1
|
Jiao XF, Gao Y, Ni R, Zhao WY, Zhao C, Lu X, Zhang HF, Gao W, Luo L. Low serum HSPA12B levels are associated with an increased risk of sarcopenia in a Chinese population of older adults. Cell Stress Chaperones 2025; 30:100-108. [PMID: 39983811 DOI: 10.1016/j.cstres.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025] Open
Abstract
Sarcopenia is a geriatric syndrome characterized by progressive loss of muscle mass and function. Heat shock protein (HSP) A12B is essential for angiogenesis and endothelial function. However, the association of HSPA12B levels with sarcopenia remains unclear. A total of 936 community-dwelling elderly people were recruited, and serum HSPA12B was measured by enzyme-linked immunosorbent assay. Appendicular skeletal muscle mass index (ASMI), grip strength, and gait speed were taken to assess sarcopenia. We found that serum HSPA12B levels in patients with sarcopenia (median [interquartile range] = 182.15 [137.58-225.86] ng/mL) were lower than those in elderly people without sarcopenia (228.96 [193.03-292.93] ng/mL, P < 0.001). Receiver operating characteristic curve analysis indicated that the optimal cut-off value of serum HSPA12B level for predicting sarcopenia was 185.50 ng/mL, with a sensitivity of 52.6% and a specificity of 80.8% (area under curve = 0.742, 95% confidence interval [CI] = 0.711-0.772, P < 0.001). Moreover, serum HSPA12B concentration was positively correlated with ASMI (r = 0.354, P < 0.001), grip strength (r = 0.381, P < 0.001), and gait speed (r = 0.169, P < 0.001). Multivariate logistic regression analysis showed that decreased serum HSPA12B levels (<185.50 ng/mL) were a risk factor for increased risk of sarcopenia (adjusted odds ratio = 4.335, 95% CI = 3.136-5.993, P < 0.001). In addition, serum HSPA12B level was also positively correlated with serum levels of angiogenesis markers, vascular endothelial growth factor (r = 0.080, P = 0.014), and angiopoietin-1 (r = 0.108, P = 0.001). In summary, our results indicate that low serum HSPA12B level is associated with an increased risk of sarcopenia in the elderly, suggesting a potential role of HSPA12B in the development of sarcopenia.
Collapse
Affiliation(s)
- Xin-Feng Jiao
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yue Gao
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ran Ni
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wen-Ya Zhao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hai-Feng Zhang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Lan Luo
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
2
|
Palzkill VR, Tan J, Moparthy D, Tice AL, Ferreira LF, Ryan TE. A 6-Minute Limb Function Assessment for Therapeutic Testing in Experimental Peripheral Artery Disease Models. JACC Basic Transl Sci 2025; 10:88-103. [PMID: 39906594 PMCID: PMC11788496 DOI: 10.1016/j.jacbts.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 02/06/2025]
Abstract
In this study, we present a novel 6-minute limb function test that allows for the congruent assessment of muscular performance and hemodynamics in preclinical models of peripheral artery disease. Using several experimental conditions, the results demonstrate the superior efficacy of the 6-minute limb function test to detect differences in the response to hindlimb ischemia across several interventions, including where traditional perfusion recovery, capillary density, and muscle strength measures were unable to detect interventional differences, thus allowing for more rigorous assessment of preclinical therapies before clinical translation.
Collapse
Affiliation(s)
- Victoria R. Palzkill
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
| | - Divyansha Moparthy
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
| | - Abigail L. Tice
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
| | - Leonardo F. Ferreira
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
- Center for Exercise Science, The University of Florida, Gainesville, Florida, USA
- The Myology Institute, The University of Florida, Gainesville, Florida, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
- Center for Exercise Science, The University of Florida, Gainesville, Florida, USA
- The Myology Institute, The University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Wu W, He Y, Lin D, Zhang G, Zhang X, Zhang N, Xie T, Wei H. Dexmedetomidine mitigates lipopolysaccharide-induced acute lung injury by modulating heat shock protein A12B to inhibit the toll-like receptor 4/nuclear factor-kappa B signaling pathway. Chem Biol Interact 2024; 398:111112. [PMID: 38901789 DOI: 10.1016/j.cbi.2024.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): Life-threatening medical conditions characterized by high morbidity and mortality rates, where the inflammatory process plays a crucial role in lung tissue damage, especially in models induced by lipopolysaccharide (LPS). Heat shock protein A12B (HSPA12B) has strong anti-infammatory properties However, it is unknown whether increased HSPA12B is protective against LPS-induced ALI. And Dexmedetomidine (DEX) is a potent α2-adrenergic receptor (α2-AR) agonist that has been shown to protect against sepsis-induced lung injury, however, the underlying mechanisms of this protection are not fully understood. This study utilized bioinformatics analysis and an LPS-induced ALI model to explore how DEX alleviates lung injury by modulating HSPA12B and inhibiting the Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. Results indicate that HSPA12B overexpression and DEX pre-treatment markedly mitigated LPS-induced lung injury, which was evaluated by the deterioration of histopathology, histologic scores, the W/D weight ratio, and total protein expression, tumor necrosis factor-alpha (TNF-α), and interleukin-1β (IL-1β) in the BALF, and the levels of NO, MDA,SOD and MPO in the lung. Moreover, HSPA12B overexpression and DEX pre-treatment significantly reduces lung injury and inflammation levels by upregulating HSPA12B and inhibiting the activation of the TLR4/NF-κB signaling pathway. On the contrary, when the expression of HSPA12B is inhibited, the protective effect of DEX pre-treatment on lung tissue is significantly weakened.In summary, our research demonstrated that the increased expression of AAV-mediated HSPA12B in the lungs of mice inhibits acute inflammation and suppresses the activation of TLR4/NF-κB pathway in a murine model of LPS-induced ALI. DEX could enhance HSPA12B and inhibit the initiation and development of inflammation through down-regulating TLR4/NF-κB pathway.These findings highlight the potential of DEX as a therapeutic agent for treating ALI and ARDS, offering new strategies for clinical intervention.
Collapse
Affiliation(s)
- Weifang Wu
- The Department of Anesthesiology, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, 350001, Fujian, China; The Third Clinical Medical College of Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yi He
- The Third Clinical Medical College of Fujian Medical University, Fuzhou, 350122, Fujian, China; The Department of Anesthesiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, 353000, Fujian, China
| | - Duoduo Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Guifei Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xutao Zhang
- The Third Clinical Medical College of Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Nanwen Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Tingliang Xie
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China; The School of Medical, Minjiang Teachers College, Fuzhou, 350108, Fujian, China.
| | - Haixiang Wei
- The Third Clinical Medical College of Fujian Medical University, Fuzhou, 350122, Fujian, China; The Department of Anesthesiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, 353000, Fujian, China.
| |
Collapse
|
4
|
Zhang C, Asadollahpour Nanaei H, Jafarpour Negari N, Amiri Roudbar M, Amiri Ghanatsaman Z, Niyazbekova Z, Yang X. Genomic analysis uncovers novel candidate genes related to adaptation to tropical climates and milk production traits in native goats. BMC Genomics 2024; 25:477. [PMID: 38745140 PMCID: PMC11094986 DOI: 10.1186/s12864-024-10387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Since domestication, both evolutionary forces and human selection have played crucial roles in producing adaptive and economic traits, resulting in animal breeds that have been selected for specific climates and different breeding goals. Pakistani goat breeds have acquired genomic adaptations to their native climate conditions, such as tropical and hot climates. In this study, using next-generation sequencing data, we aimed to assess the signatures of positive selection in three native Pakistani goats, known as milk production breeds, that have been well adapted to their local climate. RESULTS To explore the genomic relationship between studied goat populations and their population structure, whole genome sequence data from native goat populations in Pakistan (n = 26) was merged with available worldwide goat genomic data (n = 184), resulting in a total dataset of 210 individuals. The results showed a high genetic correlation between Pakistani goats and samples from North-East Asia. Across all populations analyzed, a higher linkage disequilibrium (LD) level (- 0.59) was found in the Pakistani goat group at a genomic distance of 1 Kb. Our findings from admixture analysis (K = 5 and K = 6) showed no evidence of shared genomic ancestry between Pakistani goats and other goat populations from Asia. The results from genomic selection analysis revealed several candidate genes related to adaptation to tropical/hot climates (such as; KITLG, HSPB9, HSP70, HSPA12B, and HSPA12B) and milk production related-traits (such as IGFBP3, LPL, LEPR, TSHR, and ACACA) in Pakistani native goat breeds. CONCLUSIONS The results from this study shed light on the structural variation in the DNA of the three native Pakistani goat breeds. Several candidate genes were discovered for adaptation to tropical/hot climates, immune responses, and milk production traits. The identified genes could be exploited in goat breeding programs to select efficient breeds for tropical/hot climate regions.
Collapse
Affiliation(s)
- Chenxi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hojjat Asadollahpour Nanaei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
| | | | - Mahmoud Amiri Roudbar
- Department of Animal Science, Safiabad-Dezful Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful 333, Iran
| | - Zeinab Amiri Ghanatsaman
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Zhannur Niyazbekova
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
5
|
Palzkill VR, Tan J, Tice AL, Ferriera LF, Ryan TE. A 6-minute Limb Function Assessment for Therapeutic Testing in Experimental Peripheral Artery Disease Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586197. [PMID: 38585832 PMCID: PMC10996543 DOI: 10.1101/2024.03.21.586197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background The translation of promising therapies from pre-clinical models of hindlimb ischemia (HLI) to patients with peripheral artery disease (PAD) has been inadequate. While this failure is multifactorial, primary outcome measures in preclinical HLI models and clinical trials involving patients with PAD are not aligned well. For example, laser Doppler perfusion recovery measured under resting conditions is the most used outcome in HLI studies, whereas clinical trials involving patients with PAD primarily assess walking performance. Here, we sought to develop a 6-min limb function test for preclinical HLI models that assess muscular performance and hemodynamics congruently. Methods We developed an in situ 6-min limb function test that involves repeated isotonic (shortening) contractions performed against a submaximal load. Continuous measurement of muscle blood flow was performed using laser Doppler flowmetry. Quantification of muscle power, work, and perfusion are obtained across the test. To assess the efficacy of this test, we performed HLI via femoral artery ligation on several mouse strains: C57BL6J, BALBc/J, and MCK-PGC1α (muscle-specific overexpression of PGC1α). Additional experiments were performed using an exercise intervention (voluntary wheel running) following HLI. Results The 6-min limb function test was successful at detecting differences in limb function of C57BL6/J and BALBc/J mice subjected to HLI with effect sizes superior to laser Doppler perfusion recovery. C57BL6/J mice randomized to exercise therapy following HLI had smaller decline in muscle power, greater hyperemia, and performed more work across the 6-min limb function test compared to non-exercise controls with HLI. Mice with muscle-specific overexpression of PGC1α had no differences in perfusion recovery in resting conditions, but exhibited greater capillary density, increased muscle mass and absolute force levels, and performed more work across the 6-min limb function test compared to their wildtype littermates without the transgene. Conclusion These results demonstrate the efficacy of the 6-min limb function test to detect differences in the response to HLI across several interventions including where traditional perfusion recovery, capillary density, and muscle strength measures were unable to detect therapeutic differences.
Collapse
Affiliation(s)
- Victoria R. Palzkill
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | | | - Leonardo F. Ferriera
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- The Myology Institute, The University of Florida, Gainesville, FL, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- The Myology Institute, The University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Dong G, Moparthy C, Thome T, Kim K, Yue F, Ryan TE. IGF-1 Therapy Improves Muscle Size and Function in Experimental Peripheral Arterial Disease. JACC Basic Transl Sci 2023; 8:702-719. [PMID: 37426532 PMCID: PMC10322901 DOI: 10.1016/j.jacbts.2022.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 03/11/2023]
Abstract
Lower-extremity peripheral arterial disease (PAD) has increased in prevalence, yet therapeutic development has remained stagnant. Skeletal muscle health and function has been strongly linked to quality of life and medical outcomes in patients with PAD. Using a rodent model of PAD, this study demonstrates that treatment of the ischemic limb with insulin-like growth factor (IGF)-1 significantly increases muscle size and strength without improving limb hemodynamics. Interestingly, the effect size of IGF1 therapy was larger in female mice than in male mice, highlighting the need to carefully examine sex-dependent effects in experimental PAD therapies.
Collapse
Affiliation(s)
- Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Chatick Moparthy
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Feng Yue
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
- Center for Exercise Science, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Thirunavukkarasu M, Swaminathan S, Kemerley A, Pradeep SR, Lim ST, Accorsi D, Wilson R, Campbell J, Saad I, Yee SP, Palesty JA, McFadden DW, Maulik N. Role of Pellino-1 in Inflammation and Cardioprotection following Severe Sepsis: A Novel Mechanism in a Murine Severe Sepsis Model †. Cells 2023; 12:1527. [PMID: 37296648 PMCID: PMC10252528 DOI: 10.3390/cells12111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVES Intra-abdominal sepsis is commonly diagnosed in the surgical population and remains the second most common cause of sepsis overall. Sepsis-related mortality remains a significant burden in the intensive care unit despite advances in critical care. Nearly a quarter of the deaths in people with heart failure are caused by sepsis. We have observed that overexpression of mammalian Pellino-1 (Peli1), an E3 ubiquitin ligase, causes inhibition of apoptosis, oxidative stress, and preservation of cardiac function in a myocardial infarction model. Given these manifold applications, we investigated the role of Peli1 in sepsis using transgenic and knockout mouse models specific to this protein. Therefore, we aimed to explore further the myocardial dysfunction seen in sepsis through its relation to the Peli 1 protein by using the loss of function and gain-of-function strategy. METHODS A series of genetic animals were created to understand the role of Peli1 in sepsis and the preservation of heart function. Wild-type, global Peli1 knock out (Peli1-/-), cardiomyocyte-specific Peli1 deletion (CP1KO), and cardiomyocyte-specific Peli1 overexpressing (alpha MHC (αMHC) Peli1; AMPEL1Tg/+) animals were divided into sham and cecal ligation and puncture (CLP) surgical procedure groups. Cardiac function was determined by two-dimensional echocardiography pre-surgery and at 6- and 24-h post-surgery. Serum IL-6 and TNF-alpha levels (ELISA) (6 h), cardiac apoptosis (TUNEL assay), and Bax expression (24 h) post-surgery were measured. Results are expressed as mean ± S.E.M. RESULTS AMPEL1Tg/+ prevents sepsis-induced cardiac dysfunction assessed by echocardiographic analysis, whereas global and cardiomyocyte-specific deletion of Peli1 shows significant deterioration of cardiac functions. Cardiac function was similar across the sham groups in all three genetically modified mice. ELISA assay displayed how Peli 1 overexpression decreased cardo-suppressive circulating inflammatory cytokines (TNF-alpha, IL-6) compared to both the knockout groups. The proportion of TUNEL-positive cells varied according to Peli1 expression, with overexpression (AMPEL1Tg/+) leading to a significant reduction and Peli1 gene knockout (Peli1-/- and CP1KO) leading to a significant increase in their presence. A similar trend was also observed with Bax protein expression. The improved cellular survival associated with Peli1 overexpression was again shown with the reduction of oxidative stress marker 4-Hydroxy-2-Nonenal (4-HNE). CONCLUSION Our results indicate that overexpression of Peli1 is a novel approach that not only preserved cardiac function but reduced inflammatory markers and apoptosis following severe sepsis in a murine genetic model.
Collapse
Affiliation(s)
- Mahesh Thirunavukkarasu
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Santosh Swaminathan
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Andrew Kemerley
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Seetur R. Pradeep
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Sue Ting Lim
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Diego Accorsi
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Rickesha Wilson
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Jacob Campbell
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Ibnalwalid Saad
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Siu-Pok Yee
- Center for Mouse Genome Modification, University of Connecticut Health School of Medicine, Farmington, CT 06032, USA
| | - J. Alexander Palesty
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - David W. McFadden
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Nilanjana Maulik
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| |
Collapse
|
8
|
Protective Effect of Cardiomyocyte-Specific Prolyl-4-Hydroxylase 2 Inhibition on Ischemic Injury in a Mouse MI Model. J Am Coll Surg 2022; 235:240-254. [PMID: 35758926 DOI: 10.1097/xcs.0000000000000241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Our earlier studies showed that inhibiting prolyl-4-hydroxylase enzymes (PHD-1 and PHD-3) improves angiogenesis, heart function, and limb perfusion in mouse models via stabilizing hypoxia-inducible transcription factor-alpha (HIF-1α). The present study explored the effects of the prolyl-4-hydroxylase enzyme, PHD-2, on ischemic heart failure using cardiac-specific PHD-2 gene knockout (KO) mice (PHD2-/-). STUDY DESIGN Adult wild-type (WT) and PHD2-/- mice, 8-12 weeks old, were subjected to myocardial infarction (MI) by irreversibly ligating the left anterior descending (LAD) coronary artery. All sham group mice underwent surgery without LAD ligation. Animals were divided into four groups 1) Wild-type Sham (WTS); Wild-Type myocardial infarction (WTMI); 3) PHD2KO Sham (PHD2-/-S); 4) PHD2KO myocardial infarction (PHD2-/-MI). Left ventricular tissue samples collected at various time points following surgery were used for microRNA expression profiling, Western blotting, immunohistochemical, and echocardiographic analysis. RESULTS Volcano plot analysis revealed 19 differentially expressed miRNAs in the PHD2-/-MI compared to the WTMI group. Target analysis using Ingenuity Pathway Analysis showed several differentially regulated miRNAs targeting key signaling pathways such as Akt, VEGF, Ang-1, PTEN, apoptosis, and hypoxia pathways. Compared to the WTMI group, Western blot analysis showed increased HIF-1α, VEGF, phospho-AKT, and β-catenin expression and reduced Bax expression for the PHD2-/-MI group post-MI. Echocardiographic analysis showed preserved heart functions, and picrosirius red staining revealed decreased fibrosis in PHD2-/-MI compared to the WTMI group. CONCLUSION PHD2 inhibition showed preserved heart function, enhanced angiogenic factor expression, and decreased apoptotic markers after MI. Overall, PHD2 gene inhibition is a promising candidate for managing cardiovascular diseases.
Collapse
|
9
|
Thirunavukkarasu M, Pradeep SR, Ukani G, Abunnaja S, Youssef M, Accorsi D, Swaminathan S, Lim ST, Parker V, Campbell J, Rishi MT, Palesty JA, Maulik N. Gene therapy with Pellino-1 improves perfusion and decreases tissue loss in Flk-1 heterozygous mice but fails in MAPKAP Kinase-2 knockout murine hind limb ischemia model. Microvasc Res 2022; 141:104311. [PMID: 34999110 PMCID: PMC9250804 DOI: 10.1016/j.mvr.2022.104311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 10/19/2022]
Abstract
OBJECTIVES In the United States, over 8.5 million people suffer from peripheral arterial disease (PAD). Previously we reported that Pellino-1(Peli1) gene therapy reduces ischemic damage in the myocardium and skin flaps in Flk-1 [Fetal Liver kinase receptor-1 (Flk-1)/ Vascular endothelial growth factor receptor-2/VEGFR2] heterozygous (Flk-1+/-) mice. The present study compares the angiogenic response and perfusion efficiency following hind limb ischemia (HLI) in, Flk-1+/- and, MAPKAPKINASE2 (MK2-/-) knockout (KO) mice to their control wild type (WT). We also demonstrated the use of Peli1 gene therapy to improve loss of function following HLI. STUDY DESIGN AND METHODS Femoral artery ligation (HLI) was performed in both Flk-1+/-and MK2-/-mice along with their corresponding WT. Another set of Flk-1+/- and MK2-/- were injected with either Adeno-LacZ (Ad.LacZ) or Adeno-Peli1 (Ad.Peli1) after HLI. Hind limb perfusion was assessed by laser doppler imaging at specific time points. A standardized scoring scale is used to quantify the extent of ischemia. Histology analysis performed includes capillary density, fibrosis, pro-angiogenic and anti-apoptotic proteins. RESULTS Flk-1+/- and MK2-/- had a slower recovery of perfusion efficiency in the ischemic limbs than controls. Both Flk-1+/-and MK2-/-KO mice showed decreased capillary density and capillary myocyte ratios with increased fibrosis than their corresponding wild types. Ad.Peli1 injected ischemic Flk-1+/- limb showed improved perfusion, increased capillary density, and pro-angiogenic molecules with reduced fibrosis compared to Ad.LacZ group. No significant improvement in perfusion was observed in MK2-/- ischemic limb after Ad. Peli1 injection. CONCLUSION Deletion of Flk-1 and MK2 impairs neovascularization and perfusion following HLI. Treatment with Ad. Peli1 results in increased angiogenesis and improved perfusion in Flk-1+/- mice but fails to rectify perfusion in MK2 KO mice. Overall, Peli1 gene therapy is a promising candidate for the treatment of PAD.
Collapse
Affiliation(s)
- Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, University of Connecticut Health, Farmington 06030, CT, USA
| | - Seetur R Pradeep
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, University of Connecticut Health, Farmington 06030, CT, USA
| | - Gopi Ukani
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, University of Connecticut Health, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Salim Abunnaja
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, University of Connecticut Health, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Mark Youssef
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, University of Connecticut Health, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Diego Accorsi
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, University of Connecticut Health, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Santosh Swaminathan
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, University of Connecticut Health, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Sue Ting Lim
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, University of Connecticut Health, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Virginia Parker
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, University of Connecticut Health, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Jacob Campbell
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, University of Connecticut Health, Farmington 06030, CT, USA
| | - Muhammad Tipu Rishi
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, University of Connecticut Health, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - J Alexander Palesty
- Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, University of Connecticut Health, Farmington 06030, CT, USA.
| |
Collapse
|