1
|
Iqbal J, Zafar Z, Skandalakis G, Kuruba V, Madan S, Kazim SF, A Bowers C. Recent advances of 3D-printing in spine surgery. Surg Neurol Int 2024; 15:297. [PMID: 39246777 PMCID: PMC11380890 DOI: 10.25259/sni_460_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/27/2024] [Indexed: 09/10/2024] Open
Abstract
Background The emerging use of three-dimensional printing (3DP) offers improved surgical planning and personalized care. The use of 3DP technology in spinal surgery has several common applications, including models for preoperative planning, biomodels, surgical guides, implants, and teaching tools. Methods A literature review was conducted to examine the current use of 3DP technology in spinal surgery and identify the challenges and limitations associated with its adoption. Results The review reveals that while 3DP technology offers the benefits of enhanced stability, improved surgical outcomes, and the feasibility of patient-specific solutions in spinal surgeries, several challenges remain significant impediments to widespread adoption. The obvious expected limitation is the high cost associated with implementing and maintaining a 3DP facility and creating customized patient-specific implants. Technological limitations, including the variability between medical imaging and en vivo surgical anatomy, along with the reproduction of intricate high-fidelity anatomical detail, pose additional challenges. Finally, the lack of comprehensive clinical monitoring, inadequate sample sizes, and high-quality scientific evidence all limit our understanding of the full scope of 3DP's utility in spinal surgery and preclude widespread adoption and implementation. Conclusion Despite the obvious challenges and limitations, ongoing research and development efforts are expected to address these issues, improving the accessibility and efficacy of 3DP technology in spinal surgeries. With further advancements, 3DP technology has the potential to revolutionize spinal surgery by providing personalized implants and precise surgical planning, ultimately improving patient outcomes and surgical efficiency.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Neurosurgery, King Edward Medical University, Lahore, Pakistan
| | - Zaitoon Zafar
- Department of Biotechnology, University of San Francisco, San Francisco, California, United States
| | - Georgios Skandalakis
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico, United States
| | | | - Shreya Madan
- Department of Neurosurgery, Desert Mountain High School, Scottsdale, Arizona, United States
| | - Syed Faraz Kazim
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, New Mexico, United States
| | - Christian A Bowers
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, New Mexico, United States
| |
Collapse
|
2
|
Sharma S, Pahuja S, Gupta V, Singh G, Singh J. 3D printing for spine pathologies: a state-of-the-art review. Biomed Eng Lett 2023; 13:579-589. [PMID: 37872993 PMCID: PMC10590361 DOI: 10.1007/s13534-023-00302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 10/25/2023] Open
Abstract
Three-Dimensional Printing has advanced throughout the years in the field of biomedical science with applications, especially in spine surgeries. 3D printing has the ability of fabricating highly complex structures with ease and high dimensional accuracy. The complexity of the spine's architecture and the inherent dangers of spinal surgery bring the evaluation of 3D printed models into consideration. This article summarizes the benefits of 3D printing based models for application in spine pathology. 3D printing technique is extensively used for fabrication of anatomical models, surgical guides and patient specific implants (PSI). The 3D printing based anatomical models assist in preoperative planning and training of students. Furthermore, 3D printed models can be used for improved communication and understanding of patients about the spinal disorders. The use of 3D printed surgical guides help in the stabilization of the spine during surgery, improving post procedural outcomes. Improved surgical results can be achieved by using PSIs that are tailored for patient specific needs. Finally, this review discusses the limitations and potential future scope of 3D printing in spine pathologies. 3D printing is still in its infancy, and further research would provide better understanding of the technology's true potential in spinal procedures.
Collapse
Affiliation(s)
- Shrutika Sharma
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| | - Sanchita Pahuja
- Biomedical Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| | - Vishal Gupta
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| | - Gyanendra Singh
- Physical Sciences, Inter University Centre for Teacher Education, Varanasi, 221005 India
| | - Jaskaran Singh
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| |
Collapse
|
3
|
Ye J, Jiang P, Guan H, Wei C, Li S, Jia M, Li N. Surgical treatment of thoracolumbar fracture in ankylosing spondylitis: A comparison of percutaneous and open techniques. J Orthop Surg Res 2022; 17:504. [PMID: 36434588 PMCID: PMC9694850 DOI: 10.1186/s13018-022-03378-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/30/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND CONTEXT Posterior percutaneous long-segment internal fixation and open fixation with long-segment screws have been used to treat thoracolumbar fractures in ankylosing spondylitis patients. PURPOSE To observe the clinical effect of posterior percutaneous long-segment internal fixation in 26 ankylosing spondylitis (AS) patients with thoracolumbar fractures. STUDY DESIGN Retrospective cohort study. PATIENT SAMPLE Forty-seven AS patients who were diagnosed with thoracolumbar fractures and treated from December 2014 to December 2018. OUTCOME MEASURES Visual analog scale score, Cobb angle, American Spinal Injury Association Grade, SF-Qualiveen score, pedicle screw misplacement rate, operative duration, blood loss, complications, bed rest duration and modified MacNab score. METHODS All patients were divided into the percutaneous group (PG) and the open group. Twenty-six patients were treated with percutaneous long-segment internal fixation, and the remaining 21 underwent open fixation with long-segment screws. The minimum follow-up period was 12 months. RESULTS The operations were successful in both groups. A patient in the PG showed class C wound healing, while the others showed class A healing, and some patients experienced perioperative complications. All patients were followed up for 12-48 months (mean, 33.81 months), and all patients showed clinical osseous fracture healing. Significant differences were found in operative duration, intraoperative blood loss and postoperative bed rest duration between the two groups (P < 0.05). No significant difference was found in improvement of the visual analog scale score, Cobb angle of spinal kyphosis or neurological function after the operation (P > 0.05). CONCLUSIONS As a minimally invasive procedure, posterior percutaneous long-segment internal fixation requires less time, results in less blood loss and causes less trauma. This procedure can also improve patients' pain, neurological function and kyphotic deformity and achieve effects similar to those of traditional methods. With this curative clinical effect, this procedure can be used as an ideal surgical treatment for thoracolumbar fractures in AS patients, especially for elderly patients with underlying diseases and high surgical risk.
Collapse
Affiliation(s)
- JingYao Ye
- grid.464402.00000 0000 9459 9325Department of Orthopaedics, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- grid.412540.60000 0001 2372 7462Department of Orthopaedics, Shanghai University of Traditional Chinese Medicine, Shanghai, China ,grid.412540.60000 0001 2372 7462Department of Orthopaedics, Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - HuaPeng Guan
- grid.464402.00000 0000 9459 9325Department of Orthopaedics, Affilited Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - ChuanFu Wei
- grid.464402.00000 0000 9459 9325Department of Orthopaedics, Affilited Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sen Li
- grid.464402.00000 0000 9459 9325Department of Orthopaedics, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - MengLong Jia
- grid.461885.6Department of Orthopaedics, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - NianHu Li
- grid.464402.00000 0000 9459 9325Department of Orthopaedics, Affilited Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Three-dimensional Printed Drill Guides Versus Fluoroscopic-guided Freehand Technique for Pedicle Screw Placement: A Systematic Review and Meta-analysis of Radiographic, Operative, and Clinical Outcomes. Clin Spine Surg 2020; 33:314-322. [PMID: 32496309 DOI: 10.1097/bsd.0000000000001023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
STUDY DESIGN A systematic review and meta-analysis. OBJECTIVE The objective of this study was to compare surgical, clinical, and radiographic outcomes of 3-dimensional printed (3DP) drill guides to the fluoroscopic-guided, freehand placement of pedicle screws in the spine. SUMMARY OF BACKGROUND DATA 3DP is a budding technology in spine surgery and has recently been applied to patient-specific drill guides for pedicle screw placement. Several authors have reported the benefits of these drill guides, but no clear consensus exists on their utility. MATERIALS AND METHODS A comprehensive search of the literature was conducted and independent reviewers assessed eligibility for included studies. Outcomes analyzed included: total operation time, estimated blood loss, screw accuracy, pain score, Japanese Orthopedic Association score, and postoperative complications. Weighted mean differences (WMD) and weighted risk differences were calculated using a random-effects model. RESULTS Six studies with a total of 205 patients were included. There were significantly lower operation times [WMD=-32.32 min, 95% confidence interval (CI)=-53.19 to -11.45] and estimated blood loss (WMD=-51.42 mL, 95% CI=-81.12 to -21.72) in procedures performed with 3DP drill guides as compared with freehand technique. The probability of "excellent" screw placement was significantly higher in 3DP guides versus freehand (weighted risk difference=-0.12, 95% CI=-0.17 to 0.07); however, no differences were observed in "poor" or "good" screw placement. There were no significant differences between groups in pain scores or Japanese Orthopedic Association scores. No difference in the rate of surgical complications was noted between the groups. CONCLUSIONS Pedicle screws placed with 3DP drill guides may result in shorter operative time, less blood loss, and a greater probability of excellent screw placement as compared with those placed with freehand techniques. We conclude that 3DP guides may potentially develop into an efficient and accurate option for pedicle screw placement. However, more prospective, randomized controlled trials are needed to strengthen the confidence of these conclusions. LEVEL OF EVIDENCE Level III.
Collapse
|
5
|
Serrano C, Fontenay S, van den Brink H, Pineau J, Prognon P, Martelli N. Evaluation of 3D printing costs in surgery: a systematic review. Int J Technol Assess Health Care 2020; 36:1-7. [PMID: 32489157 DOI: 10.1017/s0266462320000331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The use of three-dimensional (3D) printing in surgery is expanding and there is a focus on comprehensively evaluating the clinical impact of this technology. However, although additional costs are one of the main limitations to its use, little is known about its economic impact. The purpose of this systematic review is to identify the costs associated with its use and highlight the first quantitative data available. METHODS A systematic literature review was conducted in the PubMed and Embase databases and in the National Health Service Economic Evaluation Database (NHS EED) at the University of York. Studies that reported an assessment of the costs associated with the use of 3D printing for surgical application and published between 2009 and 2019, in English or French, were included. RESULTS Nine studies were included in our review. Nine types of costs were identified, the three main ones being printing material costs (n = 6), staff costs (n = 3), and operating room costs (n = 3). The printing cost ranged from less than U.S. dollars (USD) 1 to USD 146 (in USD 2019 values) depending on the criteria used to calculate this cost. Three studies evaluated the potential savings generated by the use of 3D printing technology in surgery, based on operating time reduction. CONCLUSION This literature review highlights the lack of reliable economic data on 3D printing technology. Nevertheless, this review makes it possible to identify expenditures or items that should be considered in order to carry out more robust studies.
Collapse
Affiliation(s)
- Carole Serrano
- University Paris-Saclay, GRADES, Faculty of Pharmacy, 5 rue Jean-Baptiste Clément, 92290Châtenay-Malabry, France
| | - Sarah Fontenay
- Pharmacy Department, Georges Pompidou European Hospital, AP-HP, 20 rue Leblanc, 75015Paris, France
| | - Hélène van den Brink
- University Paris-Saclay, GRADES, Faculty of Pharmacy, 5 rue Jean-Baptiste Clément, 92290Châtenay-Malabry, France
| | - Judith Pineau
- Pharmacy Department, Georges Pompidou European Hospital, AP-HP, 20 rue Leblanc, 75015Paris, France
| | - Patrice Prognon
- Pharmacy Department, Georges Pompidou European Hospital, AP-HP, 20 rue Leblanc, 75015Paris, France
| | - Nicolas Martelli
- University Paris-Saclay, GRADES, Faculty of Pharmacy, 5 rue Jean-Baptiste Clément, 92290Châtenay-Malabry, France
- Pharmacy Department, Georges Pompidou European Hospital, AP-HP, 20 rue Leblanc, 75015Paris, France
| |
Collapse
|
6
|
Tong Y, Kaplan DJ, Spivak JM, Bendo JA. Three-dimensional printing in spine surgery: a review of current applications. Spine J 2020; 20:833-846. [PMID: 31731009 DOI: 10.1016/j.spinee.2019.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/03/2023]
Abstract
In recent years, the use of three-dimensional printing (3DP) technology has gained traction in orthopedic spine surgery. Although research on this topic is still primarily limited to case reports and small cohort studies, it is evident that there are many avenues for 3DP innovation in the field. This review article aims to discuss the current and emerging 3DP applications in spine surgery, as well as the challenges of 3DP production and limitations in its use. 3DP models have been presented as helpful tools for patient education, medical training, and presurgical planning. Intraoperatively, 3DP devices may serve as patient-specific surgical guides and implants that improve surgical outcomes. However, the time, cost, and learning curve associated with constructing a 3DP model are major barriers to widespread use in spine surgery. Considering the costs and benefits of 3DP along with the varying risks associated with different spine procedures, 3DP technology is likely most valuable for complex or atypical spine disorder cases. Further research is warranted to gain a better understanding of how 3DP can and will impact spine surgery.
Collapse
Affiliation(s)
- Yixuan Tong
- New York University Grossman School of Medicine, 550 1st Ave, New York, NY 10016, USA
| | - Daniel James Kaplan
- Spine Division, New York University Langone Orthopedic Hospital, 301 E 17th St, New York, NY 10010, USA
| | - Jeffrey M Spivak
- Spine Division, New York University Langone Orthopedic Hospital, 301 E 17th St, New York, NY 10010, USA
| | - John A Bendo
- Spine Division, New York University Langone Orthopedic Hospital, 301 E 17th St, New York, NY 10010, USA.
| |
Collapse
|
7
|
Chen YY, Chao LC, Fang JJ, Lee EJ. 3D-Customized Guiding Template for Posterior Fixation in Complex Atlantoaxial Instability-Preliminary Experiences of National Cheng Kung University Hospital. J Neurol Surg Rep 2020; 81:e20-e27. [PMID: 32257765 PMCID: PMC7108954 DOI: 10.1055/s-0039-1695795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/18/2019] [Indexed: 11/02/2022] Open
Abstract
Objective Atlantoaxial fixation is technically demanding and challenging, especially in cases with anatomical abnormality. The purpose of this study is to report the effectiveness of the three-dimensional (3D)-customized guiding template for placement of C1 and C2 screws in cases with abnormalities. Method Two patients with anatomical abnormality and one without were included. The preoperative computed tomography (CT) image was analyzed using our software. The entry point, trajectory, and depth of the screws were designed based on these images. Templates with screw guiding cylinders and cervical spine model were created. In operation, guiding templates were applied directly to the laminae. Drilling, tapping, and screwing were performed through the cylinders. To evaluate the accuracy, deviation of the screw axis from the preplanned trajectory was measured on postoperative CT. A classification system was taking to evaluate the pedicle screw insertion. Results In complex cases, one of C2 screws has grade 2 deviation, and two has grade 1. There was no deviation in screws of C1. All patients achieved symptoms free after 6 months follow-up. Conclusion Although 3D-printed template for atlantoaxial fixation still has limitation in complex cases, it has been proved usefulness and makes the most difficult and dangerous spinal posterior fixation easy to achieve.
Collapse
Affiliation(s)
- Yi-Yun Chen
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C
| | - Liang-Chun Chao
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C
| | - Jing-Jing Fang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - E-Jian Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C
| |
Collapse
|
8
|
Gao T, Rivlin M, Abraham JA. Three-dimensional Printing Technology and Role for Custom Implants in Orthopedic Oncology. Tech Orthop 2018. [DOI: 10.1097/bto.0000000000000292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
A Review of Current Clinical Applications of Three-Dimensional Printing in Spine Surgery. Asian Spine J 2018; 12:171-177. [PMID: 29503698 PMCID: PMC5821924 DOI: 10.4184/asj.2018.12.1.171] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) printing is a transformative technology with a potentially wide range of applications in the field of orthopaedic spine surgery. This article aims to review the current applications, limitations, and future developments of 3D printing technology in orthopaedic spine surgery. Current preoperative applications of 3D printing include construction of complex 3D anatomic models for improved visual understanding, preoperative surgical planning, and surgical simulations for resident education. Intraoperatively, 3D printers have been successfully used in surgical guidance systems and in the creation of patient specific implantable devices. Furthermore, 3D printing is revolutionizing the field of regenerative medicine and tissue engineering, allowing construction of biocompatible scaffolds suitable for cell growth and vasculature. Advances in printing technology and evidence of positive clinical outcomes are needed before there is an expansion of 3D printing applied to the clinical setting.
Collapse
|
10
|
Cai H, Liu Z, Wei F, Yu M, Xu N, Li Z. 3D Printing in Spine Surgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1093:345-359. [PMID: 30306494 DOI: 10.1007/978-981-13-1396-7_27] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the past 5 years, the application of 3D printing technology in the field of spine surgery had obtained enormous and substantial progress. Among which, vertebral skeleton model (including lesion model) printing has been widely used in clinical application due to its relatively simple technology and low cost. It shows practical value and becomes popular as the reference of clinical education, auxiliary diagnosis, communication between doctor and patient, and the planning of surgical approaches as well as the reference of more accurate operation in surgery. On the basis of vertebral skeleton model printing, it can be used to design and make navigation template to guide internal fixation screw, which also obtains some remarkable clinical effects. However, 3D printing technology has a more profound influence on spine surgery. The part with full expectation is undoubtedly the clinical application of 3D printing microporous metal implant and personalized implant as well as the clinical application of 3D printing biological materials in the future.
Collapse
Affiliation(s)
- Hong Cai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
| | - Feng Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Miao Yu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Nanfang Xu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zihe Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Wilcox B, Mobbs RJ, Wu AM, Phan K. Systematic review of 3D printing in spinal surgery: the current state of play. JOURNAL OF SPINE SURGERY 2017; 3:433-443. [PMID: 29057355 DOI: 10.21037/jss.2017.09.01] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Three-dimensional printing (3DP), also known as "Additive Manufacturing", is a rapidly growing industry, particularly in the area of spinal surgery. Given the complex anatomy of the spine and delicate nature of surrounding structures, 3DP has the potential to aid surgical planning and procedural accuracy. We perform a systematic review of current literature on the applications of 3DP in spinal surgery. Six electronic databases were searched for original published studies reporting cases or outcomes for 3DP surgical models, guides or implants for spinal surgery. The findings of these studies were synthesized and summarized. These searches returned a combined 2,411 articles. Of these, 54 were included in this review. 3DP is currently used for surgical planning, intra-operative surgical guides, customised prostheses as well as "Off-the-Shelf" implants. The technology has the potential for enhanced implant properties, as well as decreased surgical time and better patient outcomes. The majority of the data thus far is from low-quality studies with inherent biases linked with the excitement of a new field. As the body of literature continues to expand, larger scale studies to evaluate advantages and disadvantages, and longer-term follow up will enhance our knowledge of the effect 3DP has in spinal surgery. In addition, issues such as financial impact, time to design and print, materials selection and bio-printing will evolve as this rapidly expanding field matures.
Collapse
Affiliation(s)
- Ben Wilcox
- NeuroSpine Surgery Research Group, Prince of Wales Private Hospital, Sydney, Australia.,Faculty of Medicine, University of New South Wales (UNSW), Randwick, Sydney, Australia
| | - Ralph J Mobbs
- NeuroSpine Surgery Research Group, Prince of Wales Private Hospital, Sydney, Australia.,Faculty of Medicine, University of New South Wales (UNSW), Randwick, Sydney, Australia
| | - Ai-Min Wu
- Department of Spine Surgery, Orthopaedic Hospital, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, The Second Medical School of the Wenzhou Medical University, Zhejiang Spine Center, Wenzhou 325027, China
| | - Kevin Phan
- NeuroSpine Surgery Research Group, Prince of Wales Private Hospital, Sydney, Australia.,Faculty of Medicine, University of New South Wales (UNSW), Randwick, Sydney, Australia
| |
Collapse
|
12
|
Ling Q, He E, Ouyang H, Guo J, Yin Z, Huang W. Design of mulitlevel OLF approach ("V"-shaped decompressive laminoplasty) based on 3D printing technology. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 27:323-329. [PMID: 28752243 DOI: 10.1007/s00586-017-5234-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/25/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE To introduce a new surgical approach to the multilevel ossification of the ligamentum flavum (OLF) aided by three-dimensional (3D) printing technology. METHODS A multilevel OLF patient (male, 66 years) was scanned using computed tomography (CT). His saved DICOM format data were inputted to the Mimics14.0 3D reconstruction software (Materialise, Belgium). The resulting 3D model was used to observe the anatomical features of the multilevel OLF area and to design the surgical approach. At the base of the spinous process, two channels were created using an osteotomy bilaterally to create a "V" shape to remove the bone ligamentous complex (BLC). The decompressive laminoplasty using mini-plate fixation was simulated with the computer. The physical model was manufactured using 3D printing technology. The patient was subsequently treated using the designed surgery. RESULT The operation was completed successfully without any complications. The operative time was 90 min, and blood loss was 200 ml. One month after the operation, neurologic function was recovered well, and the JOA score was improved from 6 preoperatively to 10. Postoperative CT scanning showed that the OLF was totally removed, and the replanted BLC had not subsided. CONCLUSION 3D printing technology is an effective, reliable, and minimally invasive method to design operations. The technique can be an option for multilevel OLF surgical treatment. This can provide sufficient decompression with minimum damage to the spine and other intact anatomical structures.
Collapse
Affiliation(s)
- Qinjie Ling
- Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Erxing He
- Spinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Guangzhou, 510120, China
| | - Hanbin Ouyang
- Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jing Guo
- Spinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Guangzhou, 510120, China
| | - Zhixun Yin
- Spinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Guangzhou, 510120, China
| | - Wenhua Huang
- Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
13
|
|
14
|
Martelli N, Serrano C, van den Brink H, Pineau J, Prognon P, Borget I, El Batti S. Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery 2016; 159:1485-1500. [PMID: 26832986 DOI: 10.1016/j.surg.2015.12.017] [Citation(s) in RCA: 348] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Three-dimensional (3D) printing is becoming increasingly important in medicine and especially in surgery. The aim of the present work was to identify the advantages and disadvantages of 3D printing applied in surgery. METHODS We conducted a systematic review of articles on 3D printing applications in surgery published between 2005 and 2015 and identified using a PubMed and EMBASE search. Studies dealing with bioprinting, dentistry, and limb prosthesis or those not conducted in a hospital setting were excluded. RESULTS A total of 158 studies met the inclusion criteria. Three-dimensional printing was used to produce anatomic models (n = 113, 71.5%), surgical guides and templates (n = 40, 25.3%), implants (n = 15, 9.5%) and molds (n = 10, 6.3%), and primarily in maxillofacial (n = 79, 50.0%) and orthopedic (n = 39, 24.7%) operations. The main advantages reported were the possibilities for preoperative planning (n = 77, 48.7%), the accuracy of the process used (n = 53, 33.5%), and the time saved in the operating room (n = 52, 32.9%); 34 studies (21.5%) stressed that the accuracy was not satisfactory. The time needed to prepare the object (n = 31, 19.6%) and the additional costs (n = 30, 19.0%) were also seen as important limitations for routine use of 3D printing. CONCLUSION The additional cost and the time needed to produce devices by current 3D technology still limit its widespread use in hospitals. The development of guidelines to improve the reporting of experience with 3D printing in surgery is highly desirable.
Collapse
Affiliation(s)
- Nicolas Martelli
- Pharmacy Department, Georges Pompidou European Hospital, Paris, France; University Paris-Sud, GRADES, Faculty of Pharmacy, Châtenay-Malabry, France.
| | - Carole Serrano
- Pharmacy Department, Georges Pompidou European Hospital, Paris, France
| | | | - Judith Pineau
- Pharmacy Department, Georges Pompidou European Hospital, Paris, France
| | - Patrice Prognon
- Pharmacy Department, Georges Pompidou European Hospital, Paris, France
| | - Isabelle Borget
- University Paris-Sud, GRADES, Faculty of Pharmacy, Châtenay-Malabry, France; Department of Health Economics, Gustave Roussy Institute, Villejuif, France
| | - Salma El Batti
- Department of Cardiac and Vascular Surgery, Georges Pompidou European Hospital, Paris, France; URDIA - Unité de Recherche en Développement, Imagerie et Anatomie - EA 4465, Université Paris Descartes, Paris, France
| |
Collapse
|