1
|
Redding A, Grabocka E. Stress granules and hormetic adaptation of cancer. Trends Cancer 2023; 9:995-1005. [PMID: 37704502 PMCID: PMC10843007 DOI: 10.1016/j.trecan.2023.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Cell stress is inherent to cancer and a key driver of tumorigenesis. Recent studies have proposed that cell stress promotes tumorigenesis through non-membranous organelles known as stress granules (SGs). While the biology of SGs is an emerging field, all studies to date point to the enhanced ability of cancer cells to form SGs compared with normal cells, a heightened dependence on SGs for survival under adverse conditions and for chemotherapy resistance, and the dependence of tumors on SGs for growth. Why cancer cells become dependent on SGs and how SGs promote tumorigenesis remain to be elucidated. Here, we attempt to provide a framework for answering these questions by framing SGs as a hormetic response to tumor-associated stress stimuli.
Collapse
Affiliation(s)
- Alexandra Redding
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Elda Grabocka
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
2
|
Vaghebin R, Khalili M, Amiresmaili S, Namdar H, Javad Mousavi M. Treatment of traumatic brain injury from the viewpoint of Avicenna (Ibn Sina): A historical review. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
3
|
Sharma B, Allison D, Tucker P, Mabbott D, Timmons BW. Cognitive and neural effects of exercise following traumatic brain injury: A systematic review of randomized and controlled clinical trials. Brain Inj 2019; 34:149-159. [DOI: 10.1080/02699052.2019.1683892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Bhanu Sharma
- McMaster University, Department of Pediatrics, Hamilton, ON, Canada
| | - David Allison
- McMaster University, Department of Pediatrics, Hamilton, ON, Canada
| | - Patricia Tucker
- University of Western Ontario, School of Occupational Therapy, London, ON, Canada
| | - Donald Mabbott
- Department of Psychology, The Hospital for Sick Children, Program in Neuroscience and Mental Health, Research Institute and the University of Toronto, Toronto, ON, Canada
| | - Brian W. Timmons
- McMaster University, Department of Pediatrics, Hamilton, ON, Canada
| |
Collapse
|
4
|
|
5
|
Ekhtiari H, Rezapour T, Aupperle RL, Paulus MP. Neuroscience-informed psychoeducation for addiction medicine: A neurocognitive perspective. PROGRESS IN BRAIN RESEARCH 2017; 235:239-264. [PMID: 29054291 PMCID: PMC5771228 DOI: 10.1016/bs.pbr.2017.08.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Psychoeducation (PE) is defined as an intervention with systematic, structured, and didactic knowledge transfer for an illness and its treatment, integrating emotional and motivational aspects to enable patients to cope with the illness and to improve its treatment adherence and efficacy. PE is considered an important component of treatment in both medical and psychiatric disorders, especially for mental health disorders associated with lack of insight, such as alcohol and substance use disorders (ASUDs). New advancements in neuroscience have shed light on how various aspects of ASUDs may relate to neural processes. However, the actual impact of neuroscience in the real-life clinical practice of addiction medicine is minimal. In this chapter, we provide a perspective on how PE in addiction medicine can be informed by neuroscience in two dimensions: content (knowledge we transfer in PE) and structure (methods we use to deliver PE). The content of conventional PE targets knowledge about etiology of illness, treatment process, adverse effects of prescribed medications, coping strategies, family education, and life skill training. Adding neuroscience evidence to the content of PE could be helpful in communicating not only the impact of drug use but also the beneficial impact of various treatments (i.e., on brain function), thus enhancing motivation for compliance and further destigmatizing their symptoms. PE can also be optimized in its "structure" by implicitly and explicitly engaging different neurocognitive processes, including salience/attention, memory, and self-awareness. There are many interactions between these two dimensions, structure and content, in the delivery of neuroscience-informed psychoeducation (NIPE). We explore these interactions in the development of a cartoon-based NIPE to promote brain recovery during addiction treatment as a part of the brain awareness for addiction recovery initiative.
Collapse
Affiliation(s)
- Hamed Ekhtiari
- Laureate Institute for Brain Research, Tulsa, OK, United States; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
| | - Tara Rezapour
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Translational Neuroscience Program, Institute for Cognitive Science Studies, Tehran, Iran
| | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, OK, United States; School of Community Medicine, University of Tulsa, Tulsa, OK, United States
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, United States
| |
Collapse
|
6
|
de Castro MRT, Ferreira APDO, Busanello GL, da Silva LRH, da Silveira Junior MEP, Fiorin FDS, Arrifano G, Crespo-López ME, Barcelos RP, Cuevas MJ, Bresciani G, González-Gallego J, Fighera MR, Royes LFF. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats. J Physiol 2017; 595:6023-6044. [PMID: 28726269 DOI: 10.1113/jp273933] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS An early inflammatory response and oxidative stress are implicated in the signal transduction that alters both hepatic redox status and mitochondrial function after traumatic brain injury (TBI). Peripheral oxidative/inflammatory responses contribute to neuronal dysfunction after TBI Exercise training alters the profile of oxidative-inflammatory status in liver and protects against acute hyperglycaemia and a cerebral inflammatory response after TBI. Approaches such as exercise training, which attenuates neuronal damage after TBI, may have therapeutic potential through modulation of responses by metabolic organs. The vulnerability of the body to oxidative/inflammatory in TBI is significantly enhanced in sedentary compared to physically active counterparts. ABSTRACT Although systemic responses have been described after traumatic brain injury (TBI), little is known regarding potential interactions between brain and peripheral organs after neuronal injury. Accordingly, we aimed to investigate whether a peripheral oxidative/inflammatory response contributes to neuronal dysfunction after TBI, as well as the prophylactic role of exercise training. Animals were submitted to fluid percussion injury after 6 weeks of swimming training. Previous exercise training increased mRNA expression of X receptor alpha and ATP-binding cassette transporter, and decreased inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α and interleukin (IL)-6 expression per se in liver. Interestingly, exercise training protected against hepatic inflammation (COX-2, iNOS, TNF-α and IL-6), oxidative stress (decreases in non-protein sulfhydryl and glutathione, as well as increases in 2',7'-dichlorofluorescein diacetate oxidation and protein carbonyl), which altered hepatic redox status (increases in myeloperoxidase and superoxide dismutase activity, as well as inhibition of catalase activity) mitochondrial function (decreases in methyl-tetrazolium and Δψ, as well as inhibition of citrate synthase activity) and ion gradient homeostasis (inhibition of Na+ ,K+ -ATPase activity inhibition) when analysed 24 h after TBI. Previous exercise training also protected against dysglycaemia, impaired hepatic signalling (increase in phosphorylated c-Jun NH2-terminal kinase, phosphorylated decreases in insulin receptor substrate and phosphorylated AKT expression), high levels of circulating and neuronal cytokines, the opening of the blood-brain barrier, neutrophil infiltration and Na+ ,K+ -ATPase activity inhibition in the ipsilateral cortex after TBI. Moreover, the impairment of protein function, neurobehavioural (neuromotor dysfunction and spatial learning) disability and hippocampal cell damage in sedentary rats suggests that exercise training also modulates peripheral oxidative/inflammatory pathways in TBI, which corroborates the ever increasing evidence regarding health-related outcomes with respect to a physically active lifestyle.
Collapse
Affiliation(s)
- Mauro Robson Torres de Castro
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício
| | | | - Guilherme Lago Busanello
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício
| | | | | | - Fernando da Silva Fiorin
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Gabriela Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Maria Elena Crespo-López
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Rômulo Pillon Barcelos
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - María J Cuevas
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, León, Spain
| | - Guilherme Bresciani
- Escuela de Educación Física, Pontificia Universidad Católica de Valparaiso (PUCV), Valparaiso, Chile
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, León, Spain
| | - Michele Rechia Fighera
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício.,Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício.,Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
7
|
Forbes SC, Holroyd-Leduc JM, Poulin MJ, Hogan DB. Effect of Nutrients, Dietary Supplements and Vitamins on Cognition: a Systematic Review and Meta-Analysis of Randomized Controlled Trials. Can Geriatr J 2015; 18:231-45. [PMID: 26740832 PMCID: PMC4696451 DOI: 10.5770/cgj.18.189] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Observational studies have suggested that various nutrients, dietary supplements, and vitamins may delay the onset of age-associated cognitive decline and dementia. We systematically reviewed recent randomized controlled trials investigating the effect of nutritional interventions on cognitive performance in older non-demented adults. Methods We searched MEDLINE, CINAHL, Embase, and the Cochrane Library for articles published between 2003 and 2013. We included randomized trials of ≥ 3 months’ duration that examined the cognitive effects of a nutritional intervention in non-demented adults > 40 years of age. Meta-analyses were done when sufficient trials were available. Results Twenty-four trials met inclusion criteria (six omega-3 fatty acids, seven B vitamins, three vitamin E, eight other interventions). In the meta-analyses, omega-3 fatty acids showed no significant effect on Mini-Mental State Examination (MMSE) scores (four trials, mean difference 0.06, 95% CI −0.08 – 0.19) or digit span forward (three trials, mean difference −0.02, 95% CI −0.30 – 0.25), while B vitamins showed no significant effect on MMSE scores (three trials, mean difference 0.02, 95% CI −0.22 – 0.25). None of the vitamin E studies reported significant effects on cognitive outcomes. Among the other nutritional interventions, statistically significant differences between the intervention and control groups on at least one cognitive domain were found in single studies of green tea extract, Concord grape juice, chromium picolinate, beta-carotene, two different combinations of multiple vitamins, and a dietary approach developed for the control of hypertension. Conclusions Omega-3 fatty acids, B vitamins, and vitamin E supplementation did not affect cognition in non-demented middle-aged and older adults. Other nutritional interventions require further evaluation before their use can be advocated for the prevention of age-associated cognitive decline and dementia.
Collapse
Affiliation(s)
- Scott C Forbes
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB
| | - Jayna M Holroyd-Leduc
- Departments of Medicine, Clinical Neurosciences and Community Health Sciences, Faculty of Medicine, University of Calgary, Calgary, AB;; Alberta Seniors Health Strategic Clinical Network, Alberta Health Services, Calgary, AB
| | - Marc J Poulin
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB;; Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB
| | - David B Hogan
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB;; Brenda Stafford Foundation Chair in Geriatric Medicine, Faculty of Medicine, University of Calgary, Calgary, AB;; Departments of Medicine, Clinical Neurosciences and Community Health Sciences, Faculty of Medicine, University of Calgary, Calgary, AB;; Alberta Seniors Health Strategic Clinical Network, Alberta Health Services, Calgary, AB
| |
Collapse
|
8
|
Hosseinzadeh S, Roshan VD, Mahjoub S. Continuous exercise training and curcumin attenuate changes in brain-derived neurotrophic factor and oxidative stress induced by lead acetate in the hippocampus of male rats. PHARMACEUTICAL BIOLOGY 2013; 51:240-245. [PMID: 23134146 DOI: 10.3109/13880209.2012.717230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT For many years it has been known that lead is life-threatening, not only as an air pollutant but also because of it has been associated with several conditions including neurodegenerative disease. Curcumin (the principal curcuminoid found in turmeric) has demonstrated potent antioxidant properties. OBJECTIVE We investigated neuroprotective effects of endurance exercise and/or curcumin on lead acetate-induced neurotoxicity in the rat hippocampus. MATERIALS AND METHODS Forty male Wistar rats were randomly divided into five groups: 1) lead acetate, 2) curcumin, 3) training, 4) training + curcumin, and 5) control. The rats in the training groups performed treadmill running five times a week for 8 weeks (15-22 m/min, 25-64 min). All groups except control received lead acetate (20 mg/kg), whereas the control group received curcumin solution (ethyl oleate). In addition, the curcumin and training + curcumin groups received curcumin solution (30 mg/kg) intraperioneally. RESULTS Lead acetate resulted in a significantly increase in the malondialdehyde (MDA) in plasma (72%), but not significant in hippocampus (59%). In addition, it led to significantly decreased brain-derived neurotrophic factor in hippocampus (17%) and total antioxidant capacity (27%), as compared to control group. Treadmill running, curcumin supplementation or both resulted in a significant decrease in hippocampus MDA (17, 20, 31%, respectively) and plasma MDA (60, 22, 71%) and also, significantly increased brain-derived neurotrophic factor (76, 45, 94%) and total antioxidant capacity (47.13, 47.11, 61%) levels, as compared to lead acetate group. DISCUSSION AND CONCLUSION These results provide a rationale for an inhibitory role of curcumin and regular exercise in the attenuation of lead-induced neurotoxicity.
Collapse
|
9
|
Dabidi RV, Hosseinzadeh S, Mahjoub S, Hosseinzadeh M, Myers J. Endurance exercise training and diferuloyl methane supplement: changes in neurotrophic factor and oxidative stress induced by lead in rat brain. Biol Sport 2013; 30:41-6. [PMID: 24744464 PMCID: PMC3944559 DOI: 10.5604/20831862.1029820] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 01/01/2023] Open
Abstract
Lead is a highly neurotoxic agent that particularly affects the developing central nervous system. In the current study we investigated the neuroprotective effects of exercise training and/or diferuloyl methane (DM) supplement, which is known as curcumin, on lead acetate-induced neurotoxicity in the rat hippocampus. Sixty rats were randomly divided into six groups: 1) lead acetate, 2) DM supplement, 3) endurance training, 4) training+ DM supplement, 5) sham and 6) base. The rats in the training groups performed treadmill running consisting of 15 to 22 m · min(-1) for 25 to 64 min, 5 times a week for 8 weeks. All groups except sham received lead acetate (20 mg · kg(-1)), whereas the sham group received DM solvent. In addition, the DM and training + DM groups received DM solution (30 mg · kg(-1)) intraperitoneally. Chronic administration of lead acetate resulted in a significant increase in the malondialdehyde (MDA) in plasma, but not in the hippocampus. In addition, it led to significantly decreased brain-derived neurotrophic factor (BDNF) in the hippocampus and total antioxidant capacity (TAC) levels, as compared to the sham group. Treadmill running, DM supplementation, or both resulted in a significant decrease in MDA levels and significantly increased BDNF and TAC levels, as compared to the lead acetate group. These results provide a rationale for an inhibitory role of DM supplement and regular exercise in the attenuation of lead-induced neurotoxicity.
Collapse
Affiliation(s)
- Roshan V Dabidi
- College of Physical Education and Sport Sciences, Department of Sport Physiology, University of Mazandaran, Babolsar, Iran
| | | | - S Mahjoub
- Fatemeh Zahra Infertility and Reproductive health Research Center, Babol University of Medical Sciences, Babol, Iran ; Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - M Hosseinzadeh
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Fredrik Bajers vej 7D-3, DK 9220 Aalborg, Denmark
| | - J Myers
- Cardiology Division, VA Palo Alto Health Care System, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
10
|
The influence of dietary factors in central nervous system plasticity and injury recovery. PM R 2011; 3:S111-6. [PMID: 21703566 DOI: 10.1016/j.pmrj.2011.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 03/04/2011] [Indexed: 11/22/2022]
Abstract
Although feeding is an essential component of life, it is only recently that the actions of foods on brain plasticity and function have been scrutinized. There is evidence that select dietary factors are important modifiers of brain plasticity and can have an impact on central nervous system health and disease. Results of new research indicate that dietary factors exert their effects by affecting molecular events related to the management of energy metabolism and synaptic plasticity. Recent study results show that select dietary factors have mechanisms similar to those of exercise, and that, in some cases, dietary factors can complement the action of exercise. Abundant research findings in animal models of central nervous system injury support the idea that nutrients can be taken in through whole foods and dietary supplements to reduce the consequences of neural damage. Therefore, exercise and dietary management appear as a noninvasive and effective strategy to help counteract neurologic and cognitive disorders.
Collapse
|