1
|
Hearn JI, Gardiner EE. Research and Clinical Approaches to Assess Platelet Function in Flowing Blood. Arterioscler Thromb Vasc Biol 2023; 43:1775-1783. [PMID: 37615110 DOI: 10.1161/atvbaha.123.317048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Platelet adhesion and activation is fundamental to the formation of a hemostatic response to limit loss of blood and instigate wound repair to seal a site of vascular injury. The process of platelet aggregate formation is supported by the coagulation system driving injury-proximal formation of thrombin, which converts fibrinogen to insoluble fibrin. This highly coordinated series of molecular and membranous events must be routinely achieved in flowing blood, at vascular fluid shear rates that place significant strain on molecular and cellular interactions. Platelets have long been recognized to be able to slow down and adhere to sites of vascular injury and then activate and recruit more platelets that forge and strengthen adhesive ties with the vascular wall under these conditions. It has been a major challenge for the Platelet Research Community to construct experimental conditions that allow precise definition of the molecular steps occurring under flow. This brief review will discuss work to date from our group, as well as others that has furthered our understanding of platelet function in flowing blood.
Collapse
Affiliation(s)
- James I Hearn
- Division of Genome Science and Cancer, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
2
|
Riojas CM, Ekaney ML, Ross SW, Cunningham KW, Furay EJ, Brown CVR, Evans SL. Platelet Dysfunction after Traumatic Brain Injury: A Review. J Neurotrauma 2021; 38:819-829. [PMID: 33143502 DOI: 10.1089/neu.2020.7301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Coagulopathy is a known sequela of traumatic brain injury (TBI) and can lead to increased morbidity and mortality. Platelet dysfunction has been identified as one of several etiologies of coagulopathy following TBI and has been associated with poor outcomes. Regardless of whether the platelet dysfunction occurs as a direct consequence of the injury or because of pre-existing medical comorbidities or medication use, accurate detection and monitoring of response to therapy is key to optimal patient care. Platelet transfusion has been proposed as a potential therapeutic intervention to treat platelet dysfunction, with several studies using platelet function assays to monitor response. The development of increasingly precise diagnostic testing is providing enhanced understanding of the specific derangement in the hemostatic process, allowing clinicians to provide patient-specific treatment plans. There is wide variability in the currently available literature on the incidence and clinical significance of platelet dysfunction following TBI, which creates challenges with developing evidence-based management guidelines. The relatively high prevalence of platelet inhibitor therapy serves as an additional confounding factor. In addition, the data are largely retrospective in nature. We performed a literature review to provide clarity on this clinical issue. We reviewed 348 abstracts, and included 97 manuscripts in our final literature review. Based on the currently available research, platelet dysfunction has been consistently demonstrated in patients with moderate-severe TBI. We recommend the use of platelet functional assays to evaluate patients with TBI. Platelet transfusion directed at platelet dysfunction may lead to improved clinical outcome. A randomized trial guided by implementation science could improve the applicability of these practices.
Collapse
Affiliation(s)
- Christina M Riojas
- FH "Sammy" Ross Trauma Center, Department of Surgery, Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Michael L Ekaney
- FH "Sammy" Ross Trauma Center, Department of Surgery, Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Samuel W Ross
- FH "Sammy" Ross Trauma Center, Department of Surgery, Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Kyle W Cunningham
- FH "Sammy" Ross Trauma Center, Department of Surgery, Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Elisa J Furay
- Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Carlos V R Brown
- Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Susan L Evans
- FH "Sammy" Ross Trauma Center, Department of Surgery, Carolinas Medical Center, Charlotte, North Carolina, USA
| |
Collapse
|
3
|
Platelet Mapping by Thromboelastography and Whole Blood Aggregometry in Adult Patients Supported by Mechanical Circulatory Support Device on Aspirin Therapy. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2020; 52:13-21. [PMID: 32280140 DOI: 10.1182/ject-1900029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/24/2020] [Indexed: 11/20/2022]
Abstract
Patients on mechanical circulatory support (MCS) devices are placed on aspirin and may require platelet function testing (PFT) to monitor the adequacy of therapy. Routine laboratory PFT is performed using whole blood aggregation (WBA) which typically has a long turnaround time (4-5 hours) and may not be readily available. By contrast, platelet mapping by thromboelastography (TPM) can provide results within 45 minutes. The objective of this study was to compare the results of TPM with WBA. We compared platelet mapping maximal amplitude (MA) by TPM with that of arachidonic acid (AA) to WBA with AA by impedance. We analyzed paired samples where both TPM and WBA were available. Of 45 paired samples, 34 were from 29 MCS patients and 11 were from non-MCS patients. When applying institutional interpretation guidelines with an MAActivator cutoff of ≤40 mm, WBAAA vs TPM MAAA in non-MCS and MCS patients correlated well with an accuracy of 100 and 94.4%, respectively. MAActivator >40 had poor correlation with an accuracy of 37.5%. Irrespective of MAActivator value, TPM AA inhibition expressed in percent of inhibition had poor accuracy. When used with proper guidelines for interpretation, specifically when MAActivator ≤ 40 mm, TPM is a suitable and reliable test to use for MCS patients on aspirin.
Collapse
|
4
|
Lewis CT, Savarraj JP, McGuire MF, Hergenroeder GW, Alex Choi H, Kitagawa RS. Elevated inflammation and decreased platelet activity is associated with poor outcomes after traumatic brain injury. J Clin Neurosci 2019; 70:37-41. [DOI: 10.1016/j.jocn.2019.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/07/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022]
|
5
|
Spahn DR, Bouillon B, Cerny V, Duranteau J, Filipescu D, Hunt BJ, Komadina R, Maegele M, Nardi G, Riddez L, Samama CM, Vincent JL, Rossaint R. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care 2019; 23:98. [PMID: 30917843 PMCID: PMC6436241 DOI: 10.1186/s13054-019-2347-3] [Citation(s) in RCA: 713] [Impact Index Per Article: 142.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Severe traumatic injury continues to present challenges to healthcare systems around the world, and post-traumatic bleeding remains a leading cause of potentially preventable death among injured patients. Now in its fifth edition, this document aims to provide guidance on the management of major bleeding and coagulopathy following traumatic injury and encourages adaptation of the guiding principles described here to individual institutional circumstances and resources. METHODS The pan-European, multidisciplinary Task Force for Advanced Bleeding Care in Trauma was founded in 2004, and the current author group included representatives of six relevant European professional societies. The group applied a structured, evidence-based consensus approach to address scientific queries that served as the basis for each recommendation and supporting rationale. Expert opinion and current clinical practice were also considered, particularly in areas in which randomised clinical trials have not or cannot be performed. Existing recommendations were re-examined and revised based on scientific evidence that has emerged since the previous edition and observed shifts in clinical practice. New recommendations were formulated to reflect current clinical concerns and areas in which new research data have been generated. RESULTS Advances in our understanding of the pathophysiology of post-traumatic coagulopathy have supported improved management strategies, including evidence that early, individualised goal-directed treatment improves the outcome of severely injured patients. The overall organisation of the current guideline has been designed to reflect the clinical decision-making process along the patient pathway in an approximate temporal sequence. Recommendations are grouped behind the rationale for key decision points, which are patient- or problem-oriented rather than related to specific treatment modalities. While these recommendations provide guidance for the diagnosis and treatment of major bleeding and coagulopathy, emerging evidence supports the author group's belief that the greatest outcome improvement can be achieved through education and the establishment of and adherence to local clinical management algorithms. CONCLUSIONS A multidisciplinary approach and adherence to evidence-based guidance are key to improving patient outcomes. If incorporated into local practice, these clinical practice guidelines have the potential to ensure a uniform standard of care across Europe and beyond and better outcomes for the severely bleeding trauma patient.
Collapse
Affiliation(s)
- Donat R. Spahn
- Institute of Anaesthesiology, University of Zurich and University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Bertil Bouillon
- Department of Trauma and Orthopaedic Surgery, Cologne-Merheim Medical Centre (CMMC), University of Witten/Herdecke, Ostmerheimer Strasse 200, D-51109 Cologne, Germany
| | - Vladimir Cerny
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care, J.E. Purkinje University, Masaryk Hospital, Usti nad Labem, Socialni pece 3316/12A, CZ-40113 Usti nad Labem, Czech Republic
- Centre for Research and Development, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic, Sokolska 581, CZ-50005 Hradec Kralove, Czech Republic
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, CZ-50003 Hradec Kralove, Czech Republic
- Department of Anaesthesia, Pain Management and Perioperative Medicine, QE II Health Sciences Centre, Dalhousie University, Halifax, 10 West Victoria, 1276 South Park St, Halifax, NS B3H 2Y9 Canada
| | - Jacques Duranteau
- Department of Anaesthesia and Intensive Care, Hôpitaux Universitaires Paris Sud, University of Paris XI, Faculté de Médecine Paris-Sud, 78 rue du Général Leclerc, F-94275 Le Kremlin-Bicêtre Cedex, France
| | - Daniela Filipescu
- Department of Cardiac Anaesthesia and Intensive Care, C. C. Iliescu Emergency Institute of Cardiovascular Diseases, Sos Fundeni 256-258, RO-022328 Bucharest, Romania
| | - Beverley J. Hunt
- King’s College and Departments of Haematology and Pathology, Guy’s and St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH UK
| | - Radko Komadina
- Department of Traumatology, General and Teaching Hospital Celje, Medical Faculty Ljubljana University, SI-3000 Celje, Slovenia
| | - Marc Maegele
- Department of Trauma and Orthopaedic Surgery, Cologne-Merheim Medical Centre (CMMC), Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Ostmerheimer Strasse 200, D-51109 Cologne, Germany
| | - Giuseppe Nardi
- Department of Anaesthesia and ICU, AUSL della Romagna, Infermi Hospital Rimini, Viale Settembrini, 2, I-47924 Rimini, Italy
| | - Louis Riddez
- Department of Surgery and Trauma, Karolinska University Hospital, S-171 76 Solna, Sweden
| | - Charles-Marc Samama
- Hotel-Dieu University Hospital, 1, place du Parvis de Notre-Dame, F-75181 Paris Cedex 04, France
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Rolf Rossaint
- Department of Anaesthesiology, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
6
|
Kweon OJ, Lim YK, Kim B, Lee MK, Kim HR. Effectiveness of Platelet Function Analyzer-100 for Laboratory Detection of Anti-Platelet Drug-Induced Platelet Dysfunction. Ann Lab Med 2018; 39:23-30. [PMID: 30215226 PMCID: PMC6143472 DOI: 10.3343/alm.2019.39.1.23] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/24/2018] [Accepted: 08/16/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND High on-treatment platelet reactivity (HTPR) is the phenomenon wherein patients exhibit normal platelet activity in laboratory testing despite adequate adherence to anti-platelet treatment. We investigated the detection rates of Platelet Function Analyzer (PFA)-100 (Dade Behring AG, Düdingen, Switzerland) for drug-induced platelet dysfunction and analyzed potential contributors to HTPR with practical PFA-100 data over six years. METHODS We used data from 6,957 patients who underwent PFA-100 testing after receiving aspirin, clopidogrel, or non-steroidal anti-inflammatory drugs (NSAIDs). Of these, 6,163 patients were tested with only the collagen/epinephrine cartridge (Col/EPI) of PFA-100; 794 were tested with both Col/EPI and the collagen/ADP cartridge (Col/ADP). We calculated PFA-100 closure time (CT) for each drug and compared the clinical and laboratory characteristics of the patients with prolonged CTs and normal CTs (i.e., HTPR). RESULTS In Col/EPI, 73.2% (365/499), 72.6% (390/537), and 55.3% (3,442/6,228) patients showed prolonged CTs for aspirin, clopidogrel, and NSAIDs, respectively. In Col/ADP, prolonged CTs were observed in 37.4% (34/91), 43.2% (35/81), and 29.6% (200/676) of patients receiving aspirin, clopidogrel, and NSAIDs, respectively. Of the patients tested with both cartridges, 88.9% (48/54), 95.3% (41/43), and 89.0% (577/648) of the patients receiving aspirin, clopidogrel, and NSAIDs had prolonged CTs, and 10.0% (79/794) showed normal CTs regardless of drugs. For clopidogrel users (both cartridges), there were more patients with malignancies in the normal CT than prolonged CT group. CONCLUSIONS PFA-100 is not sufficiently effective for laboratory screening of drug-induced platelet dysfunction. Malignancy may contribute to clopidogrel-related HTPR in PFA-100.
Collapse
Affiliation(s)
- Oh Joo Kweon
- Department of Laboratory Medicine, Aerospace Medical Center, Republic of Korea Air Force, Cheongju, Korea.,Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yong Kwan Lim
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Bohyun Kim
- Department of Laboratory Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Mi Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hye Ryoun Kim
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Zilberman-Rudenko J, Zhao FZ, Reitsma SE, Mitrugno A, Pang J, Shatzel JJ, Rick B, Tyrrell C, Hasan W, McCarty OJT, Schreiber MA. Effect of Pneumatic Tubing System Transport on Platelet Apheresis Units. Cardiovasc Eng Technol 2018; 9:515-527. [PMID: 29785664 PMCID: PMC6168073 DOI: 10.1007/s13239-018-0361-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/08/2018] [Indexed: 01/23/2023]
Abstract
Platelet apheresis units are transfused into patients to mitigate or prevent bleeding. In a hospital, platelet apheresis units are transported from the transfusion service to the healthcare teams via two methods: a pneumatic tubing system (PTS) or ambulatory transport. Whether PTS transport affects the activity and utility of platelet apheresis units is unclear. We quantified the gravitational forces and transport time associated with PTS and ambulatory transport within our hospital. Washed platelets and supernatants were prepared from platelet apheresis units prior to transport as well as following ambulatory or PTS transport. For each group, we compared resting and agonist-induced platelet activity and platelet aggregate formation on collagen or von Willebrand factor (VWF) under shear, platelet VWF-receptor expression and VWF multimer levels. Subjection of platelet apheresis units to rapid acceleration/deceleration forces during PTS transport did not pre-activate platelets or their ability to activate in response to platelet agonists as compared to ambulatory transport. Platelets within platelet apheresis units transported via PTS retained their ability to adhere to surfaces of VWF and collagen under shear, although platelet aggregation on collagen and VWF was diminished as compared to ambulatory transport. VWF multimer levels and platelet GPIb receptor expression was unaffected by PTS transport as compared to ambulatory transport. Subjection of platelet apheresis units to PTS transport did not significantly affect the baseline or agonist-induced levels of platelet activation as compared to ambulatory transport. Our case study suggests that PTS transport may not significantly affect the hemostatic potential of platelets within platelet apheresis units.
Collapse
Affiliation(s)
- Jevgenia Zilberman-Rudenko
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA.
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR, USA.
| | - Frank Z Zhao
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Stephanie E Reitsma
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR, USA
| | - Annachiara Mitrugno
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR, USA
| | - Jiaqing Pang
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR, USA
| | - Joseph J Shatzel
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Beth Rick
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Christina Tyrrell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Wohaib Hasan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR, USA
| | - Martin A Schreiber
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
8
|
Zilberman-Rudenko J, McCarty OJT. Utility and development of microfluidic platforms for platelet research. Platelets 2018; 28:425-426. [PMID: 28700317 DOI: 10.1080/09537104.2017.1325187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Owen J T McCarty
- a Biomedical Engineering, School of Medicine, Oregon Health & Science University , Portland , OR , USA.,b Division of Hematology /Medical Oncology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| |
Collapse
|
9
|
Favaloro EJ. Clinical utility of closure times using the platelet function analyzer-100/200. Am J Hematol 2017; 92:398-404. [PMID: 27935090 DOI: 10.1002/ajh.24620] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 01/02/2023]
Abstract
The "platelet function analyzer" (PFA)-100 was first introduced to us in 1995. Since then, the instrument has appeared in over 50 reviews and almost 1000 publications. Recently, the PFA-100 has been "upgraded" to the PFA-200, which has transformed the user interface and electronic management, but retained the fundamental mechanics, and essentially provides the same results. The PFA-100/200 has conceivable clinical utility to screen for von Willebrand Disease (VWD) and platelet disorders, and in monitoring desmopressin (DDAVP) therapy in both, and possibly anti-platelet therapy. Its great strengths are its usage simplicity and sensitivity to conditions affecting primary hemostasis. However, as a "global" test, its limitation is that closure time (CT) test results are neither predictive of, nor specific for, any individual disorder. However, utilized properly, the PFA-100/200 reflects a valuable addition to hemostasis laboratories involved in identification or therapeutic-monitoring of disorders of primary hemostasis.
Collapse
Affiliation(s)
- Emmanuel J. Favaloro
- Department of Haematology; Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital; NSW Australia
| |
Collapse
|