1
|
Culkin MC, Bele P, Georges AP, Santos P, Niziolek G, Kaplan LJ, Smith DH, Pascual JL. Dose-Dependent Tranexamic Acid Blunting of Penumbral Leukocyte Mobilization and Blood-Brain Barrier Permeability Following Traumatic Brain Injury: An In Vivo Murine Study. Neurocrit Care 2024; 41:469-478. [PMID: 38443709 DOI: 10.1007/s12028-024-01952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Early posttraumatic brain injury (TBI) tranexamic acid (TXA) may reduce blood-brain barrier (BBB) permeability, but it is unclear if this effect is fixed regardless of dose. We hypothesized that post-TBI TXA demonstrates a dose-dependent reduction of in vivo penumbral leukocyte mobilization, BBB microvascular permeability, and enhancement of neuroclinical recovery. METHODS CD1 male mice (n = 40) were randomly assigned to TBI by controlled cortical impact (injury [I]) or sham TBI (S), followed by intravenous bolus of either saline (placebo [P]) or TXA (15, 30, or 60 mg/kg). At 48 h, in vivo pial intravital microscopy visualized live penumbral BBB microvascular leukocytes and albumin leakage. Neuroclinical recovery was assessed by Garcia Neurological Test scores and animal weight changes at 24 h and 48 h after injury. RESULTS I + TXA60 reduced live penumbral leukocyte rolling compared with I + P (p < 0.001) and both lower TXA doses (p = 0.017 vs. I + TXA15, p = 0.012 vs. I + TXA30). Leukocyte adhesion was infrequent and similar across groups. Only I + TXA60 significantly reduced BBB permeability compared with that in the I + P (p = 0.004) group. All TXA doses improved Garcia Test scores relative to I + P at both 24 h and 48 h (p < 0.001 vs. I + P for all at both time points). Mean 24-h body weight loss was greatest in the I + P (- 8.7 ± 1.3%) group and lowest in the I + TXA15 (- 4.4 ± 1.0%, p = 0.051 vs. I + P) group. CONCLUSIONS Only higher TXA dosing definitively abrogates penumbral leukocyte mobilization, preserving BBB integrity post TBI. Some neuroclinical recovery is observed, even with lower TXA dosing. Better outcomes with higher dose TXA after TBI may occur secondary to blunting of leukocyte-mediated penumbral cerebrovascular inflammation.
Collapse
Affiliation(s)
- Matthew C Culkin
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, SICU Administration Office - 5 Founders Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyanka Bele
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, SICU Administration Office - 5 Founders Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anastasia P Georges
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia Santos
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, SICU Administration Office - 5 Founders Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grace Niziolek
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, SICU Administration Office - 5 Founders Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Lewis J Kaplan
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, SICU Administration Office - 5 Founders Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jose L Pascual
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, SICU Administration Office - 5 Founders Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Xiang J, Cao J, Wang X, Shao S, Huang J, Zhang L, Tang B. Neutrophil extracellular traps and neutrophil extracellular traps-related genes are involved in new-onset atrial fibrillation in LPS-induced sepsis. Int Immunopharmacol 2024; 138:112550. [PMID: 38941671 DOI: 10.1016/j.intimp.2024.112550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Sepsis is considered a high risk factor for new-onset atrial fibrillation (NOAF), with neutrophil extracellular traps (NETs) being implicated in the pathogenesis of numerous diseases. However, the precise role of NETs and NETs-related genes (NRGs) in the occurrence of NOAF in sepsis remains inadequately elucidated. The objective of this study was to identify hub NRGs connecting sepsis and AF, and to investigate the potential association between NETs and NOAF in sepsis. METHODS The AF and sepsis microarray datasets were retrieved from the Gene Expression Omnibus (GEO) database for analysis of shared pathophysiological mechanisms and NRGs implicated in both sepsis and AF using bioinformatics techniques. The CIBERSORT algorithm was employed to assess immune cell infiltration and identify common immune characteristics in these diseases. Additionally, a rat model of lipopolysaccharide (LPS)-induced sepsis was utilized to investigate the association between NETs, NRGs, and sepsis-induced AF. Western blotting, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, immunohistochemistry, and immunofluorescence were employed to assess the expression of NRGs, the formation of NETs, and the infiltration of neutrophils. Electrophysiological analysis and multi-electrode array techniques were utilized to examine the vulnerability and conduction heterogeneity of AF in septic rats. Furthermore, intervention was conducted in LPS-induced sepsis rats using DNase I, a pharmacological agent that specifically targets NETs, in order to assess its impact on neutrophil infiltration, NETs formation, hub NRGs protein expression, and AF vulnerability. RESULTS A total of 61 commonly differentially expressed genes (DEGs) and four hub DE-NRGs were identified in the context of sepsis and AF. Functional enrichment analysis revealed that these DEGs were predominantly associated with processes related to inflammation and immunity. Immune infiltration analysis further demonstrated the presence of immune infiltrating cells, specifically neutrophil infiltration, in both sepsis and AF. Additionally, a positive correlation was observed between the relative expression of the four hub DE-NRGs and neutrophil infiltration. In rats with LPS-induced sepsis, we observed a notable upregulation in the expression of four DE-NRGs, the formation of NETs, and infiltration of neutrophils in atrial tissue. Through electrophysiological assessments, we identified heightened vulnerability to AF, reduced atrial surface conduction velocity, and increased conduction heterogeneity in LPS-induced sepsis rats. Notably, these detrimental effects can be partially ameliorated by treatment with DNase I. CONCLUSIONS Through bioinformatics analysis and experimental validation, we identified four hub NRGs in sepsis and AF. Subsequent experiments indicated that the formation of NETs in the atria may contribute to the pathogenesis of NOAF in sepsis. These discoveries offer potential novel targets and insights for the prevention and treatment of NOAF in sepsis.
Collapse
Affiliation(s)
- Jie Xiang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Jiaru Cao
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Xiaoyan Wang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Shijie Shao
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Jie Huang
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China.
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China.
| |
Collapse
|
3
|
Li L, Jiang H, Qiu Z, Wang Z, Hu Z. EFFECT OF MIR-21-3P ON INTESTINAL INJURY IN RATS WITH TRAUMATIC HEMORRHAGIC SHOCK RESUSCITATED WITH THE SODIUM BICARBONATE RINGER'S SOLUTION. Shock 2024; 61:776-782. [PMID: 38517274 DOI: 10.1097/shk.0000000000002297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Background : This study aims to determine the impact and mechanism of miR-21-3p on intestinal injury and intestinal glycocalyx during fluid resuscitation in traumatic hemorrhagic shock (THS), and the different impacts of sodium lactate Ringer's solution (LRS) and sodium bicarbonate Ringer's solution (BRS) for resuscitation on intestinal damage. Methods : A rat model of THS was induced by hemorrhage from the left femur fracture. The pathological changes of intestinal tissues and glycocalyx structure were observed by hematoxylin-eosin staining and transmission electron microscope. MiR-21-3p expression in intestinal tissues was detected by real-time quantitative polymerase chain reaction. The expression of glycocalyx-, cell junction-, and PI3K/Akt/NF-κB signaling pathway-related proteins was analyzed by western blot. Results : MiR-21-3p expression was increased in THS rats, which was suppressed by resuscitation with BRS. BRS or LRS aggravated the intestinal injury and damaged intestinal glycocalyx in THS rats. The expression of SDC-1, HPA, β-catenin, MMP2, and MMP9 was upregulated, the expression of E-cad was downregulated, and the PI3K/Akt/NF-κB signaling pathway was activated in THS rats, which were further aggravated by BRS or LRS. The adverse effect of LRS was more serious than BRS. MiR-21-3p overexpression deteriorated the injury of intestinal tissues and intestinal glycocalyx; increased the expression of SDC-1, HPA, β-catenin, MMP2, and MMP9 while decreasing E-cad expression; and activated the PI3K/Akt/NF-κB signaling pathway in BRS-resuscitated THS rats. Conclusion : MiR-21-3p aggravated intestinal tissue injury and intestinal glycocalyx damage through activating PI3K/Akt/NF-κB signaling pathway in rats with THS resuscitated with BRS.
Collapse
Affiliation(s)
| | | | | | - Zhenjie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | | |
Collapse
|
4
|
Sun H, Du Z, Zhang X, Gao S, Ji Z, Luo G, Pan S. Neutrophil extracellular traps promote proliferation of pulmonary smooth muscle cells mediated by CCDC25 in pulmonary arterial hypertension. Respir Res 2024; 25:183. [PMID: 38664728 PMCID: PMC11046914 DOI: 10.1186/s12931-024-02813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Previous studies have indicated that neutrophil extracellular traps (NETs) play a pivotal role in pathogenesis of pulmonary arterial hypertension (PAH). However, the specific mechanism underlying the impact of NETs on pulmonary artery smooth muscle cells (PASMCs) has not been determined. The objective of this study was to elucidate underlying mechanisms through which NETs contribute to progression of PAH. METHODS Bioinformatics analysis was employed in this study to screen for potential molecules and mechanisms associated with occurrence and development of PAH. These findings were subsequently validated in human samples, coiled-coil domain containing 25 (CCDC25) knockdown PASMCs, as well as monocrotaline-induced PAH rat model. RESULTS NETs promoted proliferation of PASMCs, thereby facilitating pathogenesis of PAH. This phenomenon was mediated by the activation of transmembrane receptor CCDC25 on PASMCs, which subsequently activated ILK/β-parvin/RAC1 pathway. Consequently, cytoskeletal remodeling and phenotypic transformation occur in PASMCs. Furthermore, the level of NETs could serve as an indicator of PAH severity and as potential therapeutic target for alleviating PAH. CONCLUSION This study elucidated the involvement of NETs in pathogenesis of PAH through their influence on the function of PASMCs, thereby highlighting their potential as promising targets for the evaluation and treatment of PAH.
Collapse
Affiliation(s)
- Hongxiao Sun
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Zhanhui Du
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Xu Zhang
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Shuai Gao
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Zhixian Ji
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Gang Luo
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Silin Pan
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Cao C, Yu P, Chu C, Wang Z, Xu W, Cheng F, Zhao H, Qiu Z. Magnesium hydride attenuates intestinal barrier injury during hemorrhage shock by regulating neutrophil extracellular trap formation via the ROS/MAPK/PAD4 pathway. Int Immunopharmacol 2024; 130:111688. [PMID: 38394886 DOI: 10.1016/j.intimp.2024.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Magnesium hydride (MgH2) is a hydrogen storage material that is known for its high capacity and safety and is capable of releasing hydrogen in a controlled manner when administered orally. This release of hydrogen has been associated with a range of biological effects, including anti-inflammatory properties, antioxidant activity, and protection of the intestinal barrier. Previous research has shown that neutrophil extracellular traps (NETs) play a role in the dysfunction of the intestinal barrier in conditions such as sepsis and critical illnesses. However, it remains unclear as to whether MgH2 can protect the intestinal barrier by inhibiting NET formation, and the underlying mechanisms have yet to be elucidated. A rat model of hemorrhagic shock was created, and pretreatment or posttreatment procedures with MgH2 were performed. After 24 h, samples from the small intestine and blood were collected for analysis. In vitro, human neutrophils were incubated with either phorbol-12-myristate-13-acetate (PMA) or MgH2. Reactive oxygen species generation and the expression of key proteins were assessed. The results demonstrated that MgH2 administration led to a decrease in inflammatory cytokines in the serum and mitigated distant organ dysfunction in rats with HS. Furthermore, MgH2 treatment reversed histopathological damage in the intestines, improved intestinal permeability, and enhanced the expression of tight junction proteins (TJPs) during HS. Additionally, MgH2 treatment was found to suppress NET formation in the intestines. In vitro pretreatment with MgH2 alleviated intestinal monolayer barrier disruption that was induced by NETs. Mechanistically, MgH2 pretreatment reduced ROS production and NET formation, inhibited the activation of ERK and p38, and suppressed the expression of the PAD4 protein. These findings indicated that MgH2 may inhibit NET formation in a ROS/MAPK/PAD4-dependent manner, which reduces NET-related intestinal barrier damage, thus offering a novel protective role in preventing intestinal barrier dysfunction during HS.
Collapse
Affiliation(s)
- Changkui Cao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China; Department of Emergency, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Pan Yu
- Department of Burn and Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chengnan Chu
- Department of Emergency, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhenjie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Weiqi Xu
- Department of Emergency, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Feng Cheng
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Heng Zhao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Zhaolei Qiu
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China.
| |
Collapse
|
6
|
Culkin MC, Coons M, Bele P, Thaploo A, Georges AP, Anderson E, Browne KD, Jacovides C, Santos P, Kaplan LJ, Meaney DF, Smith DH, Pascual JL. Delayed tranexamic acid after traumatic brain injury impedes learning and memory: Early tranexamic acid is favorable but not in sham animals. J Trauma Acute Care Surg 2024; 96:26-34. [PMID: 37853567 DOI: 10.1097/ta.0000000000004155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND Early but not late tranexamic acid (TXA) after TBI preserves blood-brain-barrier integrity, but it is unclear if and how dose timing affects cognitive recovery beyond hours postinjury. We hypothesized that early (1 hour post-TBI) but not late (24 hours post-TBI) TXA administration improves cognitive recovery for 14 days. METHODS CD1 male mice (n = 25) were randomized to severe TBI (injury [I], by controlled cortical impact) or sham craniotomy (S) followed by intravenous saline at 1 hour (placebo [P1]) or 30 mg/kg TXA at 1 hour (TXA1) or 24 hours (TXA24). Daily body weights, Garcia Neurological Test scores, brain/lung water content, and Morris water maze exercises quantifying swimming traffic in the platform quadrant (zone [Z] 1) and platform area (Z5) were recorded for up to 14 days. RESULTS Among injured groups, I-TXA1 demonstrated fastest weight gain for 14 days and only I-TXA1 showed rapid (day 1) normalization of Garcia Neurological Test ( p = 0.01 vs. I-P1, I-TXA24). In cumulative spatial trials, compared with I-TXA1, I-TXA24 hindered learning (distance to Z5 and % time in Z1, p < 0.05). Compared with I-TXA1, I-TXA24 showed poorer memory with less Z5 time (0.51 vs. 0.16 seconds, p < 0.01) and Z5 crossing frequency. Unexpectedly, TXA in uninjured animals (S-TXA1) displayed faster weight gain but inferior learning and memory. CONCLUSION Early TXA appears beneficial for cognitive and behavioral outcomes following TBI, although administration 24 hours postinjury consistently impairs cognitive recovery. Tranexamic acid in sham animals may lead to adverse effects on cognition.
Collapse
Affiliation(s)
- Matthew C Culkin
- From the Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery (M.C.C., M.C., P.B., A.T., C.J., P.S., L.J.K., J.L.P.), and Center for Brain Injury and Repair, Department of Neurosurgery (M.C.C., M.C., P.B., A.T., A.P.G., E.A., K.D.B., C.J., P.S., L.J.K., D.F.M., D.H.S., J.L.P.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu B, Deng Y, Duan Z, Chu C, Wang X, Yang C, Li J, Ding W. Neutrophil extracellular traps promote intestinal barrier dysfunction by regulating macrophage polarization during trauma/hemorrhagic shock via the TGF-β signaling pathway. Cell Signal 2024; 113:110941. [PMID: 37890686 DOI: 10.1016/j.cellsig.2023.110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/01/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The mechanism by which neutrophil extracellular traps (NETs) may cause intestinal barrier dysfunction in response to trauma/hemorrhagic shock (T/HS) remains unclear. In this study, the roles and mechanisms of NETs in macrophage polarization were examined to determine whether this process plays a role in tissue damage associated with T/HS. Rat models of T/HS and macrophage polarization were developed and the levels of NETs formation in the intestinal tissue of T/HS rats were assessed. NET formation was inhibited in models of T/HS to examine the effect on intestinal inflammation and barrier injury. The proportions of pro-inflammatory and anti-inflammatory macrophages in the damaged intestinal tissues were measured. Finally, high-throughput sequencing was performed to investigate the underlying mechanisms involved in this process. The study revealed that the level of NETs formation was increased and that inhibition of NETs formation alleviated the intestinal inflammation and barrier injury. Moreover, the number of pro-inflammatory macrophages increased and the number of anti-inflammatory macrophages decreased. RNA sequencing analysis indicated that NETs formation decreased the expression of transforming growth factor-beta receptor 2 (TGFBR2), bioinformatic analyses revealed that TGFBR2 was significantly enriched in the transforming growth factor-beta (TGF-β) signaling pathway. Verification experiments showed that NETs impeded macrophage differentiation into the anti-inflammatory/M2 phenotype and inhibited TGFBR2 and TGF-β expression in macrophages. However, treatment with DNase I and overexpression of TGFBR2, and inhibition of TGF-β promoted and prevented this process, respectively. NETs may regulate the macrophage polarization process by promoting intestinal barrier dysfunction in T/HS rats through the TGFBR2-mediated TGF-β signaling pathway.
Collapse
Affiliation(s)
- Baochen Liu
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yunxuan Deng
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zehua Duan
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chengnan Chu
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xingyu Wang
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chao Yang
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jieshou Li
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Weiwei Ding
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Chu C, Wang X, Chen F, Yang C, Shi L, Xu W, Wang K, Liu B, Wang C, Sun D, Li J, Ding W. Neutrophil extracellular traps aggravate intestinal epithelial necroptosis in ischaemia-reperfusion by regulating TLR4/RIPK3/FUNDC1-required mitophagy. Cell Prolif 2024; 57:e13538. [PMID: 37691112 PMCID: PMC10771116 DOI: 10.1111/cpr.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Neutrophil extracellular trap (NET) has been confirmed to be related to gut barrier injury during intestinal ischaemia-reperfusion (II/R). However, the specific molecular regulatory mechanism of NETs in II/R-induced intestinal barrier damage has yet to be fully elucidated. Here, we reported increased NETs infiltration accompanied by elevated inflammatory cytokines, cellular necroptosis and tight junction disruption in the intestine of human II/R patients. Meanwhile, NETs aggravated Caco-2 intestinal epithelial cell necroptosis, impairing the monolayer barrier in vitro. Moreover, Pad4-deficient mice were used further to validate the role of NETs in II/R-induced intestinal injury. In contrast, NET inhibition via Pad4 deficiency alleviated intestinal inflammation, attenuated cellular necroptosis, improved intestinal permeability, and enhanced tight junction protein expression. Notably, NETs prevented FUN14 domain-containing 1 (FUNDC1)-required mitophagy activation in intestinal epithelial cells, and stimulating mitophagy attenuated NET-associated mitochondrial dysfunction, cellular necroptosis, and intestinal damage. Mechanistically, silencing Toll-like receptor 4 (TLR4) or receptor-interacting protein kinase 3 (RIPK3) via shRNA relieved mitophagy limitation, restored mitochondrial function and reduced NET-induced necroptosis in Caco-2 cells, whereas this protective effect was reversed by TLR4 or RIPK3 overexpression. The regulation of TLR4/RIPK3/FUNDC1-required mitophagy by NETs can potentially induce intestinal epithelium necroptosis.
Collapse
Affiliation(s)
- Chengnan Chu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Xinyu Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Fang Chen
- Division of Trauma and Acute Care Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingJiangsu ProvinceChina
| | - Chao Yang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Lin Shi
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu ProvinceChina
| | - Weiqi Xu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Kai Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Baochen Liu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Chenyang Wang
- Key Laboratory of Intestinal Injury, Research Institute of General Surgery, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingJiangsuChina
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu ProvinceChina
| | - Jieshou Li
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Weiwei Ding
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
- Division of Trauma and Acute Care Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
9
|
Culkin MC, Bele P, Georges AP, Lopez AJ, Niziolek G, Jacovides CL, Song H, Johnson VE, Kaplan LJ, Smith DH, Pascual JL. Early posttraumatic brain injury tranexamic acid prevents blood-brain barrier hyperpermeability and improves surrogates of neuroclinical recovery. J Trauma Acute Care Surg 2023; 95:47-54. [PMID: 37038259 DOI: 10.1097/ta.0000000000003971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
BACKGROUND Tranexamic acid (TXA) given early, but not late, after traumatic brain injury (TBI) appears to improve survival. This may be partly related to TXA-driven profibrinolysis and increased leukocyte (LEU)-mediated inflammation when administered late post-injury. We hypothesized that early TXA (1 hour post-TBI), blunts penumbral, blood-brain barrier (BBB) leukocyte-endothelial cell (LEU-EC) interactions and microvascular permeability, in vivo when compared with late administration (24 hours post-TBI). METHODS CD1 male mice (n = 35) were randomized to severe TBI (injury by controlled cortical impact; injury: velocity, 6 m/s; depth, 1 mm; diameter, 3 mm) or sham craniotomy followed by intravenous saline (placebo) at 1 hour, or TXA (30 mg/kg) at 1 hour or 24 hours. At 48 hours, in vivo pial intravital microscopy visualized live penumbral LEU-EC interactions and BBB microvascular fluorescent albumin leakage. Neuroclinical recovery was assessed by the Garcia Neurological Test (motor, sensory, reflex, and balance assessments) and body weight loss recovery at 1 and 2 days after injury. Analysis of variance with Bonferroni correction assessed intergroup differences ( p < 0.05). RESULTS One-hour, but not 24-hour, TXA improved Garcia Neurological Test performance on day 1 post-TBI compared with placebo. Both 1 hour and 24 hours TXA similarly improved day 1 weight loss recovery, but only 1 hour TXA significantly improved weight loss recovery on day 2 compared with placebo ( p = 0.04). No intergroup differences were found in LEU rolling or adhesion between injured animal groups. Compared with untreated injured animals, only TXA at 1 hour reduced BBB permeability. CONCLUSION Only early post-TBI TXA consistently improves murine neurological recovery. Tranexamic acid preserves BBB integrity but only when administered early. This effect appears independent of LEU-EC interactions and demonstrates a time-sensitive effect that supports only early TXA administration.
Collapse
Affiliation(s)
- Matthew C Culkin
- From the Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery (M.C.C., P.B., A.J.L., G.N., C.L.J., L.J.K., J.L.P.), and Center for Brain Injury and Repair, Department of Neurosurgery (M.C.C., P.B., A.P.G., A.J.L., G.N., C.L.J., H.S., V.E.J., L.J.K., D.H.S., J.L.P.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sun Q, Zhang H, Du HB, Zhao ZA, Li CJ, Chen SJ, Li YM, Zhang SL, Liu JC, Niu CY, Zhao ZG. ESTROGEN ALLEVIATES POSTHEMORRHAGIC SHOCK MESENTERIC LYMPH-MEDIATED LUNG INJURY THROUGH AUTOPHAGY INHIBITION. Shock 2023; 59:754-762. [PMID: 36840514 DOI: 10.1097/shk.0000000000002102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
ABSTRACT Background: Hemorrhagic shock-induced acute lung injury (ALI) is commonly associated with the posthemorrhagic shock mesenteric lymph (PHSML) return. Whether excessive autophagy is involved in PHSML-mediated ALI remains unclear. The relationship between estrogen treatment and PHSML or autophagy needs to verify. The current study will clarify the role of estrogen in reducing PHSML-mediated ALI through inhibition of autophagy. Methods: First, a hemorrhagic shock model in conscious rats was used to observe the effects of 17β-estradiol (E2) on intestinal blood flow, pulmonary function, intestinal and pulmonary morphology, and expression of autophagy marker proteins. Meanwhile, the effect of PHSML and autophagy agonist during E2 treatment was also investigated. Secondly, rat primary pulmonary microvascular endothelial cells were used to observe the effect of PHSML, PHSML plus E2, and E2-PHSML (PHSML obtained from rats treated by E2) on the cell viability. Results: Hemorrhagic shock induced intestinal and pulmonary tissue damage and increased wet/dry ratio, reduced intestinal blood flow, along with pulmonary dysfunction characterized by increased functional residual capacity and lung resistance and decreased inspiratory capacity and peak expiratory flow. Hemorrhagic shock also enhanced the autophagy levels in intestinal and pulmonary tissue, which was characterized by increased expressions of LC3 II/I and Beclin-1 and decreased expression of p62. E2 treatment significantly attenuated these adverse changes after hemorrhagic shock, which was reversed by PHSML or rapamycin administration. Importantly, PHSML incubation decreased the viability of pulmonary microvascular endothelial cells, while E2 coincubation or E2-treated lymph counteracted the adverse roles of PHSML. Conclusions: The role of estrogen reducing PHSML-mediated ALI is associated with the inhibition of autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Si-Jie Chen
- Institute of Microcirculation and Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Yi-Ming Li
- Institute of Microcirculation and Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Sen-Lu Zhang
- Institute of Microcirculation and Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Jun-Chao Liu
- The First Affiliated Hospital, Hebei North University, Zhangjiakou, China
| | | | | |
Collapse
|
11
|
Song YH, Wang ZJ, Kang L, He ZX, Zhao SB, Fang X, Li ZS, Wang SL, Bai Y. PADs and NETs in digestive system: From physiology to pathology. Front Immunol 2023; 14:1077041. [PMID: 36761761 PMCID: PMC9902375 DOI: 10.3389/fimmu.2023.1077041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Peptidylarginine deiminases (PADs) are the only enzyme class known to deiminate arginine residues into citrulline in proteins, a process known as citrullination. This is an important post-translational modification that functions in several physiological and pathological processes. Neutrophil extracellular traps (NETs) are generated by NETosis, a novel cell death in neutrophils and a double-edged sword in inflammation. Excessive activation of PADs and NETs is critically implicated in their transformation from a physiological to a pathological state. Herein, we review the physiological and pathological functions of PADs and NETs, in particular, the involvement of PAD2 and PAD4 in the digestive system, from inflammatory to oncological diseases, along with related therapeutic prospects.
Collapse
Affiliation(s)
- Yi-Hang Song
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi-Jie Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Le Kang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zi-Xuan He
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng-Bing Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xue Fang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Zhang F, Li Y, Wu J, Zhang J, Cao P, Sun Z, Wang W. The role of extracellular traps in ischemia reperfusion injury. Front Immunol 2022; 13:1022380. [PMID: 36211432 PMCID: PMC9533173 DOI: 10.3389/fimmu.2022.1022380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
In response to strong signals, several types of immune cells release extracellular traps (ETs), which are web-like structures consisting of DNA decorated with various protein substances. This process is most commonly observed in neutrophils. Over the past two decades, ET formation has been recognized as a unique mechanism of host defense and pathogen destruction. However, the role of ETs in sterile inflammation has only been studied extensively in recent years. Ischemia reperfusion injury (IRI) is a type of sterile inflammatory injury. Several studies have reported that ETs have an important role in IRI in various organs. In this review, we describe the release of ETs by various types of immune cells and focus on the mechanism underlying the formation of neutrophil ETs (NETs). In addition, we summarize the role of ETs in IRI in different organs and their effects on tumors. Finally, we discuss the value of ETs as a potential therapeutic target for organ IRI and present possible challenges in conducting studies on IRI-related ETs as well as future research directions and prospects.
Collapse
Affiliation(s)
- Feilong Zhang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Yuqing Li
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Jiyue Wu
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Jiandong Zhang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Peng Cao
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Zejia Sun
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
- *Correspondence: Wei Wang,
| |
Collapse
|
13
|
Huang Q, Gao S, Yao Y, Wang Y, Li J, Chen J, guo C, Zhao D, Li X. Innate immunity and immunotherapy for hemorrhagic shock. Front Immunol 2022; 13:918380. [PMID: 36091025 PMCID: PMC9453212 DOI: 10.3389/fimmu.2022.918380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Hemorrhagic shock (HS) is a shock result of hypovolemic injury, in which the innate immune response plays a central role in the pathophysiology ofthe severe complications and organ injury in surviving patients. During the development of HS, innate immunity acts as the first line of defense, mediating a rapid response to pathogens or danger signals through pattern recognition receptors. The early and exaggerated activation of innate immunity, which is widespread in patients with HS, results in systemic inflammation, cytokine storm, and excessive activation of complement factors and innate immune cells, comprised of type II innate lymphoid cells, CD4+ T cells, natural killer cells, eosinophils, basophils, macrophages, neutrophils, and dendritic cells. Recently, compelling evidence focusing on the innate immune regulation in preclinical and clinical studies promises new treatment avenues to reverse or minimize HS-induced tissue injury, organ dysfunction, and ultimately mortality. In this review, we first discuss the innate immune response involved in HS injury, and then systematically detail the cutting-edge therapeutic strategies in the past decade regarding the innate immune regulation in this field; these strategies include the use of mesenchymal stem cells, exosomes, genetic approaches, antibody therapy, small molecule inhibitors, natural medicine, mesenteric lymph drainage, vagus nerve stimulation, hormones, glycoproteins, and others. We also reviewed the available clinical studies on immune regulation for treating HS and assessed the potential of immune regulation concerning a translation from basic research to clinical practice. Combining therapeutic strategies with an improved understanding of how the innate immune system responds to HS could help to identify and develop targeted therapeutic modalities that mitigate severe organ dysfunction, improve patient outcomes, and reduce mortality due to HS injury.
Collapse
Affiliation(s)
- Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Song Gao
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd., Changchun, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yisa Wang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chen guo
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Daqing Zhao, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Daqing Zhao, ; Xiangyan Li,
| |
Collapse
|
14
|
Prudovsky I, Kacer D, Zucco VV, Palmeri M, Falank C, Kramer R, Carter D, Rappold J. Tranexamic acid: Beyond antifibrinolysis. Transfusion 2022; 62 Suppl 1:S301-S312. [PMID: 35834488 DOI: 10.1111/trf.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
Tranexamic acid (TXA) is a popular antifibrinolytic drug widely used in hemorrhagic trauma patients and cardiovascular, orthopedic, and gynecological surgical patients. TXA binds plasminogen and prevents its maturation to the fibrinolytic enzyme plasmin. A number of studies have demonstrated the broad life-saving effects of TXA in trauma, superior to those of other antifibrinolytic agents. Besides preventing fibrinolysis and blood loss, TXA has been reported to suppress posttraumatic inflammation and edema. Although the efficiency of TXA transcends simple inhibition of fibrinolysis, little is known about its mechanisms of action besides the suppression of plasmin maturation. Understanding the broader effects of TXA at the cell, organ, and organism levels are required to elucidate its potential mechanisms of action transcending antifibrinolytic activity. In this article, we provide a brief review of the current clinical use of TXA and then focus on the effects of TXA beyond antifibrinolytics such as its anti-inflammatory activity, protection of the endothelial and epithelial monolayers, stimulation of mitochondrial respiration, and suppression of melanogenesis.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, USA
| | - Doreen Kacer
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, USA
| | - Victoria Vieira Zucco
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, USA
| | - Monica Palmeri
- Maine Medical Center Cardiovascular Institute, Maine Medical Center, Portland, Maine, USA
| | - Carolyne Falank
- Department of Trauma, Maine Medical Center, Maine Medical Center, Portland, Maine, USA
| | - Robert Kramer
- Maine Medical Center Cardiovascular Institute, Maine Medical Center, Portland, Maine, USA
| | - Damien Carter
- Department of Trauma, Maine Medical Center, Maine Medical Center, Portland, Maine, USA
| | - Joseph Rappold
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, USA.,Department of Trauma, Maine Medical Center, Maine Medical Center, Portland, Maine, USA
| |
Collapse
|
15
|
Chen F, Chu CN, Ding WW. Mechanisms and prevention of intestinal barrier function damage in traumatic hemorrhagic shock. Shijie Huaren Xiaohua Zazhi 2022; 30:547-554. [DOI: 10.11569/wcjd.v30.i12.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The intestinal barrier is composed of mechanical barrier, chemical barrier, immune barrier, and microbial barrier, which has an important role in defense against microbial invasion. The components of intestinal barrier coordinate with each other under physiological conditions to maintain the homeostasis of intestinal internal and external environment. In traumatic hemorrhagic shock, intestinal barrier function is prone to be impaired by intestinal hypoperfusion, intestinal ischemia-reperfusion injury, and many other factors. Bacterial translocation and endotoxin entry into the blood may occur, leading to enterogenic infection, multiple organ dysfunction, and even death. At present, there are many conceptual updates and technical progress on the mechanisms, prevention, and treatment of intestinal barrier function injury in traumatic hemorrhagic shock both at home and abroad. This paper intends to make a literature review in this field based on the previous research of our team, in order to provide a systematic and comprehensive theoretical system for the clinical prevention and treatment of post-traumatic intestinal dysfunction related diseases.
Collapse
Affiliation(s)
- Fang Chen
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, Jiangsu Province, China
| | - Cheng-Nan Chu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wei-Wei Ding
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
16
|
Chen F, Liu Y, Shi Y, Zhang J, Liu X, Liu Z, Lv J, Leng Y. The emerging role of neutrophilic extracellular traps in intestinal disease. Gut Pathog 2022; 14:27. [PMID: 35733158 PMCID: PMC9214684 DOI: 10.1186/s13099-022-00497-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular reticular fibrillar structures composed of DNA, histones, granulins and cytoplasmic proteins that are delivered externally by neutrophils in response to stimulation with various types of microorganisms, cytokines and host molecules, etc. NET formation has been extensively demonstrated to trap, immobilize, inactivate and kill invading microorganisms and acts as a form of innate response against pathogenic invasion. However, NETs are a double-edged sword. In the event of imbalance between NET formation and clearance, excessive NETs not only directly inflict tissue lesions, but also recruit pro-inflammatory cells or proteins that promote the release of inflammatory factors and magnify the inflammatory response further, driving the progression of many human diseases. The deleterious effects of excessive release of NETs on gut diseases are particularly crucial as NETs are more likely to be disrupted by neutrophils infiltrating the intestinal epithelium during intestinal disorders, leading to intestinal injury, and in addition, NETs and their relevant molecules are capable of directly triggering the death of intestinal epithelial cells. Within this context, a large number of NETs have been reported in several intestinal diseases, including intestinal infections, inflammatory bowel disease, intestinal ischemia–reperfusion injury, sepsis, necrotizing enterocolitis, and colorectal cancer. Therefore, the formation of NET would have to be strictly monitored to prevent their mediated tissue damage. In this review, we summarize the latest knowledge on the formation mechanisms of NETs and their pathophysiological roles in a variety of intestinal diseases, with the aim of providing an essential directional guidance and theoretical basis for clinical interventions in the exploration of mechanisms underlying NETs and targeted therapies.
Collapse
Affiliation(s)
- Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yongqiang Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.,Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yajing Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jianmin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.,Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhenzhen Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jipeng Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yufang Leng
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China. .,Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
17
|
Tranexamic Acid and Its Potential Anti-Inflammatory Effect: A Systematic Review. Semin Thromb Hemost 2022; 48:568-595. [PMID: 35636449 DOI: 10.1055/s-0042-1742741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tranexamic acid (TXA) is an antifibrinolytic drug primarily used for reducing blood loss in patients with major bleedings. Animal and cell studies have shown that TXA might modulate the inflammatory response by either enhancing or inhibiting cytokine levels. Furthermore, recent human studies have found altered inflammatory biomarkers in patients receiving TXA when compared with patients who did not receive TXA. In this systematic review we investigated the effect of TXA on inflammatory biomarkers in different patient groups. A systematic literature search was conducted on the databases PubMed and Embase to identify all original articles that investigated inflammatory biomarkers in patients receiving TXA and compared them to a relevant control group. The review was performed according to the PRISMA guidelines, and the literature search was performed on November 29, 2021. Thirty-three studies were included, among which 14 studies compared patients receiving TXA with patients getting no medication, another 14 studies investigated different dosing regimens of TXA, and finally five studies examined the administration form of TXA. The present review suggests that TXA has an anti-inflammatory effect in patients undergoing orthopaedic surgery illustrated by decreased levels of C-reactive protein and interleukin-6 in patients receiving TXA compared with patients receiving no or lower doses of TXA. However, the anti-inflammatory effect was not found in patients undergoing cardiac surgery, pediatric craniosynostosis patients, or in rheumatoid arthritis patients. The inflammatory response was not affected by administration form of TXA (oral, intravenous, or topical). In conclusion, an anti-inflammatory effect of TXA was consistently found among orthopaedic patients only.
Collapse
|
18
|
Hinojosa-Laborde C, Hudson IL, Ross E, Xiang L, Ryan KL. Pathophysiology of Hemorrhage as It Relates to the Warfighter. Physiology (Bethesda) 2022; 37:141-153. [PMID: 35001653 PMCID: PMC8977138 DOI: 10.1152/physiol.00028.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Saving lives of wounded military Warfighters often depends on the ability to resolve or mitigate the pathophysiology of hemorrhage, specifically diminished oxygen delivery to vital organs that leads to multi-organ failure and death. However, caring for hemorrhaging patients on the battlefield presents unique challenges that extend beyond applying a tourniquet and giving a blood transfusion, especially when battlefield care must be provided for a prolonged period. This review will describe these challenges and potential strategies for treating hemorrhage on the battlefield in a prolonged casualty care situation.
Collapse
Affiliation(s)
| | - Ian L Hudson
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States
| | - Evan Ross
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States
| | - Lusha Xiang
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States
| | - Kathy L Ryan
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States
| |
Collapse
|
19
|
De-escalation antibiotic therapy alleviates organ injury through modulation of NETs formation during sepsis. Cell Death Discov 2021; 7:345. [PMID: 34759282 PMCID: PMC8580974 DOI: 10.1038/s41420-021-00745-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022] Open
Abstract
Empiric broad-spectrum antimicrobials therapy is suggested to be started immediately for sepsis patients. Empiric antimicrobial therapy should be narrowed once pathogen identification and sensitivities are established. However, the detailed mechanisms of de-escalation strategy are still unclear. Here we hypothesized neutrophil extracellular traps (NETs) played an essential role and de-escalation strategy might alleviate organs injury through regulation of NETs formation in sepsis. We evaluated the effect of imipenem and ceftriaxone on NETs formation in vitro and examined the role of reactive oxygen species (ROS). Next, we designed de-escalation and escalation strategy in cecum ligation and puncture (CLP) models. Organ injury, inflammatory cytokines, NETs levels were compared and evaluated. In CLP models, de-escalation therapy resulted in an increased serum MPO-DNA level during the early stage and decreased MPO-DNA level during late stage, which exerted the reverse effects in escalation therapy. Inflammatory response and organ injury exacerbated when eliminated NETs with DNAse I during the early stage of sepsis (p < 0.01). Histopathological analysis showed decreased injury in lung, liver, and intestine in de-escalation therapy compared with escalation therapy (p < 0.01). De-escalation therapy results in the highest 6-day survival rate compared with the control group (p < 0.01), however, no significant difference was found between de-escalation and escalation group (p = 0.051). The in vitro study showed that the imipenem could promote, while the ceftriaxone could inhibit the formation of NETs in PMA-activated PMNs through a ROS-dependent manner. We firstly demonstrate that de-escalation, not escalation, therapy reduces organ injury, decreases inflammatory response by promoting NETs formation in the early stage, and inhibiting NETs formation in the late stage of sepsis.
Collapse
|
20
|
Duan Z, Sun S, Qu C, Wang K, Chen F, Wang X, Chu C, Liu B, Li J, Ding W. Neutrophil extracellular trap formation index predicts occurrences of deep surgical site infection after laparotomy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1373. [PMID: 34733925 PMCID: PMC8506538 DOI: 10.21037/atm-21-1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/22/2021] [Indexed: 11/06/2022]
Abstract
Background Deep surgical site infections (DSSIs) are serious complications after laparotomy. Neutrophil extracellular traps (NETs) play a vital role in the development of DSSI. Here, we focused on a new approach to predicting the occurrence of DSSI through the detection of the NET formation index (NFI), and compared its prediction ability with other clinical infection indicators. Methods Patients who received laparotomy were prospectively enrolled in this study. General information, APACHE II score, SOFA score, and serum infection indicators were recorded. The postoperative abdominal drainage fluid was collected within 3 days after the operation for quantification of the NFI. Results A total of 92 consecutive patients were included, with 22 patients were diagnosed with DSSI. The NFI in the DSSI group was 32.70%±19.33% while the corresponding index was 10.70%±8.25% in the non-DSSI group (P<0.01). The mean APACHE II and SOFA score had significant differences between the two groups. The NFI was positively correlated with the APACHE II score (P<0.01, r=0.269) and SOFA score (P=0.013, r=0.258). Patients with a high NFI (NFI >13.86%) had a higher risk of developing DSSI. According to the receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC) of the NFI, C-reactive protein (CRP) and procalcitonin (PCT) were 0.912, 0.748 and 0.731, respectively. Conclusions In this cohort of surgical patients, the quantification of the NFI had a considerable predictive value for early identification of DSSI. The NFI in drainage fluid turned out to be a more sensitive and specific predictor of DSSI than serum infection indicators including CRP and PCT.
Collapse
Affiliation(s)
- Zehua Duan
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shilong Sun
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Cheng Qu
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kai Wang
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fang Chen
- School of Medicine, Southeast University, Nanjing, China
| | - Xinyu Wang
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chengnan Chu
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Baochen Liu
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jieshou Li
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, the First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Netting Gut Disease: Neutrophil Extracellular Trap in Intestinal Pathology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5541222. [PMID: 34712384 PMCID: PMC8548149 DOI: 10.1155/2021/5541222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/04/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
Many gut disease etiologies are attributed to the presence of robust inflammatory cell recruitment. The recruitment of neutrophils plays a vital role in inflammatory infiltration. Neutrophils have various antimicrobial effector mechanisms, including phagocytosis, oxidative burst, and degranulation. It is suggested that neutrophils could release neutrophil extracellular traps (NETs) to kill pathogens. However, recent evidence indicates that neutrophil infiltration within the gut is associated with disrupted local immunological microenvironment and impaired epithelial barrier. Growing evidence implies that NETs are involved in the progression of many diseases, including cancer, diabetes, thrombosis, and autoimmune disease. Increased NET formation was found in acute or chronic conditions, including infection, sterile inflammation, cancer, and ischemia/reperfusion injury (IRI). Here, we present a comprehensive review of recent advances in the understanding of NETs, focusing on their effects in gut disease. We also discuss NETs as a potential therapeutic target in gut disease.
Collapse
|
22
|
Sun S, Duan Z, Wang X, Chu C, Yang C, Chen F, Wang D, Wang C, Li Q, Ding W. Neutrophil extracellular traps impair intestinal barrier functions in sepsis by regulating TLR9-mediated endoplasmic reticulum stress pathway. Cell Death Dis 2021; 12:606. [PMID: 34117211 PMCID: PMC8195983 DOI: 10.1038/s41419-021-03896-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Increased neutrophil extracellular traps (NETs) formation has been found to be associated with intestinal inflammation, and it has been reported that NETs may drive the progression of gut dysregulation in sepsis. However, the biological function and regulation of NETs in sepsis-induced intestinal barrier dysfunction are not yet fully understood. First, we found that both circulating biomarkers of NETs and local NETs infiltration in the intestine were significantly increased and had positive correlations with markers of enterocyte injury in abdominal sepsis patients. Moreover, the levels of local citrullinated histone 3 (Cit H3) expression were associated with the levels of BIP expression. To further confirm the role of NETs in sepsis-induced intestinal injury, we compared peptidylarginine deiminase 4 (PAD4)-deficient mice and wild-type (WT) mice in a lethal septic shock model. In WT mice, the Cit H3-DNA complex was markedly increased, and elevated intestinal inflammation and endoplasmic reticulum (ER) stress activation were also found. Furthermore, PAD4 deficiency alleviated intestinal barrier disruption and decreased ER stress activation. Notably, NETs treatment induced intestinal epithelial monolayer barrier disruption and ER stress activation in a dose-dependent manner in vitro, and ER stress inhibition markedly attenuated intestinal apoptosis and tight junction injury. Finally, TLR9 antagonist administration significantly abrogated NETs-induced intestinal epithelial cell death through ER stress inhibition. Our results indicated that NETs could contribute to sepsis-induced intestinal barrier dysfunction by promoting inflammation and apoptosis. Suppression of the TLR9–ER stress signaling pathway can ameliorate NETs-induced intestinal epithelial cell death.
Collapse
Affiliation(s)
- Shilong Sun
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, P. R. China.,Key Laboratory of Intestinal Injury, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, P. R. China
| | - Zehua Duan
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, P. R. China
| | - Xinyu Wang
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, P. R. China
| | - Chengnan Chu
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, P. R. China
| | - Chao Yang
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, P. R. China
| | - Fang Chen
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, P. R. China.,School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Daojuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu, P. R. China
| | - Chenyang Wang
- Key Laboratory of Intestinal Injury, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, P. R. China
| | - Qiurong Li
- Key Laboratory of Intestinal Injury, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, P. R. China.
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, P. R. China. .,The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, Jiangsu, P. R. China.
| |
Collapse
|
23
|
Protective effect of ethyl pyruvate on gut barrier function through regulations of ROS-related NETs formation during sepsis. Mol Immunol 2021; 132:108-116. [PMID: 33581408 DOI: 10.1016/j.molimm.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sepsis impairs the function of the intestinal barrier through neutrophil extracellular traps (NETs). Reactive oxygen species (ROS)-induced activation of mitogen-activated protein kinase (MAPK) is involved in NET formation. Ethyl pyruvate (EP), a potent and effective ROS scavenger, ameliorates sepsis-associated intestinal barrier dysfunction, but the detailed mechanism is unknown. The current study aimed to explore the eff ;ects of EP on sepsis-induced intestinal barrier dysfunction and whether ROS and NETs were involved. METHODS A sepsis model was induced in mice by intraperitoneal injection of LPS (10 mg/kg). The mice were divided into 4 groups: (1) sham group; (2) LPS group; (3) DNase-1 + LPS group; and (4) EP + LPS group. EP or DNase-1 was intraperitoneally injected after the LPS model was established. After 24 h, the small intestine and blood were collected for analysis. Human neutrophils were harvested and incubated with phorbol-12-myristate-13-acetate (PMA) or PMA + EP, and ROS and NET generation was measured. RESULTS EP significantly decreased proinflammatory cytokines and MPO-DNA in the LPS model. In addition, EP suppressed NET formation in the intestines of endotoxemic mice. The decrease in NETs induced by EP or DNase-1 alleviated histopathological damage, intestinal cell apoptosis and increased tight junction expression. In vitro, the treatment of EP abolished PMA-induced ROS production and NET formation which could be reversed by H2O2 treatment. Meanwhile, EP also abolished MAPK ERK1/2 and p38 activation during PMA-induced NET formation. CONCLUSION This study was the first to demonstrate that EP alleviated NET formation and sepsis-induced intestinal damage through blockage of ROS mediated MAPK ERK1/2 and p38 activation.
Collapse
|
24
|
Balkanlı B, Çopuroğlu C, Çopuroğlu E. The effects of intravenous and local tranexamic acid on bone healing: An experimental study in the rat tibia fracture model. Injury 2020; 51:2840-2845. [PMID: 32951917 DOI: 10.1016/j.injury.2020.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Tranexamic acid (TXA) is an antifibrinolytic agent. It has long been used to reduce the need for perioperative blood loss in various surgeries. Few studies have investigated the effects of local and intravenous administration of TXA on fracture healing. Thus, we aimed to evaluate if TXA influences hematoma volume and fracture healing in the rat tibia fracture model. MATERIALS AND METHODS A tibia fracture with intramedullary Kirschner wire fixation was created in all animals. Rats were randomly divided into three groups as local TXA, intravenous TXA, and control. A dose of 50 mg/kg local and intravenous TXA was administered to the study groups. Hematoma volume was measured on the first and third days of the study. The animals were sacrificed on the 14th and 21st days for radiological and histopathological examinations. RESULTS There was no significant difference between the groups in terms of hematoma volume measured on Day 1 and the mean decrease of hematoma volume from Day 1 to Day 3 (p = 0.158 and p = 0.239, respectively). The total radiological scores of Day 14 and Day 21 were similar in all groups (p > 0.05 for all). There was also no significant difference between the histological staging of the fracture repair on Day 14 and Day 21 for all groups (p > 0.05 for all). CONCLUSION Our findings suggest that TXA's local and intravenous application makes no significant difference in fracture healing.
Collapse
Affiliation(s)
- Bahadır Balkanlı
- Zonguldak Atatürk State Hospital, Department of Orthopedics and Traumatology, Zonguldak, Turkey.
| | - Cem Çopuroğlu
- Trakya University, School of Medicine, Department of Orthopedics and Traumatology, Edirne, Turkey
| | - Elif Çopuroğlu
- Trakya University, School of Medicine, Department of Anesthesia and Reanimation, Edirne, Turkey
| |
Collapse
|