inducible factor‐1α) and MEK‐ERK (mitogen‐activated protein kinase/extracellular signal‐regulated kinase) that could be the mechanism for the angiogenetic action of TRPC1. Significantly, treatment with dimethyloxaloylglycine, an activator of HIF‐1α, induced cardiac improvement via the HIF‐1α‐TRPC1‐MEK/ERK pathway in MI mice.
Conclusions
Our study demonstrated TRPC1 improves cardiac function after MI by increasing angiogenesis via the upstream regulator HIF‐1α and downstream MEK/ERK, and dimethyloxaloylglycine treatment has protective effect on MI through the HIF‐1α‐TRPC1‐MEK/ERK pathway.
Collapse
Affiliation(s)
- Xin Wen
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Yidi Peng
- School of Pharmaceutical Sciences Jiangnan University Wuxi China
| | - Mengru Gao
- School of Pharmaceutical Sciences Jiangnan University Wuxi China
| | - Yuzhong Zhu
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Yifei Zhu
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Fan Yu
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Tingting Zhou
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Jing Shao
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Lei Feng
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Xin Ma
- Wuxi School of Medicine Jiangnan University Wuxi China
- School of Pharmaceutical Sciences Jiangnan University Wuxi China
| |
Collapse
|
5
|
Li J, Zhou W, Chen W, Wang H, Zhang Y, Yu T. Mechanism of the hypoxia inducible factor 1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post‑conditioning. Mol Med Rep 2020; 21:1527-1536. [PMID: 32016463 PMCID: PMC7003038 DOI: 10.3892/mmr.2020.10966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/24/2019] [Indexed: 01/06/2023] Open
Abstract
Ischemic post-conditioning (IPO) and diazoxide post-conditioning (DPO) has been proven to reduce myocardial ischemia reperfusion injury (MIRI); however, the mechanisms of IPO/DPO are still not clear. The present study aimed to investigate whether mitochondrial ATP-sensitive potassium channels (mitoKATP) channels are activated by IPO/DPO, which may further activate the hypoxia inducible factor 1/hypoxic response element (HIF-1/HRE) pathway to mitigate MIRI. Using a Langendorff perfusion device, healthy male (250–300 g) Sprague Dawley rat hearts were randomly divided into the following groups. Group N was aerobically perfused with K-H solution for 120 min. Group ischaemia/reperfusion (I/R) was aerobically perfused for 20 min, then subjected to 40 min hypoxia plus 60 min reperfusion. Group IPO was treated like the I/R group, but with 10 sec of hypoxia plus 10 sec of reperfusion for six rounds before reperfusion. Group DPO was exposed to 50 µM diazoxide for 5 min before reperfusion and otherwise treated the same as group I/R. In groups IPO+5-hydroxydecanoic acid (5HD), DPO+5HD and I/R+5HD, exposure to 100 µM 5HD (a mitoKATP channel specific blocker) for 5 min before reperfusion as described for groups IPO, DPO and I/R, respectively. In groups IPO+2-methoxyestradiol (2ME2), DPO+2ME2 and I/R+2ME2, exposure to 2 µM 2ME2 (a HIF-1α specific blocker) for 10 min before reperfusion as described for groups IPO, DPO and I/R respectively. Cardiac hemodynamics, myocardial injury and the expression of HIF-1/HRE pathway [HIF-1α, heme oxygenase (HO-1), inducible nitric oxide synthase (iNOS) and vascular endothelial growth factor (VEGF)] were detected in each group. The infarct size and mitochondrial Flameng scores of groups IPO/DPO were significantly decreased compared with the I/R group (P<0.05), but the myocardial protective effects of IPO/DPO could be eliminated by 5HD or 2ME2 (P<0.05). In addition, IPO/DPO could increase the mRNA expression of HIF-1α and the downstream factors of the HIF-1/HRE pathway (the mRNA and protein expression of HO-1, iNOS and VEGF; P<0.05). However, the myocardial protective effects and the activation the HIF-1/HRE pathway mediated by IPO/DPO could be eliminated by 5HD or 2ME2 (P<0.05). Therefore, the activation of the HIF-1/HRE pathway by opening mitoKATP channels may work with the mechanism of IPO/DPO in reducing MIRI.
Collapse
Affiliation(s)
- Jin Li
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Wenjing Zhou
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Wei Chen
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Haiying Wang
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yu Zhang
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Tian Yu
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
6
|
Sousa Fialho MDL, Abd Jamil AH, Stannard GA, Heather LC. Hypoxia-inducible factor 1 signalling, metabolism and its therapeutic potential in cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:831-843. [DOI: 10.1016/j.bbadis.2018.09.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/24/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022]
|
7
|
Perioperative Treatment with a Prolyl Hydroxylase Inhibitor Reduces Necrosis in a Rat Ischemic Skin Flap Model. Plast Reconstr Surg 2019; 143:769e-779e. [DOI: 10.1097/prs.0000000000005441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Dimethyloxalylglycine preserves the intestinal microvasculature and protects against intestinal injury in a neonatal mouse NEC model: role of VEGF signaling. Pediatr Res 2018; 83:545-553. [PMID: 29068435 PMCID: PMC5866158 DOI: 10.1038/pr.2017.219] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/29/2017] [Indexed: 12/22/2022]
Abstract
BackgroundNecrotizing enterocolitis (NEC) is a devastating neonatal disease characterized by intestinal necrosis. Hypoxia-inducible factor-1α (HIF-1α) has a critical role in cellular oxygen homeostasis. Here, we hypothesized that prolyl hydroxylase (PHD) inhibition, which stabilizes HIF-1α, protects against NEC by promoting intestinal endothelial cell proliferation and improving intestinal microvascular integrity via vascular endothelial growth factor (VEGF) signaling.MethodsTo assess the role of PHD inhibition in a neonatal mouse NEC model, we administered dimethyloxalylglycine (DMOG) or vehicle to pups before or during the NEC protocol, and determined mortality and incidence of severe intestinal injury. We assessed intestinal VEGF by western blot analysis and quantified endothelial cell and epithelial cell proliferation following immunofluorescence.ResultsDMOG decreased mortality and incidence of severe NEC, increased intestinal VEGF expression, and increased intestinal villus endothelial and epithelial cell proliferation in experimental NEC. Inhibiting VEGFR2 signaling eliminated DMOG's protective effect on intestinal injury severity, survival, and endothelial cell proliferation while sparing DMOG's protective effect on intestinal epithelial cell proliferation.ConclusionDMOG upregulates intestinal VEGF, promotes endothelial cell proliferation, and protects against intestinal injury and mortality in experimental NEC in a VEGFR2 dependent manner. DMOG's protective effect on the neonatal intestinal mucosa may be mediated via VEGFR2 dependent improvement of the intestinal microvasculature.
Collapse
|
9
|
Zhang X, Liu Z, Xiao Q, Zeng C, Lai CH, Fan X, Ye Q, Wang Y, Xiong Y. Donor Treatment With a Hypoxia-Inducible Factor-1 Agonist Prevents Donation After Cardiac Death Liver Graft Injury in a Rat Isolated Perfusion Model. Artif Organs 2017; 42:280-289. [PMID: 29266279 DOI: 10.1111/aor.13005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/05/2017] [Accepted: 07/12/2017] [Indexed: 12/15/2022]
Abstract
The protective role of hypoxia-inducible factor-1 (HIF-1) against liver ischemia-reperfusion injury has been well proved. However its role in liver donation and preservation from donation after cardiac death (DCD) is still unknown. The objective of this study was to test the hypothesis that pharmaceutical stabilization of HIF-1 in DCD donors would result in a better graft liver condition. Male SD rats (6 animals per group) were randomly given the synthetic prolyl hydroxylase domain inhibitor FG-4592 (Selleck, 6 mg/kg of body weight) or its vehicle (dimethylsulfoxide). Six hours later, cardiac arrest was induced by bilateral pneumothorax. Rat livers were retrieved 30 min after cardiac arrest, and subsequently cold stored in University of Wisconsin solution for 24 h. They were reperfused for 60 min with Krebs-Henseleit bicarbonate buffer in an isolated perfused liver model, after which the perfusate and liver tissues were investigated. Pretreatment with FG-4592 in DCD donors significantly improved graft function with increased bile production and synthesis of adenosine triphosphate, decreased perfusate liver enzyme release, histology injury scores and oxidative stress-induced cell injury and apoptosis after reperfusion with the isolated perfused liver model. The beneficial effects of FG-4592 is attributed in part to the accumulation of HIF-1 and ultimately increased PDK1 production. Pretreatment with FG-4592 in DCD donors resulted in activation of the HIF-1 pathway and subsequently protected liver grafts from warm ischemia and cold-stored injury. These data suggest that the pharmacological HIF-1 induction may provide a clinically applicable therapeutic intervention to prevent injury to DCD allografts.
Collapse
Affiliation(s)
- Xingjian Zhang
- Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China, Hubei
| | - Zhongzhong Liu
- Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China, Hubei
| | - Qi Xiao
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cheng Zeng
- Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China, Hubei
| | - Chin-Hui Lai
- Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China, Hubei
| | - Xiaoli Fan
- Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China, Hubei
| | - Qifa Ye
- Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China, Hubei.,Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanfeng Wang
- Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China, Hubei
| | - Yan Xiong
- Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China, Hubei
| |
Collapse
|
10
|
Li W, Li Y, Sun R, Zhou S, Li M, Feng M, Xie Y. Dual character of flavonoids in attenuating and aggravating ischemia-reperfusion-induced myocardial injury. Exp Ther Med 2017; 14:1307-1314. [PMID: 28810591 PMCID: PMC5525640 DOI: 10.3892/etm.2017.4670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 03/03/2017] [Indexed: 01/21/2023] Open
Abstract
The concept that flavonoids exert cardioprotection against myocardial ischemia-reperfusion (I/R) injury has been acknowledged by a large body of evidence. However, recent studies reported cardiotoxic effects of certain flavonoids, while the underlying mechanisms have remained largely elusive. Flavonoids have been demonstrated to activate aryl hydrocarbon receptor (Ahr), which is implicated in an array of cell signaling processes. The present study examined the cardioprotective roles of quercetin (Qu) and β-naphthoflavone (β-NF) against I/R injury and explored whether the underlying mechanism proceeds via molecular signaling downstream of Ahr. An oxygen glucose deprivation/reoxygenation (OGD/R) model of I/R was established in myocardial H9c2 cells in the absence or presence of Qu or β-NF. Qu as well as β-NF reversed OGD/R-induced overproduction of reactive oxygen species by increasing the anti-oxidative capacity of the cells and protected them from lethal injury, as demonstrated by a decreased cell death rate, lactate hydrogenase leakage and caspase-3 activity as determined by flow cytometry, colorimetric assay and western blot analysis, respectively. Immunocytochemistry, co-immunoprecipitation and western blot assays collectively revealed that Qu and β-NF engendered the translocation of Ahr from the cytoplasm into the cell nucleus, where binding of Ahr with the Ahr nuclear translocator (ARNT) blocked its binding to hypoxia-inducible factor (HIF)-1α, which inhibited the cardioprotection of HIF-1α, including the induction of nitric oxide (NO) and inhibition of vascular endothelial growth factor (VEGF) production. Ahr knockdown recovered the binding of ARNT to HIF-1α and the generation of NO and VEGF. The results of the present study suggested a dual character of Qu and β-NF in the process of myocardial I/R.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Emergency, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China.,Intensive Care Unit, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yun Li
- Department of Emergency, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Ruifang Sun
- Department of Joint Surgery, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Sumei Zhou
- Intensive Care Unit, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Meifeng Li
- Intensive Care Unit, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Mingchen Feng
- Intensive Care Unit, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yingguang Xie
- Intensive Care Unit, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
11
|
Zhou YH, Han QF, Wang LH, Liu T, Meng XY, Wu L, Li T, Jiao YR, Yao HC, Zhang DY. High mobility group box 1 protein attenuates myocardial ischemia reperfusion injury via inhibition of the p38 mitogen-activated protein kinase signaling pathway. Exp Ther Med 2017; 14:1582-1588. [PMID: 28810624 PMCID: PMC5525636 DOI: 10.3892/etm.2017.4653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 04/28/2017] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to determine the effects of high mobility group box 1 protein (HMGB1) on myocardial ischemia reperfusion (I/R) injury in rats following acute myocardial ischemia and investigate the underlying molecular mechanisms of these effects. Male Wistar rats were randomly divided into the following groups (n=10/group): Sham operation; I/R; HMGB50 (50 ng/kg HMGB1 before I/R); HMGB100 (100 ng/kg HMGB1 before I/R); and HMGB200 (200 ng/kg HMGB1 before I/R). Serum cardiac troponin I (cTnI), interleukin (IL)-6 and tumor necrosis factor (TNF)-α levels were subsequently measured. Myocardial levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were also determined. Myocardial infarction size (IS) was determined by 2,3,5-triphenyltetrazolium chloride staining. Myocardial expression of hypoxia inducible factor (HIF)-1α and phosphorylated p38 mitogen-activated protein kinase (P-p38 MAPK) protein was measured using western blotting. The results demonstrated that HMGB1 significantly decreased serum levels of cTnI, IL-6 and TNF-α and myocardial IS in I/R rats compared with the sham group (all P<0.05). HMGB1 also significantly decreased and increased myocardial levels of MDA and SOD, respectively (both P<0.05). HMGB1 significantly increased myocardial expression of HIF-1α and decreased expression of P-p38 MAPK following I/R (both P<0.05). These effects of HMGB1 occurred in a dose-dependent manner. The results of the current study indicate that the cardioprotective effects of intravenous HMGB1 are associated with increased myocardial expression of HIF-1α via inhibition of P-p38 MAPK expression, leading to inhibition of the P-p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Yan-Hong Zhou
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Qian-Feng Han
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lan-Hua Wang
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Tao Liu
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Xiao-Yan Meng
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lei Wu
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Tai Li
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Yue-Ru Jiao
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - De-Yong Zhang
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
12
|
Yu J, Zhang X, Zhang Y. Astragaloside attenuates myocardial injury in a rat model of acute myocardial infarction by upregulating hypoxia inducible factor‑1α and Notch1/Jagged1 signaling. Mol Med Rep 2017; 15:4015-4020. [PMID: 28487976 PMCID: PMC5436283 DOI: 10.3892/mmr.2017.6522] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 02/16/2017] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the mechanisms underlying the cardioprotective effect of Astragaloside against myocardial injury following myocardial infarction (MI) in a rat model. Male Wistar rats were subjected to left anterior descending branch ligation. The rats that survived 24 h (n=18) were randomly and equally assigned to three groups: MI model group, and 2.5 and 10 mg/kg/day Astragaloside group. A further six rats underwent identical surgical procedures without artery ligation, serving as sham controls. Following 28 days of treatment, the left ventricle was harvested for morphological analysis, and mRNA and protein expression levels of hypoxia inducible factor‑1α (HIF‑1α), Notch1 and Jagged1 were measured. Treatment with Astragaloside attenuated pathological changes in the myocardium. Compared with untreated MI rats, rats treated with Astragaloside exhibited significantly increased mRNA expression levels of HIF‑1α, Notch1 and Jagged1 (all P<0.01). HIF‑1α demonstrated a dose‑dependent effect (P<0.05). Astragaloside (10 mg/kg/day) significantly increased HIF‑1α (P<0.05), Notch1 (P<0.01) and Jagged1 (P<0.01) protein expression levels. Additionally, 2.5 mg/kg Astragaloside significantly increased Jagged1 protein expression levels compared with untreated MI rats. Furthermore, there was a dose‑dependent effect of Astragaloside treatment (P<0.01). These findings suggested that the cardioprotective effects of Astragaloside against myocardial injury following MI may involve upregulation of HIF‑α, Notch1 and Jagged1 signaling, implicating these molecules as therapeutic targets for the treatment of MI.
Collapse
Affiliation(s)
- Junmin Yu
- Department of Geriatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaobo Zhang
- Department of Geriatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yina Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
13
|
Prolyl-hydroxylase inhibition induces SDF-1 associated with increased CXCR4+/CD11b+ subpopulations and cardiac repair. J Mol Med (Berl) 2017; 95:825-837. [PMID: 28550361 PMCID: PMC5516048 DOI: 10.1007/s00109-017-1543-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
SDF-1/CXCR4 activation facilitates myocardial repair. Therefore, we aimed to activate the HIF-1α target genes SDF-1 and CXCR4 by dimethyloxalylglycine (DMOG)-induced prolyl-hydroxylase (PH) inhibition to augment CXCR4+ cell recruitment and myocardial repair. SDF-1 and CXCR4 expression was analyzed under normoxia and ischemia ± DMOG utilizing SDF-1-EGFP and CXCR4-EGFP reporter mice. In bone marrow and heart, CXCR4-EGFP was predominantly expressed in CD45+/CD11b+ leukocytes which significantly increased after myocardial ischemia. PH inhibition with 500 μM DMOG induced upregulation of SDF-1 mRNA in human microvascular endothelial cells (HMEC-1) and aortic vascular smooth muscle cells (HAVSMC). CXCR4 was highly elevated in HMEC-1 but almost no detectable in HAVSMC. In vivo, systemic administration of the PH inhibitor DMOG without pretreatment upregulated nuclear HIF-1α and SDF-1 in the ischemic mouse heart associated with increased recruitment of CD45+/CXCR4-EGFP+/CD11b+ cell subsets. Enhanced PH inhibition significantly upregulated reparative M2 like CXCR4-EGFP+ CD11b+/CD206+ cells compared to inflammatory M2-like CXCR4-EGFP+ CD11b+/CD86+ cells associated with reduced apoptotic cell death, increased neovascularization, reduced scar size, and an improved heart function after MI. In summary, our data suggest increased PH inhibition as a promising tool for a customized upregulation of SDF-1 and CXCR4 expression to attract CXCR4+/CD11b+ cells to the ischemic heart associated with increased cardiac repair. KEY MESSAGES DMOG-induced prolyl-hydroxylase inhibition upregulates SDF-1 and CXCR4 in human endothelial cells. Systemic application of DMOG upregulates nuclear HIF-1α and SDF-1 in vivo. Enhanced prolyl-hydroxylase inhibition increases mainly CXCR4+/CD11b+ cells. DMOG increased reparative M2-like CD11b+/CD206+ cells compared to M1-like cells after MI. Enhanced prolyl-hydroxylase inhibition improved cardiac repair and heart function.
Collapse
|
14
|
He Y, Yu S, Hu J, Cui Y, Liu P. Changes in the Anatomic and Microscopic Structure and the Expression of HIF-1α and VEGF of the Yak Heart with Aging and Hypoxia. PLoS One 2016; 11:e0149947. [PMID: 26914488 PMCID: PMC4767878 DOI: 10.1371/journal.pone.0149947] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/08/2016] [Indexed: 11/18/2022] Open
Abstract
The study aimed to identify the changes of anatomic and microscopic structure and the expression and localization of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) in the myocardium and coronary artery of the yak heart adapted to chronic hypoxia with aging. Thirty-two yaks (1 day, 6 months, 1 year, 2 years, and 5 year old) were included, and immunoelectronmicroscopy, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used. Right ventricular hypertrophy was not present in yaks with aging. There was no intima thickening phenomenon in the coronary artery. The ultrastructure of myofibrils, mitochondria, and collagen fibers and the diameter and quantity of collagen changed significantly with aging. The enzymatic activity of complexes I, II, and V increased with age. Immunogold labeling showed the localization of HIF-1α protein in the cytoplasm and nuclei of endothelial cells and cytoplasm of cardiac muscle cells, and VEGF protein in the nuclei and perinuclei areas of smooth muscle cells of coronary artery, and in the cytoplasm and nuclei of endothelial cells. ELISA results showed that HIF-1α secretion significantly increased in the myocardium and coronary artery from an age of 1 day to 2 years of yaks and decreased in old yaks. However, VEGF protein always increased with aging. The findings of this study suggest that 6 months is a key age of yak before which there are some adaptive changes to deal with low-oxygen environment, and there is a maturation of the yak heart from the age of 6 months to 2 years.
Collapse
Affiliation(s)
- Yanyu He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Junwei Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
- * E-mail:
| | - Penggang Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| |
Collapse
|
15
|
Yao HC, Zhou M, Zhou YH, Wang LH, Zhang DY, Han QF, Liu T, Wu L, Tian KL, Zhang M. Intravenous high mobility group box 1 upregulates the expression of HIF-1α in the myocardium via a protein kinase B-dependent pathway in rats following acute myocardial ischemia. Mol Med Rep 2015; 13:1211-9. [PMID: 26648172 PMCID: PMC4732844 DOI: 10.3892/mmr.2015.4648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 11/10/2015] [Indexed: 12/23/2022] Open
Abstract
The effects of intravenous high mobility group box 1 (HMGB1) on myocardial ischemia/reperfusion (I/R) injury remains to be elucidated. The purpose of the present study was to investigate the effects of intravenous HMGB1 on the expression of hypoxia inducible factor-1α (HIF-1α) in the myocardium of rats following acute myocardial ischemia, and to examine the effects of intravenous HMGB1 on myocardial I/R injury. Male Wistar rats were divided into the following groups: Sham operation group (n=10), a group exposed to ischemia for 30 min and reperfusion for 4 h (I/R group) as a control (n=10), an HMGB group, in which 100 ng/kg HMGB was administered intravenously 30 min prior to ischemia (n=10), an LY group, in whic LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), was administered intravenously (0.3 mg/kg) 40 min prior to ischemia (n=10), and the HMGB1+LY group, in which HMGB1 (100 ng/kg) and LY294002 (0.3 mg/kg) were administered intravenously 30 min and 40 min prior to ischemia, respectively (n=10). The serum levels of cardiac troponin I (cTnI) and tumor necrosis factor-α (TNF-α), and myocardial infarct size were measured. The expression levels of phosphorylated Akt and HIF-1α were investigated using western blot analyses. The results showed that pre-treatment with HMGB1 significantly decreased serum levels of cTnI, and TNF-α, and reduced myocardial infarct size following 4 h reperfusion (all P<0.05). HMGB1 also increased the expression levels of HIF-1α and p-Akt induced by I/R (P<0.05). LY294002 was found to eliminate the effects of intravenous HMGB1 on myocardial I/R injury (P<0.05). These results suggest that intravenous pre-treatment with HMGB1 may exert its cardioprotective effects via the upregulation of the myocardial expression of HIF-1α, which may be regulated by the PI3K/Akt signaling pathway, in rats following acute myocardial I/R.
Collapse
Affiliation(s)
- Heng-Chen Yao
- Department of Cardiology, Qilu Hospital of Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Min Zhou
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Yan-Hong Zhou
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lan-Hua Wang
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - De-Yong Zhang
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Qian-Feng Han
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Tao Liu
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lei Wu
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Ke-Li Tian
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Mei Zhang
- Department of Cardiology, Qilu Hospital of Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
16
|
Mayorga M, Kiedrowski M, Shamhart P, Forudi F, Weber K, Chilian WM, Penn MS, Dong F. Early upregulation of myocardial CXCR4 expression is critical for dimethyloxalylglycine-induced cardiac improvement in acute myocardial infarction. Am J Physiol Heart Circ Physiol 2015; 310:H20-8. [PMID: 26519029 DOI: 10.1152/ajpheart.00449.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/04/2015] [Indexed: 12/23/2022]
Abstract
The stromal cell-derived factor-1 (SDF-1):CXCR4 is important in myocardial repair. In this study we tested the hypothesis that early upregulation of cardiomyocyte CXCR4 (CM-CXCR4) at a time of high myocardial SDF-1 expression could be a strategy to engage the SDF-1:CXCR4 axis and improve cardiac repair. The effects of the hypoxia inducible factor (HIF) hydroxylase inhibitor dimethyloxalylglycine (DMOG) on CXCR4 expression was tested on H9c2 cells. In mice a myocardial infarction (MI) was produced in CM-CXCR4 null and wild-type controls. Mice were randomized to receive injection of DMOG (DMOG group) or saline (Saline group) into the border zone after MI. Protein and mRNA expression of CM-CXCR4 were quantified. Echocardiography was used to assess cardiac function. During hypoxia, DMOG treatment increased CXCR4 expression of H9c2 cells by 29 and 42% at 15 and 24 h, respectively. In vivo DMOG treatment increased CM-CXCR4 expression at 15 h post-MI in control mice but not in CM-CXCR4 null mice. DMOG resulted in increased ejection fraction in control mice but not in CM-CXCR4 null mice 21 days after MI. Consistent with greater cardiomyocyte survival with DMOG treatment, we observed a significant increase in cardiac myosin-positive area within the infarct zone after DMOG treatment in control mice, but no increase in CM-CXCR4 null mice. Inhibition of cardiomyocyte death in MI through the stabilization of HIF-1α requires downstream CM-CXCR4 expression. These data suggest that engagement of the SDF-1:CXCR4 axis through the early upregulation of CM-CXCR4 is a strategy for improving cardiac repair after MI.
Collapse
Affiliation(s)
- Mari Mayorga
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and
| | - Matthew Kiedrowski
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and
| | - Patricia Shamhart
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and
| | - Farhad Forudi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and
| | - Kristal Weber
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and
| | - Marc S Penn
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and Summa Cardiovascular Institute, Summa Health System, Akron, Ohio
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and
| |
Collapse
|
17
|
Townley-Tilson WHD, Pi X, Xie L. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:676893. [PMID: 26491535 PMCID: PMC4600863 DOI: 10.1155/2015/676893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/26/2015] [Accepted: 04/10/2015] [Indexed: 12/14/2022]
Abstract
Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- W. H. Davin Townley-Tilson
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinchun Pi
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liang Xie
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
18
|
Peng J, Lai ZG, Fang ZL, Xing S, Hui K, Hao C, Jin Q, Qi Z, Shen WJ, Dong QN, Bing ZH, Fu DL. Dimethyloxalylglycine prevents bone loss in ovariectomized C57BL/6J mice through enhanced angiogenesis and osteogenesis. PLoS One 2014; 9:e112744. [PMID: 25394221 PMCID: PMC4231053 DOI: 10.1371/journal.pone.0112744] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/12/2014] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-inducible factor 1-α (HIF-1α) plays a critical role in angiogenesis-osteogenesis coupling during bone development and bone regeneration. Previous studies have shown that 17β-estradiol activates the HIF-1α signaling pathway and that mice with conditional activation of the HIF-1α signaling pathway in osteoblasts are protected from ovariectomy (OVX)-induced bone loss. In addition, it has been shown that hypoxia facilitates the osteogenic differentiation of mesenchymal stem cells (MSCs) and modulates Wnt/β-catenin signaling. Therefore, we hypothesized that activation of the HIF-1α signaling pathway by hypoxia-mimicking agents would prevent bone loss due to estrogen deficiency. In this study, we confirmed the effect of dimethyloxalylglycine (DMOG), a hypoxia-mimicking agent, on the HIF-1α signaling pathway and investigated the effect of DMOG on MSC osteogenic differentiation and the Wnt/β-catenin signaling pathway. We then investigated the effect of DMOG treatment on OVX-induced bone loss. Female C57BL/6J mice were divided into sham, OVX, OVX+L-DMOG (5 mg/kg/day), and OVX+H-DMOG (20 mg/kg/day) groups. At sacrifice, static and dynamic bone histomorphometry were performed with micro computed tomography (micro-CT) and undecalcified sections, respectively. Bone strength was assessed with the three-point bending test, and femur vessels were reconstructed and analyzed by micro-CT. Serum vascular endothelial growth factor (VEGF), osteocalcin, and C-terminal telopeptides of collagen type(CTX) were measured by ELISA. Tartrate-resistant acid phosphatase staining was used to assess osteoclast formation. Alterations in the HIF-1α and Wnt/β-catenin signaling pathways in the bone were detected by western blot. Our results showed that DMOG activated the HIF-1α signaling pathway, which further activated the Wnt/β-catenin signaling pathway and enhanced MSC osteogenic differentiation. The micro-CT results showed that DMOG treatment improved trabecular bone density and restored the bone microarchitecture and blood vessels in OVX mice. Bone strength was also partly restored in DMOG-treated OVX mice. Dynamic bone histomorphometric analysis of the femur metaphysic revealed that DMOG increased the mineralizing surface, mineral apposition rate, and bone formation rate. The serum levels of VEGF and osteocalcin were higher in DMOG-treated OVX mice. However, there were no significant differences in serum CTX or in the number of tartrate-resistant acid phosphatase-stained cells between DMOG-treated OVX mice and OVX mice. Western blot results showed that DMOG administration partly rescued the decrease in HIF-1α and β-catenin expression following ovariectomy. Collectively, these results indicate that DMOG prevents bone loss due to ovariectomy in C57BL/6J mice by enhancing angiogenesis and osteogenesis, which are associated with activated HIF-1α and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Jia Peng
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zuo Gui Lai
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedics, Qian Fo Shan Hospital, Shang Dong University, Ji Nan, China
| | - Zhang Lian Fang
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shen Xing
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Hui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Hao
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jin
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Qi
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Jin Shen
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Nian Dong
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Han Bing
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Lian Fu
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
19
|
Effect of Basic Fibroblast Growth Factor on the Myocardial Expression of Hypoxia-inducible Factor-1α and Vascular Endothelial Growth Factor Following Acute Myocardial Infarction. Heart Lung Circ 2013; 22:946-51. [DOI: 10.1016/j.hlc.2013.04.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 04/01/2013] [Accepted: 04/09/2013] [Indexed: 11/19/2022]
|
20
|
Akhtar M, Henderson T, Sutherland A, Vogel T, Friend P. Novel Approaches to Preventing Ischemia-Reperfusion Injury During Liver Transplantation. Transplant Proc 2013; 45:2083-92. [DOI: 10.1016/j.transproceed.2013.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 04/23/2013] [Indexed: 12/25/2022]
|
21
|
Abstract
Hypoxia-inducible factor (HIF) is a set of transcription factors that regulate the cellular response to hypoxia. There is a great body of evidence supporting the protective role of HIF-1α in cardiovascular pathophysiology, however, newer studies are hinting at a maladaptive and deleterious role of this transcription factor that merits further investigation. There is a general agreement, however, that HIF-mediated responses appear to differ under conditions of acute and chronic oxygen deprivation. The intensity and sustainability of HIF-1α activation are major determinants of whether the responses are pathological or beneficial. HIF activation is seen to be beneficial in the setting of acute myocardial ischemia and deleterious in chronic conditions. In this review, we will focus on recent insights into the role of HIF-1α in the heart and especially in the setting of ischemic heart disease.
Collapse
|
22
|
Ong SG, Hausenloy DJ. Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacol Ther 2012; 136:69-81. [PMID: 22800800 DOI: 10.1016/j.pharmthera.2012.07.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
Hypoxia inducible factor (HIF) is an oxygen-sensitive transcription factor that enables aerobic organisms to adapt to hypoxia. This is achieved through the transcriptional activation of up to 200 genes, many of which are critical to cell survival. Under conditions of normoxia, the hydroxylation of HIF by prolyl hydroxylase domain-containing (PHD) enzymes targets it for polyubiquitination and proteosomal degradation by the von Hippel-Lindau protein (VHL). However, under hypoxic conditions, PHD activity is inhibited, thereby allowing HIF to accumulate and translocate to the nucleus, where it binds to the hypoxia-responsive element sequences of target gene promoters. Experimental studies suggest that HIF may act as a mediator of ischemic preconditioning, and that the genetic or pharmacological stabilization of HIF under normoxic conditions, may protect the heart against the detrimental effects of acute ischemia-reperfusion injury. The mechanisms underlying the cardioprotective effect of HIF are unclear, but it may be attributed to the transcriptional activation of genes associated with cardioprotection such as erythropoietin, heme oxygenase-1, and inducible nitric oxide synthase or it may be due to reprogramming of cell metabolism. In this review article, we highlight the role of HIF in mediating both adaptive and pathological processes in the heart, as well as focusing on the therapeutic potential of the HIF-signaling pathway as a target for cardioprotection.
Collapse
Affiliation(s)
- Sang-Ging Ong
- The Hatter Cardiovascular Institute, University College London Hospital, 67 Chenies Mews, London WC1E 6HX, United Kingdom
| | | |
Collapse
|