1
|
Fahrmann JF, Wasylishen AR, Pieterman CRC, Irajizad E, Vykoukal J, Wu R, Dennison JB, Peterson CB, Zhao H, Do KA, Halperin DM, Agarwal SK, Blau JE, Jha S, Rivero JD, Nilubol N, Walter MF, Welch JM, Weinstein LS, Vriens MR, van Leeuwaarde RS, van Treijen MJC, Valk GD, Perrier ND, Hanash SM, Katayama H. Blood-based Proteomic Signatures Associated With MEN1-related Duodenopancreatic Neuroendocrine Tumor Progression. J Clin Endocrinol Metab 2023; 108:3260-3271. [PMID: 37307230 PMCID: PMC11032251 DOI: 10.1210/clinem/dgad315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
PURPOSE Patients with multiple endocrine neoplasia type 1 (MEN1) are predisposed to develop duodenopancreatic neuroendocrine tumors (dpNETs), and metastatic dpNET is the primary cause of disease-related mortality. Presently, there is a paucity of prognostic factors that can reliably identify patients with MEN1-related dpNETS who are at high risk of distant metastasis. In the current study, we aimed to establish novel circulating molecular protein signatures associated with disease progression. EXPERIMENTAL DESIGN Mass spectrometry-based proteomic profiling was conducted on plasmas procured through an international collaboration between MD Anderson Cancer Center, the National Institutes of Health, and the University Medical Center Utrecht from a cohort of 56 patients with MEN1 [14 with distant metastasis dpNETs (cases) and 42 with either indolent dpNETs or no dpNETs (controls)]. Findings were compared to proteomic profiles generated from serially collected plasmas from a mouse model of Men1-pancreatic neuroendocrine tumors (Men1fl/flPdx1-CreTg) and control mice (Men1fl/fl). RESULTS A total of 187 proteins were found to be elevated in MEN1 patients with distant metastasis compared to controls, including 9 proteins previously associated with pancreatic cancer and other neuronal proteins. Analyses of mouse plasmas revealed 196 proteins enriched for transcriptional targets of oncogenic MYCN, YAP1, POU5F1, and SMAD that were associated with disease progression in Men1fl/flPdx1-CreTg mice. Cross-species intersection revealed 19 proteins positively associated with disease progression in both human patients and in Men1fl/flPdx1-CreTg mice. CONCLUSIONS Our integrated analyses identified novel circulating protein markers associated with disease progression in MEN1-related dpNET.
Collapse
Affiliation(s)
- Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amanda R Wasylishen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Carolina R C Pieterman
- Department of Surgical Oncology, Section of Surgical Endocrinology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Zhao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel M Halperin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sunita K Agarwal
- Metabolic Diseases Branch, The National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny E Blau
- Metabolic Diseases Branch, The National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Smita Jha
- Metabolic Diseases Branch, The National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, The National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program, The National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary F Walter
- Core for Clinical Laboratory Services, The National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James M Welch
- Metabolic Diseases Branch, The National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, The National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menno R Vriens
- Department of Surgical Oncology and Endocrine Surgery, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands
- Center for Neuroendocrine Tumors, ENETS Center of Excellence, Netherlands Cancer Institute Amsterdam, University Medical Center Utrecht, Utrect 1066 CX, the Netherlands
| | - Rachel S van Leeuwaarde
- Center for Neuroendocrine Tumors, ENETS Center of Excellence, Netherlands Cancer Institute Amsterdam, University Medical Center Utrecht, Utrect 1066 CX, the Netherlands
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Mark J C van Treijen
- Center for Neuroendocrine Tumors, ENETS Center of Excellence, Netherlands Cancer Institute Amsterdam, University Medical Center Utrecht, Utrect 1066 CX, the Netherlands
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Gerlof D Valk
- Center for Neuroendocrine Tumors, ENETS Center of Excellence, Netherlands Cancer Institute Amsterdam, University Medical Center Utrecht, Utrect 1066 CX, the Netherlands
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Nancy D Perrier
- Department of Surgical Oncology, Section of Surgical Endocrinology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
van Beek DJ, Verschuur AVD, Brosens LAA, Valk GD, Pieterman CRC, Vriens MR. Status of Surveillance and Nonsurgical Therapy for Small Nonfunctioning Pancreatic Neuroendocrine Tumors. Surg Oncol Clin N Am 2023; 32:343-371. [PMID: 36925190 DOI: 10.1016/j.soc.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Pancreatic neuroendocrine tumors (PNETs) occur in < 1/100,000 patients and most are nonfunctioning (NF). Approximately 5% occur as part of multiple endocrine neoplasia type 1. Anatomic and molecular imaging have a pivotal role in the diagnosis, staging and active surveillance. Surgery is generally recommended for nonfunctional pancreatic neuroendocrine tumors (NF-PNETs) >2 cm to prevent metastases. For tumors ≤2 cm, active surveillance is a viable alternative. Tumor size and grade are important factors to guide management. Assessment of death domain-associated protein 6/alpha-thalassemia/mental retardation X-linked and alternative lengthening of telomeres are promising novel prognostic markers. This review summarizes the status of surveillance and nonsurgical management for small NF-PNETs, including factors that can guide management.
Collapse
Affiliation(s)
- Dirk-Jan van Beek
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Internal Mail Number G.04.228, PO Box 85500, Utrecht 3508 GA, the Netherlands
| | - Anna Vera D Verschuur
- Department of Pathology, University Medical Center Utrecht, Internal Mail Number G02.5.26, PO Box 85500, Utrecht 3508 GA, the Netherlands. https://twitter.com/annaveraverschu
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Internal Mail Number G4.02.06, PO Box 85500, Utrecht 3508 GA, the Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, Internal Mail Number Q.05.4.300, PO Box 85500, Utrecht 3508 GA, the Netherlands
| | - Carolina R C Pieterman
- Department of Endocrine Oncology, University Medical Center Utrecht, Internal Mail Number Q.05.4.300, PO Box 85500, Utrecht 3508 GA, the Netherlands.
| | - Menno R Vriens
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Internal Mail Number G.04.228, PO Box 85500, Utrecht 3508 GA, the Netherlands
| |
Collapse
|
3
|
An Insight on Functioning Pancreatic Neuroendocrine Neoplasms. Biomedicines 2023; 11:biomedicines11020303. [PMID: 36830839 PMCID: PMC9953748 DOI: 10.3390/biomedicines11020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are rare neoplasms arising from islets of the Langerhans in the pancreas. They can be divided into two groups, based on peptide hormone secretion, functioning and nonfunctioning PanNENs. The first group is characterized by different secreted peptides causing specific syndromes and is further classified into subgroups: insulinoma, gastrinoma, glucagonoma, somatostatinoma, VIPoma and tumors producing serotonin and adrenocorticotrophic hormone. Conversely, the second group does not release peptides and is usually associated with a worse prognosis. Today, although the efforts to improve the therapeutic approaches, surgery remains the only curative treatment for patients with PanNENs. The development of high-throughput techniques has increased the molecular knowledge of PanNENs, thereby allowing us to understand better the molecular biology and potential therapeutic vulnerabilities of PanNENs. Although enormous advancements in therapeutic and molecular aspects of PanNENs have been achieved, there is poor knowledge about each subgroup of functioning PanNENs.Therefore, we believe that combining high-throughput platforms with new diagnostic tools will allow for the efficient characterization of the main differences among the subgroups of functioning PanNENs. In this narrative review, we summarize the current landscape regarding diagnosis, molecular profiling and treatment, and we discuss the future perspectives of functioning PanNENs.
Collapse
|
4
|
Preclinical Models of Neuroendocrine Neoplasia. Cancers (Basel) 2022; 14:cancers14225646. [PMID: 36428741 PMCID: PMC9688518 DOI: 10.3390/cancers14225646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroendocrine neoplasia (NENs) are a complex and heterogeneous group of cancers that can arise from neuroendocrine tissues throughout the body and differentiate them from other tumors. Their low incidence and high diversity make many of them orphan conditions characterized by a low incidence and few dedicated clinical trials. Study of the molecular and genetic nature of these diseases is limited in comparison to more common cancers and more dependent on preclinical models, including both in vitro models (such as cell lines and 3D models) and in vivo models (such as patient derived xenografts (PDXs) and genetically-engineered mouse models (GEMMs)). While preclinical models do not fully recapitulate the nature of these cancers in patients, they are useful tools in investigation of the basic biology and early-stage investigation for evaluation of treatments for these cancers. We review available preclinical models for each type of NEN and discuss their history as well as their current use and translation.
Collapse
|
5
|
Mandriani B, Pellè E, Mannavola F, Palazzo A, Marsano RM, Ingravallo G, Cazzato G, Ramello MC, Porta C, Strosberg J, Abate-Daga D, Cives M. Development of anti-somatostatin receptors CAR T cells for treatment of neuroendocrine tumors. J Immunother Cancer 2022; 10:e004854. [PMID: 35764366 PMCID: PMC9240886 DOI: 10.1136/jitc-2022-004854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neuroendocrine tumors (NETs) overexpress somatostatin receptors (SSTRs). METHODS We developed a second-generation, ligand-based, anti-SSTR chimeric antigen receptor (CAR) incorporating the somatostatin analog octreotide in its extracellular moiety. RESULTS Anti-SSTR CAR T cells exerted antitumor activity against SSTR+NET cell linesin vitro. The killing activity was highly specific, as demonstrated by the lack of CAR T cell reactivity against NET cells engineered to express mutated variants of SSTR2/5 by CRISPR/Cas9. When adoptively transferred in NSG mice, anti-SSTR CAR T cells induced significant antitumor activity against human NET xenografts. Although anti-SSTR CAR T cells could recognize the murine SSTRs as shown by their killing ability against murine NET cells, no obvious deleterious effects on SSTR-expressing organs such as the brain or the pancreas were observed in mice. CONCLUSIONS Taken together, our results establish anti-SSTR CAR T cells as a potential candidate for early phase clinical investigations in patients with NETs. More broadly, the demonstration that a known peptide drug can direct CAR T cell targeting may streamline the potential utility of multiple peptide motifs and provide a blueprint for therapeutic applications in a variety of cancers.
Collapse
Affiliation(s)
- Barbara Mandriani
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Eleonora Pellè
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Mannavola
- Division of Medical Oncology, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Antonio Palazzo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | | | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Cecilia Ramello
- Departments of Immunology and Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Camillo Porta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | | | - Daniel Abate-Daga
- Departments of Immunology and Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of GI Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Mauro Cives
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| |
Collapse
|
6
|
Somatostatin analogue pasireotide (SOM230) inhibits catecholamine secretion in human pheochromocytoma cells. Cancer Lett 2022; 524:232-244. [PMID: 34637845 DOI: 10.1016/j.canlet.2021.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
Increasingly common, neuroendocrine tumors (NETs) are regarded nowadays as neoplasms potentially causing debilitating symptoms and life-threatening medical conditions. Pheochromocytoma is a NET that develops from chromaffin cells of the adrenal medulla, and is responsible for an excessive secretion of catecholamines. Consequently, patients have an increased risk for clinical symptoms such as hypertension, elevated stroke risk and various cardiovascular complications. Somatostatin analogues are among the main anti-secretory medical drugs used in current clinical practice in patients with NETs. However, their impact on pheochromocytoma-associated catecholamine hypersecretion remains incompletely explored. This study investigated the potential efficacy of octreotide and pasireotide (SOM230) on human tumor cells directly cultured from freshly resected pheochromocytomas using an implemented catecholamine secretion measurement by carbon fiber amperometry. SOM230 treatment efficiently inhibited nicotine-induced catecholamine secretion both in bovine chromaffin cells and in human tumor cells whereas octreotide had no effect. Moreover, SOM230 specifically decreased the number of exocytic events by impairing the stimulation-evoked calcium influx as well as the nicotinic receptor-activated inward current in human pheochromocytoma cells. Altogether, our findings indicate that SOM230 acts as an inhibitor of catecholamine secretion through a mechanism involving the nicotinic receptor and might be considered as a potential anti-secretory treatment for patients with pheochromocytoma.
Collapse
|
7
|
Yu F, Zhang T, Fu F, Wang A, Liu X. Preparation of Long-acting Somatostatin and GnRH Analogues and their Applications in Tumor Therapy. Curr Drug Deliv 2021; 19:5-16. [PMID: 34951573 DOI: 10.2174/1567201819666211224113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Hormonal drugs are essential treatment options for some hormone-dependent or hormone-sensitive tumors. The common dosage forms of hormonal drugs have a short half-life. Hence, frequent administration is needed, which results in poor patient compliance. Nevertheless, using drug delivery technology, somatostatin analogues (SSAs) and gonadotropin-releasing hormone (GnRH) analogues are prepared into long-acting formulations that can significantly prolong the action time of these drugs, reducing medication frequency and increasing patient compliance. Such drugs are advantageous when treating acromegaly, gastroenteropancreatic neuroendocrine tumors (GEP-NETs), breast cancer, prostate cancer, and other diseases having a relatively long course. SSAs and GnRH analogues are two typical hormonal drugs, the long-acting formulations of which are essential in clinical practice. This review summarized the preparation methods and clinical application of long-acting formulations in cancer. Further, the action mechanism and new research of SSAs and GnRH analogues were discussed, and suggestions related to the development of long-acting SSAs and GnRH analogues were provided.
Collapse
Affiliation(s)
- Fang Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Shandong University), Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Tingting Zhang
- State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, China
| | - Fenghua Fu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, China
| | - Aiping Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Shandong University), Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| |
Collapse
|
8
|
Cdk5 drives formation of heterogeneous pancreatic neuroendocrine tumors. Oncogenesis 2021; 10:83. [PMID: 34862365 PMCID: PMC8642406 DOI: 10.1038/s41389-021-00372-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous population of neoplasms that arise from hormone-secreting islet cells of the pancreas and have increased markedly in incidence over the past four decades. Non-functional PanNETs, which occur more frequently than hormone-secreting tumors, are often not diagnosed until later stages of tumor development and have poorer prognoses. Development of successful therapeutics for PanNETs has been slow, partially due to a lack of diverse animal models for pre-clinical testing. Here, we report development of an inducible, conditional mouse model of PanNETs by using a bi-transgenic system for regulated expression of the aberrant activator of Cdk5, p25, specifically in β-islet cells. This model produces a heterogeneous population of PanNETs that includes a subgroup of well-differentiated, non-functional tumors. Production of these tumors demonstrates the causative potential of aberrantly active Cdk5 for generation of PanNETs. Further, we show that human PanNETs express Cdk5 pathway components, are dependent on Cdk5 for growth, and share genetic and transcriptional overlap with the INS-p25OE model. The utility of this model is enhanced by the ability to form tumor-derived allografts. This new model of PanNETs will facilitate molecular delineation of Cdk5-dependent PanNETs and the development of new targeted therapeutics.
Collapse
|
9
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Brandi ML, Agarwal SK, Perrier ND, Lines KE, Valk GD, Thakker RV. Multiple Endocrine Neoplasia Type 1: Latest Insights. Endocr Rev 2021; 42:133-170. [PMID: 33249439 PMCID: PMC7958143 DOI: 10.1210/endrev/bnaa031] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Multiple endocrine neoplasia type 1 (MEN1), a rare tumor syndrome that is inherited in an autosomal dominant pattern, is continuing to raise great interest for endocrinology, gastroenterology, surgery, radiology, genetics, and molecular biology specialists. There have been 2 major clinical practice guidance papers published in the past 2 decades, with the most recent published 8 years ago. Since then, several new insights on the basic biology and clinical features of MEN1 have appeared in the literature, and those data are discussed in this review. The genetic and molecular interactions of the MEN1-encoded protein menin with transcription factors and chromatin-modifying proteins in cell signaling pathways mediated by transforming growth factor β/bone morphogenetic protein, a few nuclear receptors, Wnt/β-catenin, and Hedgehog, and preclinical studies in mouse models have facilitated the understanding of the pathogenesis of MEN1-associated tumors and potential pharmacological interventions. The advancements in genetic diagnosis have offered a chance to recognize MEN1-related conditions in germline MEN1 mutation-negative patients. There is rapidly accumulating knowledge about clinical presentation in children, adolescents, and pregnancy that is translatable into the management of these very fragile patients. The discoveries about the genetic and molecular signatures of sporadic neuroendocrine tumors support the development of clinical trials with novel targeted therapies, along with advancements in diagnostic tools and surgical approaches. Finally, quality of life studies in patients affected by MEN1 and related conditions represent an effort necessary to develop a pharmacoeconomic interpretation of the problem. Because advances are being made both broadly and in focused areas, this timely review presents and discusses those studies collectively.
Collapse
Affiliation(s)
| | | | - Nancy D Perrier
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Gerlof D Valk
- University Medical Center Utrecht, CX Utrecht, the Netherlands
| | | |
Collapse
|
11
|
Nilubol N, Yuan Z, Paciotti GF, Tamarkin L, Sanchez C, Gaskins K, Freedman EM, Cao S, Zhao J, Kingston DGI, Libutti SK, Kebebew E. Novel Dual-Action Targeted Nanomedicine in Mice With Metastatic Thyroid Cancer and Pancreatic Neuroendocrine Tumors. J Natl Cancer Inst 2019; 110:1019-1029. [PMID: 29481652 DOI: 10.1093/jnci/djy003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023] Open
Abstract
Background The advantages of nanomedicines include preferential delivery of the payload directly to tumor tissues. CYT-21625 is the novel, first-in-class gold nanomedicine designed to target tumor vasculature and cancer cells by specifically delivering recombinant human tumor necrosis factor alpha (rhTNF) and a paclitaxel prodrug. Methods We analyzed TNF receptor expression in publicly available gene expression profiling data and in thyroid tissue samples. Mice with metastatic FTC-133 and 8505C xenografts and the MEN1 conditional knock-out mice were treated weekly with CYT-21625 and gold nanoparticles with rhTNF only (CYT-6091); controls included mice treated with either paclitaxel or saline. In vivo luciferase activity was used to assess the effects on tumor growth. Computed tomography, magnetic resonance imaging, and 18F-Fludeoxyglucose positron emission tomography were used to study tumor selectivity in mice with insulin-secreting pancreatic neuroendocrine tumors (PNETs). All statistical tests were two-sided. Results Anaplastic thyroid cancer (ATC) expressed statistically significantly higher levels of TNF receptor superfamily 1A and 1B messenger RNA (n = 11) and protein (n = 6) than control samples (n = 45 and 13, respectively). Mice (n = 5-7 per group) with metastatic ATC (P < .009) and FTC-133 xenografts (P = .03 at week 3, but not statistically significant in week 4 owing to reduced sample size from death in non-CYT-21625 groups) treated with CYT-21625 had a statistically significantly lower tumor burden. Treatment with CYT-21625 resulted in loss of CD34 expression in intratumoral vasculature, decreased proliferating cell nuclear antigen, and increased cleaved caspase-3. Intratumoral vascular leakage occurred only in mice with PNET and ATC treated with CYT-6091 and CYT-21625. CYT-6091 and CYT-21625 preferentially deposited in PNETs and statistically significantly decreased serum insulin levels (n = 3 per group, P < .001). There were no toxicities observed in mice treated with CYT-21625. Conclusions CYT-21625 is effective in mice with PNETs and metastatic human thyroid cancer with no toxicities. Thus, CYT-21625 should be studied in patients with advanced PNETs and thyroid cancer.
Collapse
Affiliation(s)
- Naris Nilubol
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - ZiQiang Yuan
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Carmen Sanchez
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY
| | - Kelli Gaskins
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Esther M Freedman
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Shugeng Cao
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Blacksburg, VA
| | - Jielu Zhao
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Blacksburg, VA
| | - David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Blacksburg, VA
| | - Steven K Libutti
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
12
|
Lopez CL, Joos B, Bartsch DK, Manoharan J, Albers M, Slater EP, Bollmann C, Roth S, Bayer A, Fendrich V. Chemoprevention with Somatuline© Delays the Progression of Pancreatic Neuroendocrine Neoplasms in a Mouse Model of Multiple Endocrine Neoplasia Type 1 (MEN1). World J Surg 2019; 43:831-838. [PMID: 30600364 DOI: 10.1007/s00268-018-4839-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Long-acting synthetic somatostatin analogues (SSA) are an essential part of the treatment of neuroendocrine neoplasms. We evaluated the chemopreventive effects of a long-acting somatostatin analogue on the development of pancreatic neuroendocrine neoplasms (pNENs) in a genetically engineered MEN1 knockout mouse model. MATERIALS AND METHODS Heterozygote MEN1 knockout mice were injected every 28 days subcutaneously with the somatostatin analogue lanreotide (Somatuline Autogel©; Ipsen Pharma) or a placebo starting at day 35 after birth. Mice were euthanized after 6, 9, 12, 15 and 18 months, and the size and number of pNENs were measured due histological analysis and compared to the placebo group. RESULTS The median tumor size of pNENs was statistically significantly smaller after 9 (control group vs. SSA group; 706.476 µm2 vs. 195.271 µm2; p = 0.0012), 12 (placebo group vs. SSA group 822.022 vs. 255.482; p ≤ 0.001), 15 (placebo group vs. SSA group 1192.568 vs. 273.533; p ≤ 0.001) and after 18 months (placebo group vs. SSA group 1328.299 vs. 864.587; p ≤ 0.001) in the SSA group. Comparing the amount of tumors in both groups, a significant reduction was achieved in treated Men1(+/-) mice (41%, p = 0.002). Immunostaining showed, however, no significant difference in the expression of the apoptosis marker caspase-3, but a significant difference in Ki67 index as a marker for tumor cell proliferation (p ≤ 0.005). CONCLUSION Long-acting somatostatin analogues may be an effective chemopreventive approach to delay the progression of MEN1-associated pNENs. After our preclinical results, we would recommend to evaluate the effects of long-acting SSA in a prospective clinical trial.
Collapse
Affiliation(s)
- Caroline L Lopez
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Barbara Joos
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Detlef K Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Jerena Manoharan
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Max Albers
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Emily P Slater
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Carmen Bollmann
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Sylvia Roth
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Aninja Bayer
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Volker Fendrich
- Department of Endocrine Surgery, Schön Klinik Hamburg Eilbek, Dehnhaide 120, 22081, Hamburg, Germany.
| |
Collapse
|
13
|
Stueven AK, Kayser A, Wetz C, Amthauer H, Wree A, Tacke F, Wiedenmann B, Roderburg C, Jann H. Somatostatin Analogues in the Treatment of Neuroendocrine Tumors: Past, Present and Future. Int J Mol Sci 2019; 20:ijms20123049. [PMID: 31234481 PMCID: PMC6627451 DOI: 10.3390/ijms20123049] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
In recent decades, the incidence of neuroendocrine tumors (NETs) has steadily increased. Due to the slow-growing nature of these tumors and the lack of early symptoms, most cases are diagnosed at advanced stages, when curative treatment options are no longer available. Prognosis and survival of patients with NETs are determined by the location of the primary lesion, biochemical functional status, differentiation, initial staging, and response to treatment. Somatostatin analogue (SSA) therapy has been a mainstay of antisecretory therapy in functioning neuroendocrine tumors, which cause various clinical symptoms depending on hormonal hypersecretion. Beyond symptomatic management, recent research demonstrates that SSAs exert antiproliferative effects and inhibit tumor growth via the somatostatin receptor 2 (SSTR2). Both the PROMID (placebo-controlled, prospective, randomized study in patients with metastatic neuroendocrine midgut tumors) and the CLARINET (controlled study of lanreotide antiproliferative response in neuroendocrine tumors) trial showed a statistically significant prolongation of time to progression/progression-free survival (TTP/PFS) upon SSA treatment, compared to placebo. Moreover, the combination of SSA with peptide receptor radionuclide therapy (PRRT) in small intestinal NETs has proven efficacy in the phase 3 neuroendocrine tumours therapy (NETTER 1) trial. PRRT is currently being tested for enteropancreatic NETs versus everolimus in the COMPETE trial, and the potential of SSTR-antagonists in PRRT is now being evaluated in early phase I/II clinical trials. This review provides a synopsis on the pharmacological development of SSAs and their use as antisecretory drugs. Moreover, this review highlights the clinical evidence of SSAs in monotherapy, and in combination with other treatment modalities, as applied to the antiproliferative management of neuroendocrine tumors with special attention to recent high-quality phase III trials.
Collapse
Affiliation(s)
- Anna Kathrin Stueven
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Antonin Kayser
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Christoph Wetz
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Nuclear Medicine, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Holger Amthauer
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Nuclear Medicine, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Alexander Wree
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Frank Tacke
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Bertram Wiedenmann
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Christoph Roderburg
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Henning Jann
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
14
|
Seifert GJ, Leithold G, Kulemann B, Holzner PA, Glatz T, Hoeppner J, Kirste S, Marjanovic G, Laessle C. The effect of pasireotide on intestinal anastomotic healing with and without whole-body irradiation in a rat model. Int J Colorectal Dis 2019; 34:337-345. [PMID: 30483864 PMCID: PMC6331742 DOI: 10.1007/s00384-018-3193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To examine pasireotide's effect on intestinal anastomotic healing under physiological conditions and following preoperative whole-body irradiation. MATERIAL AND METHODS Forty-five male Wistar rats received an ileoileal end-to-end anastomosis. Group 1 (Co, n = 9) served as control. Group 2 (SOM, n = 10) received pasireotide (60 mg/kg) 6 days preoperatively. Group 3 (R-Co, n = 13) was subjected to 8 Gy whole-body irradiation 4 days preoperatively. Finally, group 4 (R-SOM, n = 13) received pasireotide 6 days preoperatively and whole-body irradiation 4 days preoperatively. On postoperative day 4, anastomotic bursting pressure, histology, IGF-1 staining, and collagen density were examined. RESULTS Mortality was higher in irradiated animals (30.8% vs. 5.3%, p = 0.021), and anastomotic bursting pressure was significantly lower (median, R-Co = 83 mmHg; R-SOM = 101 mmHg; Co = 149.5 mmHg; SOM = 169 mmHg). Inflammation measured by leukocyte infiltration following irradiation was reduced (p = 0.023), and less collagen was observed, though this was not statistically significant. Bursting pressure did not significantly differ between Co and SOM and between R-Co and R-SOM animals respectively. Semi-quantitative scoring of IGF-1, fibroblast bridging, or collagen density did not reveal significant differences among the groups. CONCLUSION Whole-body irradiation decreases the quality of intestinal anastomotic wound healing and increases mortality. Pasireotide does not significantly lessen this detrimental effect.
Collapse
Affiliation(s)
- Gabriel J Seifert
- Department of General and Visceral Surgery, Medical Centre - University of Freiburg, Faculty of Medicine, University Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Gunnar Leithold
- Department of General and Visceral Surgery, Medical Centre - University of Freiburg, Faculty of Medicine, University Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Birte Kulemann
- Department of General and Visceral Surgery, Medical Centre - University of Freiburg, Faculty of Medicine, University Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Philipp A Holzner
- Department of General and Visceral Surgery, Medical Centre - University of Freiburg, Faculty of Medicine, University Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Torben Glatz
- Department of General and Visceral Surgery, Medical Centre - University of Freiburg, Faculty of Medicine, University Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Jens Hoeppner
- Department of General and Visceral Surgery, Medical Centre - University of Freiburg, Faculty of Medicine, University Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Simon Kirste
- Department of Radiooncology, Medical Centre - University of Freiburg, Faculty of Medicine, University Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Goran Marjanovic
- Department of General and Visceral Surgery, Medical Centre - University of Freiburg, Faculty of Medicine, University Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Claudia Laessle
- Department of General and Visceral Surgery, Medical Centre - University of Freiburg, Faculty of Medicine, University Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| |
Collapse
|
15
|
Gahete MD, Jimenez-Vacas JM, Alors-Perez E, Herrero-Aguayo V, Fuentes-Fayos AC, Pedraza-Arevalo S, Castaño JP, Luque RM. Mouse models in endocrine tumors. J Endocrinol 2018; 240:JOE-18-0571.R1. [PMID: 30475226 DOI: 10.1530/joe-18-0571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
Endocrine and neuroendocrine tumors comprise a highly heterogeneous group of neoplasms that can arise from (neuro)endocrine cells, either from endocrine glands or from the widespread diffuse neuroendocrine system, and, consequently, are widely distributed throughout the body. Due to their diversity, heterogeneity and limited incidence, studying in detail the molecular and genetic alterations that underlie their development and progression is still a highly elusive task. This, in turn, hinders the discovery of novel therapeutic options for these tumors. To circumvent these limitations, numerous mouse models of endocrine and neuroendocrine tumors have been developed, characterized and used in pre-clinical, co-clinical (implemented in mouse models and patients simultaneously) and post-clinical studies, for they represent powerful and necessary tools in basic and translational tumor biology research. Indeed, different in vivo mouse models, including cell line-based xenografts (CDXs), patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMs), have been used to delineate the development, progression and behavior of human tumors. Results gained with these in vivo models have facilitated the clinical application in patients of diverse breakthrough discoveries made in this field. Herein, we review the generation, characterization and translatability of the most prominent mouse models of endocrine and neuroendocrine tumors reported to date, as well as the most relevant clinical implications obtained for each endocrine and neuroendocrine tumor type.
Collapse
Affiliation(s)
- Manuel D Gahete
- M Gahete, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, 14011, Spain
| | - Juan M Jimenez-Vacas
- J Jimenez-Vacas, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Emilia Alors-Perez
- E Alors-Perez, Department of Cell Biology, Physiology and Inmunology, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC) / University of Cordoba, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- V Herrero-Aguayo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- A Fuentes-Fayos, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- S Pedraza-Arevalo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Justo P Castaño
- J Castaño, Dpt. of Cell Biology-University of Córdoba, IMIBIC-Maimonides Biomedical Research Institute of Cordoba, Cordoba, E-14004, Spain
| | - Raul M Luque
- R Luque, Dept of Cell Biology, Phisiology and Inmunology, Section of Cell Biology, University of Cordoba, Cordoba, Spain, Cordoba, 14014, Spain
| |
Collapse
|
16
|
Stevenson M, Lines KE, Thakker RV. Molecular Genetic Studies of Pancreatic Neuroendocrine Tumors: New Therapeutic Approaches. Endocrinol Metab Clin North Am 2018; 47:525-548. [PMID: 30098714 PMCID: PMC7614857 DOI: 10.1016/j.ecl.2018.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic neuroendocrine tumors (PNETs) arise sporadically or as part of familial syndromes. Genetic studies of hereditary syndromes and whole exome sequencing analysis of sporadic NETs have revealed the roles of some genes involved in PNET tumorigenesis. The multiple endocrine neoplasia type 1 (MEN1) gene is most commonly mutated. Its encoded protein, menin, has roles in transcriptional regulation, genome stability, DNA repair, protein degradation, cell motility and adhesion, microRNA biogenesis, cell division, cell cycle control, and epigenetic regulation. Therapies targeting epigenetic regulation and MEN1 gene replacement have been reported to be effective in preclinical models.
Collapse
Affiliation(s)
- Mark Stevenson
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Kate E Lines
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Rajesh V Thakker
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK.
| |
Collapse
|
17
|
Vitale G, Dicitore A, Sciammarella C, Di Molfetta S, Rubino M, Faggiano A, Colao A. Pasireotide in the treatment of neuroendocrine tumors: a review of the literature. Endocr Relat Cancer 2018; 25:R351-R364. [PMID: 29643113 DOI: 10.1530/erc-18-0010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022]
Abstract
Somatostatin analogs have an important role in the medical therapy of neuroendocrine tumors (NETs). Octreotide and lanreotide, both somatostatin analogs binding with high affinity for the somatostatin receptor (SSTR)2, can control symptoms in functional NETs. In addition, these compounds, because of their antiproliferative effects, can stabilize growth of well-differentiated NETs. Pasireotide is a novel multireceptor-targeted somatostatin analog with high affinity for SSTR1, 2, 3, and 5. This review provides an overview of the state of the art of pasireotide in the treatment of NETs, with the aim of addressing clinical relevance and future perspectives for this molecule in the management of NETs.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, Italy
- Laboratory of Geriatric and Oncologic Neuroendocrinology ResearchIstituto Auxologico Italiano IRCCS, Milan, Italy
| | - Alessandra Dicitore
- Laboratory of Geriatric and Oncologic Neuroendocrinology ResearchIstituto Auxologico Italiano IRCCS, Milan, Italy
| | - Concetta Sciammarella
- Department of Clinical Medicine and SurgeryUniversity of Naples Federico II, Naples, Italy
| | - Sergio Di Molfetta
- Department of Emergency and Organ TransplantationSection of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Manila Rubino
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine TumorsEuropean Institute of Oncology, IEO, Milan, Italy
| | - Antongiulio Faggiano
- Department of Clinical Medicine and SurgeryUniversity of Naples Federico II, Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and SurgeryUniversity of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
Abstract
Pancreatic neuroendocrine tumours (PNETs) might occur as a non-familial isolated endocrinopathy or as part of a complex hereditary syndrome, such as multiple endocrine neoplasia type 1 (MEN1). MEN1 is an autosomal dominant disorder characterized by the combined occurrence of PNETs with tumours of the parathyroids and anterior pituitary. Treatments for primary PNETs include surgery. Treatments for non-resectable PNETs and metastases include biotherapy (for example, somatostatin analogues, inhibitors of receptors and monoclonal antibodies), chemotherapy and radiological therapy. All these treatments are effective for PNETs in patients without MEN1; however, there is a scarcity of clinical trials reporting the efficacy of the same treatments of PNETs in patients with MEN1. Treatment of PNETs in patients with MEN1 is challenging owing to the concomitant development of other tumours, which might have metastasized. In recent years, preclinical studies have identified potential new therapeutic targets for treating MEN1-associated neuroendocrine tumours (including PNETs), and these include epigenetic modification, the β-catenin-wingless (WNT) pathway, Hedgehog signalling, somatostatin receptors and MEN1 gene replacement therapy. This Review discusses these advances.
Collapse
Affiliation(s)
- Morten Frost
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
- Endocrine Research Unit, University of Southern Denmark, Odense, 5000, Denmark
| | - Kate E Lines
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
| |
Collapse
|
19
|
Agarwal SK. The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr Relat Cancer 2017; 24:T119-T134. [PMID: 28899949 PMCID: PMC5679100 DOI: 10.1530/erc-17-0199] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
Abstract
The identification of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997 has shown that germline heterozygous mutations in the MEN1 gene located on chromosome 11q13 predisposes to the development of tumors in the MEN1 syndrome. Tumor development occurs upon loss of the remaining normal copy of the MEN1 gene in MEN1-target tissues. Therefore, MEN1 is a classic tumor suppressor gene in the context of MEN1. This tumor suppressor role of the protein encoded by the MEN1 gene, menin, holds true in mouse models with germline heterozygous Men1 loss, wherein MEN1-associated tumors develop in adult mice after spontaneous loss of the remaining non-targeted copy of the Men1 gene. The availability of genetic testing for mutations in the MEN1 gene has become an essential part of the diagnosis and management of MEN1. Genetic testing is also helping to exclude mutation-negative cases in MEN1 families from the burden of lifelong clinical screening. In the past 20 years, efforts of various groups world-wide have been directed at mutation analysis, molecular genetic studies, mouse models, gene expression studies, epigenetic regulation analysis, biochemical studies and anti-tumor effects of candidate therapies in mouse models. This review will focus on the findings and advances from these studies to identify MEN1 germline and somatic mutations, the genetics of MEN1-related states, several protein partners of menin, the three-dimensional structure of menin and menin-dependent target genes. The ongoing impact of all these studies on disease prediction, management and outcomes will continue in the years to come.
Collapse
Affiliation(s)
- Sunita K Agarwal
- Metabolic Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Abstract
Animal models of cancer have been instrumental in advancing our understanding of the biology of tumor initiation and progression, in studying gene function and in performing preclinical studies aimed at testing novel therapies. Several animal models of the MEN1 syndrome have been generated in different organisms by introducing loss-of-function mutations in the orthologues of the human MEN1 gene. In this review, we will discuss MEN1 and MEN1-like models in Drosophila, mice and rats. These model systems with their specific advantages and limitations have contributed to elucidate the function of Menin in tumorigenesis, which turned out to be remarkably conserved from flies to mammals, as well as the biology of the disease. Mouse models of MEN1 closely resemble the human disease in terms of tumor spectrum and associated hormonal changes, although individual tumor frequencies are variable. Rats affected by the MENX (MEN1-like) syndrome share some features with MEN1 patients albeit they bear a germline mutation in Cdkn1b (p27) and not in Men1 Both Men1-knockout mice and MENX rats have been exploited for therapy-response studies testing novel drugs for efficacy against neuroendocrine tumors (NETs) and have provided promising leads for novel therapies. In addition to presenting well-established models of MEN1, we also discuss potential models which, if implemented, might broaden even further our knowledge of neuroendocrine tumorigenesis. In the future, patient-derived xenografts in zebrafish or mice might allow us to expand the tool-box currently available for preclinical studies of MEN1-associated tumors.
Collapse
Affiliation(s)
- Hermine Mohr
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
21
|
Agarwal SK. Update on exploring the tumors of multiple endocrine neoplasia type 1 in mouse models for basic and preclinical studies. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2017. [DOI: 10.2217/ije-2017-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Libutti SK. Of mice and men(in) and what I have learned from both. Surgery 2017; 161:1-11. [PMID: 27865595 DOI: 10.1016/j.surg.2016.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 11/21/2022]
Affiliation(s)
- Steven K Libutti
- Montefiore Einstein Center for Cancer Care, Montefiore Health System, Departments of Surgery and Genetics, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
23
|
Davi MV, Pia A, Guarnotta V, Pizza G, Colao A, Faggiano A. The treatment of hyperinsulinemic hypoglycaemia in adults: an update. J Endocrinol Invest 2017; 40:9-20. [PMID: 27624297 DOI: 10.1007/s40618-016-0536-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/17/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Treatment of hyperinsulinemic hypoglycaemia (HH) is challenging due to the rarity of this condition and the difficulty of differential diagnosis. The aim of this article is to give an overview of the recent literature on the management of adult HH. METHODS A search for reviews, original articles, original case reports between 1995 and 2016 in PubMed using the following keywords: hyperinsulinemic hypoglycaemia, insulinoma, nesidioblastosis, gastric bypass, autoimmune hypoglycaemia, hyperinsulinism, treatment was performed. RESULTS One hundred and forty articles were selected and analysed focusing on the most recent treatments of HH. CONCLUSIONS New approaches to treatment of HH are available including mini-invasive surgical techniques and alternative local-regional ablative therapy for benign insulinoma and everolimus for malignant insulinoma. A correct differential diagnosis is of paramount importance to avoid unnecessary surgical operations and to implement the appropriate treatment mainly in the uncommon forms of HH, such as nesidioblastosis and autoimmune hypoglycaemia.
Collapse
Affiliation(s)
- M V Davi
- Section of Endocrinology, Medicina Generale e Malattie Aterotrombotiche e Degenerative, Department of Medicine, University of Verona, Piazzale LA Scuro, Policlinico G.B. Rossi, 37134, Verona, Italy.
| | - A Pia
- Internal Medicine I, Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Orbassano, Italy
| | - V Guarnotta
- Section of Endocrinology, Biomedical Department of Internal and Specialist Medicine (DIBIMIS), University of Palermo, Palermo, Italy
| | - G Pizza
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - A Colao
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - A Faggiano
- Thyroid and Parathyroid Surgery Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" IRCCS, Naples, Italy
| |
Collapse
|
24
|
Agarwal SK. Molecular Genetics of MEN1-Related Neuroendocrine Tumors. DIAGNOSTIC AND THERAPEUTIC NUCLEAR MEDICINE FOR NEUROENDOCRINE TUMORS 2017:47-64. [DOI: 10.1007/978-3-319-46038-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Ito T, Lee L, Jensen RT. Treatment of symptomatic neuroendocrine tumor syndromes: recent advances and controversies. Expert Opin Pharmacother 2016; 17:2191-2205. [PMID: 27635672 DOI: 10.1080/14656566.2016.1236916] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Neuroendocrine tumors(NETs), once thought rare, are increasing in frequency in most countries and receiving increasing-attention. NETs present two-treatment problems. A proportion is aggressive and a proportion has a functional, hormone-excess-state(F-NET), each of which must be treated. Recently, there have been many advances, well-covered in reviews/consensus papers on imaging-NETs; new, novel anti-tumor treatments and understanding their pathogenesis. However, little attention has been paid to advances in the treatment of the hormone-excess-state. These advances are usually reported in case-series, and case-reports with few large studies. In this paper these advances are reviewed. Areas covered: Advances in the last 5-years are concentrated on, but a review of literature from the last 10-years was performed. PubMed and other databases (Cochrane, etc.) were searched for F-NET-syndromes including carcinoid-syndrome, as well as meeting-abstracts on NETs. All advances that controlled hormone-excess-states or facilitated-control were covered. These include new medical-therapies [serotonin-synthesis inhibitors(telotristat), Pasireotide, new agents for treating ACTHomas], increased dosing with conventional therapies (octreotide-LAR, Lanreotide-Autogel), mTor inhibitors(everolimus), Tyrosine-kinase inhibitors(sunitinib),cytoreductive surgery, liver-directed therapies (embolization, chemoembolization, radioembolization, RFA), peptide radio-receptor-therapy(PRRT) and 131I-MIBG, ablation of primary F-NETs. Expert opinion: Although many of the newer therapies controlling the hormone-excess-states in F-NETs are reported in relatively few patients, all the approaches show promise. Their description also generates some controversies/unresolved areas,such as the order of these new treatments, their longterm-efficacy, and effectiveness of combinations which may require large,controlled studies.
Collapse
Affiliation(s)
- Tetsuhide Ito
- a Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Lingaku Lee
- a Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Robert T Jensen
- b Digestive Diseases Branch , NIDDK, NIH , Bethesda , MD , USA
| |
Collapse
|
26
|
Walls GV, Stevenson M, Soukup BS, Lines KE, Grossman AB, Schmid HA, Thakker RV. Pasireotide Therapy of Multiple Endocrine Neoplasia Type 1-Associated Neuroendocrine Tumors in Female Mice Deleted for an Men1 Allele Improves Survival and Reduces Tumor Progression. Endocrinology 2016; 157:1789-98. [PMID: 26990064 PMCID: PMC4870877 DOI: 10.1210/en.2015-1965] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pasireotide, a somatostatin analog, is reported to have anti-proliferative effects in neuroendocrine tumors (NETs). We therefore assessed the efficacy of pasireotide for treating pancreatic and pituitary NETs that develop in a mouse model of multiple endocrine neoplasia type 1 (MEN1). Men1(+/-) mice were treated from age 12 mo with 40 mg/kg pasireotide long-acting release formulation, or PBS, intramuscularly monthly for 9 mo. The Men1(+/-) mice had magnetic resonance imaging at 12 and 21 mo, and from 20 mo oral 5-bromo-2-deoxyuridine for 1 mo, to assess tumor development and proliferation, respectively. NETs were collected at age 21 mo, and proliferation and apoptosis assessed by immunohistochemistry and TUNEL assays, respectively. Pasireotide-treated Men1(+/-) mice had increased survival (pasireotide, 80.9% vs PBS, 65.2%; P < .05), with fewer mice developing pancreatic NETs (pasireotide, 86.9% vs PBS, 96.9%; P < .05) and smaller increases in pituitary NET volumes (pre-treated vs post-treated, 0.803 ± 0.058 mm(3) vs 2.872 ± 0.728 mm(3) [pasireotide] compared with 0.844 ± 0.066 mm(3) vs 8.847 ±1.948 mm(3) [PBS]; P < .01). In addition, pasireotide-treated mice had fewer pancreatic NETs compared with PBS-treated mice (2.36 ± 0.25 vs 3.72 ± 0.32, respectively; P < .001), with decreased proliferation in pancreatic NETs (pasireotide, 0.35 ± 0.03% vs PBS, 0.78 ± 0.08%; P < .0001) and pituitary NETs (pasireotide, 0.73 ±0.07% vs PBS, 1.81 ± 0.15%; P < .0001), but increased apoptosis in pancreatic NETs (pasireotide, 0.42 ± 0.05% vs PBS, 0.19 ± 0.03%; P < .001) and pituitary NETs (pasireotide, 14.75 ± 1.58% vs PBS, 2.35 ± 0.44%; P < .001). Thus, pasireotide increased survival and inhibited pancreatic and pituitary NET growth, thereby indicating its potential as an anti-proliferative and pro-apoptotic therapy.
Collapse
Affiliation(s)
- Gerard V Walls
- Academic Endocrine Unit (G.V.W., M.S., B.S.S., K.E.L., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom; Nuffield Department of Surgical Sciences (G.V.W., B.S.S.), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom; Department of Endocrinology (A.B.G.), OCDEM, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom; and Novartis Pharma AG (H.A.S.), Novartis Institutes for Biomedical Research, Oncology, CH-4057 Basel, Switzerland
| | - Mark Stevenson
- Academic Endocrine Unit (G.V.W., M.S., B.S.S., K.E.L., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom; Nuffield Department of Surgical Sciences (G.V.W., B.S.S.), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom; Department of Endocrinology (A.B.G.), OCDEM, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom; and Novartis Pharma AG (H.A.S.), Novartis Institutes for Biomedical Research, Oncology, CH-4057 Basel, Switzerland
| | - Benjamin S Soukup
- Academic Endocrine Unit (G.V.W., M.S., B.S.S., K.E.L., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom; Nuffield Department of Surgical Sciences (G.V.W., B.S.S.), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom; Department of Endocrinology (A.B.G.), OCDEM, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom; and Novartis Pharma AG (H.A.S.), Novartis Institutes for Biomedical Research, Oncology, CH-4057 Basel, Switzerland
| | - Kate E Lines
- Academic Endocrine Unit (G.V.W., M.S., B.S.S., K.E.L., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom; Nuffield Department of Surgical Sciences (G.V.W., B.S.S.), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom; Department of Endocrinology (A.B.G.), OCDEM, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom; and Novartis Pharma AG (H.A.S.), Novartis Institutes for Biomedical Research, Oncology, CH-4057 Basel, Switzerland
| | - Ashley B Grossman
- Academic Endocrine Unit (G.V.W., M.S., B.S.S., K.E.L., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom; Nuffield Department of Surgical Sciences (G.V.W., B.S.S.), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom; Department of Endocrinology (A.B.G.), OCDEM, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom; and Novartis Pharma AG (H.A.S.), Novartis Institutes for Biomedical Research, Oncology, CH-4057 Basel, Switzerland
| | - Herbert A Schmid
- Academic Endocrine Unit (G.V.W., M.S., B.S.S., K.E.L., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom; Nuffield Department of Surgical Sciences (G.V.W., B.S.S.), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom; Department of Endocrinology (A.B.G.), OCDEM, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom; and Novartis Pharma AG (H.A.S.), Novartis Institutes for Biomedical Research, Oncology, CH-4057 Basel, Switzerland
| | - Rajesh V Thakker
- Academic Endocrine Unit (G.V.W., M.S., B.S.S., K.E.L., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom; Nuffield Department of Surgical Sciences (G.V.W., B.S.S.), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom; Department of Endocrinology (A.B.G.), OCDEM, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom; and Novartis Pharma AG (H.A.S.), Novartis Institutes for Biomedical Research, Oncology, CH-4057 Basel, Switzerland
| |
Collapse
|
27
|
AAVP displaying octreotide for ligand-directed therapeutic transgene delivery in neuroendocrine tumors of the pancreas. Proc Natl Acad Sci U S A 2016; 113:2466-71. [PMID: 26884209 DOI: 10.1073/pnas.1525709113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Patients with inoperable or unresectable pancreatic neuroendocrine tumors (NETs) have limited treatment options. These rare human tumors often express somatostatin receptors (SSTRs) and thus are clinically responsive to certain relatively stable somatostatin analogs, such as octreotide. Unfortunately, however, this tumor response is generally short-lived. Here we designed a hybrid adeno-associated virus and phage (AAVP) vector displaying biologically active octreotide on the viral surface for ligand-directed delivery, cell internalization, and transduction of an apoptosis-promoting tumor necrosis factor (TNF) transgene specifically to NETs. These functional attributes of AAVP-TNF particles displaying the octreotide peptide motif (termed Oct-AAVP-TNF) were confirmed in vitro, in SSTR type 2-expressing NET cells, and in vivo using cohorts of pancreatic NET-bearing Men1 tumor-suppressor gene KO mice, a transgenic model of functioning (i.e., insulin-secreting) tumors that genetically and clinically recapitulates the human disease. Finally, preclinical imaging and therapeutic experiments with pancreatic NET-bearing mice demonstrated that Oct-AAVP-TNF lowered tumor metabolism and insulin secretion, reduced tumor size, and improved mouse survival. Taken together, these proof-of-concept results establish Oct-AAVP-TNF as a strong therapeutic candidate for patients with NETs of the pancreas. More broadly, the demonstration that a known, short, biologically active motif can direct tumor targeting and receptor-mediated internalization of AAVP particles may streamline the potential utility of myriad other short peptide motifs and provide a blueprint for therapeutic applications in a variety of cancers and perhaps many nonmalignant diseases as well.
Collapse
|
28
|
Lips CJ, Valk GD, Dreijerink KM, Timmers M, van der Luijt RB, Links TP, van Nesselrooij BP, Vriens M, Höppener JW, Rinkes IB, van der Horst-Schrivers AN. Multiple Endocrine Neoplasia Type 1 (MEN1). GENETIC DIAGNOSIS OF ENDOCRINE DISORDERS 2016:343-359. [DOI: 10.1016/b978-0-12-800892-8.00024-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
Dumbell RA, Scherbarth F, Diedrich V, Schmid HA, Steinlechner S, Barrett P. Somatostatin Agonist Pasireotide Promotes a Physiological State Resembling Short-Day Acclimation in the Photoperiodic Male Siberian Hamster (Phodopus sungorus). J Neuroendocrinol 2015; 27:588-99. [PMID: 25950084 DOI: 10.1111/jne.12289] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/17/2015] [Accepted: 04/28/2015] [Indexed: 12/01/2022]
Abstract
The timing of growth in seasonal mammals is inextricably linked to food availability. This is exemplified in the Siberian hamster (Phodopus sungorus), which uses the annual cycle of photoperiod to optimally programme energy expenditure in anticipation of seasonal fluctuations in food resources. During the autumn, energy expenditure is progressively minimised by physiological adaptations, including a 30% reduction in body mass, comprising a reduction in both fat and lean tissues. However, the mechanistic basis of this adaptation is still unexplained. We hypothesised that growth hormone (GH) was a likely candidate to underpin these reversible changes in body mass. Administration of pasireotide, a long-acting somatostatin receptor agonist developed for the treatment of acromegaly, to male hamsters under a long-day (LD) photoperiod produced a body weight loss. This comprised a reduction in lean and fat mass, including kidneys, testes and brown adipose tissue, typically found in short-day (SD) housed hamsters. Furthermore, when administered to hamsters switched from SD to LD, pasireotide retarded the body weight increase compared to vehicle-treated hamsters. Pasireotide did not alter photoperiod-mediated changes in hypothalamic energy balance gene expression but altered the expression of Srif mRNA expression in the periventricular nucleus and Ghrh mRNA expression in the arcuate nucleus consistent with a reduction in GH feedback and concurrent with reduced serum insulin-like growth factor-1. Conversely, GH treatment of SD hamsters increased body mass, which included increased mass of liver and kidneys. Together, these data indicate a role for the GH axis in the determination of seasonal body mass of the Siberian hamster.
Collapse
Affiliation(s)
- R A Dumbell
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - F Scherbarth
- University of Veterinary Medicine Hannover, Hannover, Germany
| | - V Diedrich
- University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - S Steinlechner
- University of Veterinary Medicine Hannover, Hannover, Germany
| | - P Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
30
|
Agarwal SK. Exploring the tumors of multiple endocrine neoplasia type 1 in mouse models for basic and preclinical studies. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2014; 1:153-161. [PMID: 25685317 DOI: 10.2217/ije.14.16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Most patients (70-90%) with the multiple endocrine neoplasia type 1 (MEN1) syndrome possess germline heterozygous mutations in MEN1 that predisposes to tumors of multiple endocrine and nonendocrine tissues. Some endocrine tumors of the kinds seen in MEN1 that occur sporadically in the general population also possess somatic mutations in MEN1. Interestingly, the endocrine tumors of MEN1 are recapitulated in mouse models of Men1 loss that serve as a valuable resource to understand the pathophysiology and molecular basis of tumorigenesis. Exploring these endocrine tumors in mouse models using in vivo, ex vivo and in vitro methods can help to follow the process of tumorigenesis, and can be useful for preclinical testing of therapeutics and understanding their mechanisms of action.
Collapse
Affiliation(s)
- Sunita K Agarwal
- National Institutes of Health, NIDDK, Metabolic Diseases Branch, Bldg 10, Room 8C-101, Bethesda, MD 20892, USA, Tel.: +1 301 402 7834
| |
Collapse
|
31
|
Theodoropoulou M, Stalla GK. Somatostatin receptors: from signaling to clinical practice. Front Neuroendocrinol 2013; 34:228-52. [PMID: 23872332 DOI: 10.1016/j.yfrne.2013.07.005] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/13/2013] [Accepted: 07/12/2013] [Indexed: 02/08/2023]
Abstract
Somatostatin is a peptide with a potent and broad antisecretory action, which makes it an invaluable drug target for the pharmacological management of pituitary adenomas and neuroendocrine tumors. Somatostatin receptors (SSTR1, 2A and B, 3, 4 and 5) belong to the G protein coupled receptor family and have a wide expression pattern in both normal tissues and solid tumors. Investigating the function of each SSTR in several tumor types has provided a wealth of information about the common but also distinct signaling cascades that suppress tumor cell proliferation, survival and angiogenesis. This provided the rationale for developing multireceptor-targeted somatostatin analogs and combination therapies with signaling-targeted agents such as inhibitors of the mammalian (or mechanistic) target of rapamycin (mTOR). The ability of SSTR to internalize and the development of rabiolabeled somatostatin analogs have improved the diagnosis and treatment of neuroendocrine tumors.
Collapse
Affiliation(s)
- Marily Theodoropoulou
- Department of Endocrinology, Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany.
| | | |
Collapse
|
32
|
|