1
|
Zhao Y, Qiu P, Shen T. Gut microbiota and eye diseases: A review. Medicine (Baltimore) 2024; 103:e39866. [PMID: 39331938 PMCID: PMC11441905 DOI: 10.1097/md.0000000000039866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Recent studies reveal that alterations in gut microbiota play a significant role in the progression of various diseases, including those affecting the eyes. The association between gut microbiota and eye health is an emerging focus of research. This review seeks to summarize the connection between the gut microbiome and specific eye conditions, such as ocular surface diseases, funduscopic disorders and immune-mediated eye diseases. Gut microbiota may influence these conditions by regulating the immune system or altering metabolites, thereby contributing to disease development. Strategies like probiotics, antibiotics, dietary modifications, and fecal transplants show promise in addressing these issues. This review examines how the gut microbiome may be linked to the pathogenesis of eye diseases, providing fresh therapeutic perspectives for ophthalmology.
Collapse
Affiliation(s)
- Yue Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Peijin Qiu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Shen
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Fang Y, Wang Q, Li Y, Zeng L, Liu J, Ou K. On implications of somatostatin in diabetic retinopathy. Neural Regen Res 2024; 19:1984-1990. [PMID: 38227526 DOI: 10.4103/1673-5374.390955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/10/2023] [Indexed: 01/17/2024] Open
Abstract
Somatostatin, a naturally produced neuroprotective peptide, depresses excitatory neurotransmission and exerts anti-proliferative and anti-inflammatory effects on the retina. In this review, we summarize the progress of somatostatin treatment of diabetic retinopathy through analysis of relevant studies published from February 2019 to February 2023 extracted from the PubMed and Google Scholar databases. Insufficient neuroprotection, which occurs as a consequence of declined expression or dysregulation of retinal somatostatin in the very early stages of diabetic retinopathy, triggers retinal neurovascular unit impairment and microvascular damage. Somatostatin replacement is a promising treatment for retinal neurodegeneration in diabetic retinopathy. Numerous pre-clinical and clinical trials of somatostatin analog treatment for early diabetic retinopathy have been initiated. In one such trial (EUROCONDOR), topical administration of somatostatin was found to exert neuroprotective effects in patients with pre-existing retinal neurodysfunction, but had no impact on the onset of diabetic retinopathy. Overall, we concluded that somatostatin restoration may be especially beneficial for the growing population of patients with early-stage retinopathy. In order to achieve early prevention of diabetic retinopathy initiation, and thereby salvage visual function before the appearance of moderate non-proliferative diabetic retinopathy, several issues need to be addressed. These include the needs to: a) update and standardize the retinal screening scheme to incorporate the detection of early neurodegeneration, b) identify patient subgroups who would benefit from somatostatin analog supplementation, c) elucidate the interactions of somatostatin, particularly exogenously-delivered somatostatin analogs, with other retinal peptides in the context of hyperglycemia, and d) design safe, feasible, low cost, and effective administration routes.
Collapse
Affiliation(s)
- Yanhong Fang
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Qionghua Wang
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Youjian Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Li Zeng
- Shandong Provincial Hospital, Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Jian Liu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kepeng Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
3
|
Sheemar A, Bellala K, Sharma SV, Sharma S, Kaur I, Rani P, Sivaprasad S, Narayan KV, Das T, Takkar B. Metabolic memory and diabetic retinopathy: Legacy of glycemia and possible steps into future. Indian J Ophthalmol 2024; 72:796-808. [PMID: 38804800 PMCID: PMC11232859 DOI: 10.4103/ijo.ijo_2563_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 05/29/2024] Open
Abstract
The response of retinal pathology to interventions in diabetic retinopathy (DR) is often independent of the glycated hemoglobin (HbA1c) values at the point of care. This is despite glucose control being one of the strongest risk factors for the development and progression of DR. Previous preclinical and clinical research has indicated metabolic memory, whereby past cumulative glucose exposure may continue to impact DR for a prolonged period. Preclinical studies have evaluated punitive metabolic memory through poor initial control of DM, whereas clinical studies have evaluated protective metabolic memory through good initial control of DM. In this narrative review, we evaluate the preclinical and clinical evidence regarding metabolic memory and discuss how this may form the basis of preventive care for DR by inducing "metabolic amnesia" in people with a history of uncontrolled diabetes in the past. While our review suggested mitochondrial biology may be one such target, research is still far from a possible clinical trial. We discuss the challenges in such research.
Collapse
Affiliation(s)
| | - Keerthi Bellala
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vishakhapatnam, Andhra Pradesh, India
| | | | - Sarmeela Sharma
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Padmaja Rani
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sobha Sivaprasad
- NIHR Moorfields Clinical Research Facility, Moorfields Eye Hospital, London, UK
| | - Km Venkat Narayan
- Emory Global Diabetes Research Center, Emory University, Atlanta, USA
| | - Taraprasad Das
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Brijesh Takkar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Indian Health Outcomes, Public Health and Health Economics Research Centre (IHOPE), LVPEI, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Rani PK. Management of diabetic ocular complications: from cellular insights to community strategies. BMC Ophthalmol 2024; 24:151. [PMID: 38594648 PMCID: PMC11005226 DOI: 10.1186/s12886-024-03422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
The editorial outlines an integrated approach to managing diabetic ocular complications, combining advanced scientific research with practical public health strategies to improve the prevention, diagnosis, and treatment of diabetic retinopathy and macular edema globally.
Collapse
Affiliation(s)
- Padmaja Kumari Rani
- Department of Teleophthalmology, L V Prasad Eye Institute, 500034, Hyderabad, Telangana, India.
| |
Collapse
|
5
|
Chen L, Qi E, Liu X, Cui L, Fan X, Wei T, Hu Y. The lack of homology domain and leucine rich repeat protein phosphatase 2 ameliorates visual impairment in rats with diabetic retinopathy through regulation of the AKT-GSK-3β-Nrf2 signal cascade. Toxicol Appl Pharmacol 2024; 482:116766. [PMID: 37995808 DOI: 10.1016/j.taap.2023.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Pleckstrin homology domain and leucine rich repeat protein phosphatase 2 (PHLPP2) is an emerging player in diverse disorders. Our previous findings have documented that reducing PHLPP2 levels in cultured retinal ganglion cells protects against cellular damage caused by high glucose, indicating a possible link between PHLPP2 and diabetic retinopathy (DR). The present work was dedicated to the investigation of PHLPP2 in DR through in vivo experiments with rat models induced by intraperitoneal injection of streptozotocin. Compared to normal rats, the retinas of rats with DR exhibited a notable increase in the level of PHLPP2. The reduction of PHLPP2 levels in the retina was achieved by the intravitreal administration of adeno-associated viruses expressing specific shRNA targeting PHLPP2. Decreasing the expression of PHLPP2 ameliorated visual function impairment and improved the pathological changes of retina in DR rats. Moreover, decreasing the expression of PHLPP2 repressed the apoptosis, oxidative stress and proinflammatory response in the retinas of rats with DR. Reduction of PHLPP2 levels led to an increase in the levels of phosphorylated AKT and glycogen synthase kinase-3β (GSK-3β). Decreasing the expression of PHLPP2 resulted in increased activation of nuclear factor erythroid 2-related factor 2 (Nrf2), which was reversed by suppressing AKT. Notably, the protective effect of reducing PHLPP2 on DR was eliminated when Nrf2 was restrained. These observations show that the down-regulation of PHLPP2 has protective effects on DR by preserving the structure and function of the retina by regulating the AKT-GSK-3β-Nrf2 signal cascade. Therefore, targeting PHLPP2 may hold promise in the treatment of DR.
Collapse
Affiliation(s)
- Li Chen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - En Qi
- Department of Ophthalmology, Qinghai Provincial People's Hospital, Xining 810007, Qinghai, China
| | - Xuan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Lijun Cui
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xiaojuan Fan
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ting Wei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yaguang Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
6
|
Zhang H, Mo Y. The gut-retina axis: a new perspective in the prevention and treatment of diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1205846. [PMID: 37469982 PMCID: PMC10352852 DOI: 10.3389/fendo.2023.1205846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Diabetic retinopathy (DR) is a microvascular lesion that occurs as a complication of diabetes mellitus. Many studies reveal that retinal neurodegeneration occurs early in its pathogenesis, and abnormal retinal function can occur in patients without any signs of microvascular abnormalities. The gut microbiota is a large, diverse colony of microorganisms that colonize the human intestine. Studies indicated that the gut microbiota is involved in the pathophysiological processes of DR and plays an important role in its development. On the one hand, numerous studies demonstrated the involvement of gut microbiota in retinal neurodegeneration. On the other hand, alterations in gut bacteria in RD patients can cause or exacerbate DR. The present review aims to underline the critical relationship between gut microbiota and DR. After a brief overview of the composition, function, and essential role of the gut microbiota in ocular health, and the review explores the concept of the gut-retina axis and the conditions of the gut-retina axis crosstalk. Because gut dysbiosis has been associated with DR, the review intends to determine changes in the gut microbiome in DR, the hypothesized mechanisms linking to the gut-retina axis, and its predictive potential.
Collapse
Affiliation(s)
- Haiyan Zhang
- Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Ya Mo
- Chengdu University of Traditional Chinese Medicine, Sichuan, China
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| |
Collapse
|
7
|
Pinelli R, Ferrucci M, Biagioni F, Berti C, Bumah VV, Busceti CL, Puglisi-Allegra S, Lazzeri G, Frati A, Fornai F. Autophagy Activation Promoted by Pulses of Light and Phytochemicals Counteracting Oxidative Stress during Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1183. [PMID: 37371913 DOI: 10.3390/antiox12061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The seminal role of autophagy during age-related macular degeneration (AMD) lies in the clearance of a number of reactive oxidative species that generate dysfunctional mitochondria. In fact, reactive oxygen species (ROS) in the retina generate misfolded proteins, alter lipids and sugars composition, disrupt DNA integrity, damage cell organelles and produce retinal inclusions while causing AMD. This explains why autophagy in the retinal pigment epithelium (RPE), mostly at the macular level, is essential in AMD and even in baseline conditions to provide a powerful and fast replacement of oxidized molecules and ROS-damaged mitochondria. When autophagy is impaired within RPE, the deleterious effects of ROS, which are produced in excess also during baseline conditions, are no longer counteracted, and retinal degeneration may occur. Within RPE, autophagy can be induced by various stimuli, such as light and naturally occurring phytochemicals. Light and phytochemicals, in turn, may synergize to enhance autophagy. This may explain the beneficial effects of light pulses combined with phytochemicals both in improving retinal structure and visual acuity. The ability of light to activate some phytochemicals may further extend such a synergism during retinal degeneration. In this way, photosensitive natural compounds may produce light-dependent beneficial antioxidant effects in AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- SERI, Switzerland Eye Research Institute, 6900 Lugano, Switzerland
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesca Biagioni
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | - Caterina Berti
- SERI, Switzerland Eye Research Institute, 6900 Lugano, Switzerland
| | - Violet Vakunseth Bumah
- Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA 92182, USA
- Department of Chemistry and Physics, University of Tennessee, Martin, TN 38237, USA
| | - Carla Letizia Busceti
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | | | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Alessandro Frati
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| |
Collapse
|
8
|
Pinelli R, Ferrucci M, Berti C, Biagioni F, Scaffidi E, Bumah VV, Busceti CL, Lenzi P, Lazzeri G, Fornai F. The Essential Role of Light-Induced Autophagy in the Inner Choroid/Outer Retinal Neurovascular Unit in Baseline Conditions and Degeneration. Int J Mol Sci 2023; 24:ijms24108979. [PMID: 37240326 DOI: 10.3390/ijms24108979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The present article discusses the role of light in altering autophagy, both within the outer retina (retinal pigment epithelium, RPE, and the outer segment of photoreceptors) and the inner choroid (Bruch's membrane, BM, endothelial cells and the pericytes of choriocapillaris, CC). Here autophagy is needed to maintain the high metabolic requirements and to provide the specific physiological activity sub-serving the process of vision. Activation or inhibition of autophagy within RPE strongly depends on light exposure and it is concomitant with activation or inhibition of the outer segment of the photoreceptors. This also recruits CC, which provides blood flow and metabolic substrates. Thus, the inner choroid and outer retina are mutually dependent and their activity is orchestrated by light exposure in order to cope with metabolic demand. This is tuned by the autophagy status, which works as a sort of pivot in the cross-talk within the inner choroid/outer retina neurovascular unit. In degenerative conditions, and mostly during age-related macular degeneration (AMD), autophagy dysfunction occurs in this area to induce cell loss and extracellular aggregates. Therefore, a detailed analysis of the autophagy status encompassing CC, RPE and interposed BM is key to understanding the fine anatomy and altered biochemistry which underlie the onset and progression of AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Caterina Berti
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| | - Elena Scaffidi
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Violet Vakunseth Bumah
- Department of Chemistry and Biochemistry College of Sciences San Diego State University, San Diego, CA 92182, USA
- Department of Chemistry and Physics, University of Tennessee, Knoxville, TN 37996, USA
| | - Carla L Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| | - Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| |
Collapse
|
9
|
Selective Activation of the Wnt-Signaling Pathway as a Novel Therapy for the Treatment of Diabetic Retinopathy and Other Retinal Vascular Diseases. Pharmaceutics 2022; 14:pharmaceutics14112476. [PMID: 36432666 PMCID: PMC9697247 DOI: 10.3390/pharmaceutics14112476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Retinal ischemia, often associated with various disorders such as diabetic retinopathy (DR), retinal vein occlusion, glaucoma, optic neuropathies, stroke, and other retinopathies, is a major cause of visual impairment and blindness worldwide. As proper blood supply to the retina is critical to maintain its high metabolic demand, any impediment to blood flow can lead to a decrease in oxygen supply, resulting in retinal ischemia. In the pathogenesis of DR, including diabetic macular edema (DME), elevated blood glucose leads to blood-retina barrier (BRB) disruptions, vascular leakage, and capillary occlusion and dropouts, causing insufficient delivery of oxygen to the retina, and ultimately resulting in visual impairment. Other potential causes of DR include neuronal dysfunction in the absence of vascular defect, genetic, and environmental factors. The exact disease progression remains unclear and varies from patient to patient. Vascular leakage leading to edema clearly links to visual impairment and remains an important target for therapy. Despite recent advances in the treatment of DME and DR with anti-VEGFs, effective therapies with new mechanisms of action to address current treatment limitations regarding vessel regeneration and reperfusion of ischemic retinal areas are still needed. The Wnt signaling pathway plays a critical role in proper vascular development and maintenance in the retina, and thus provides a novel therapeutic approach for the treatment of diabetic and other retinopathies. In this review, we summarize the potential of this pathway to address treatment gaps with current therapies, its promise as a novel and potentially disease modifying therapy for patients with DR and opportunities in other retinal vascular diseases.
Collapse
|